An Automatic Stranger Removal Photography System Using Panoramic Inpainting

W. G. C. W. Kumara, *2TIMOTHY K. SHIH, AND *3SHIH-MING CHANG

*Department of Computer Science and Information Engineering, National Central University
No. 300, Jhongda Rd., Jhongli City, Taoyuan County 32001, Taiwan (R. O. C.)
*Department of Computer Science and Information Engineering, Tamkang University
No. 151, Yingzhuan Rd., Tamsui Dist., New Taipei City 25137, Taiwan (R. O. C.)
E-mail: {chinthakawk, timothykshih}@gmail.com, rest306@hotmail.com

Moving human objects (or ‘strangers’ as referred here) in the background obscure the scenery in regular panorama photography. Hence this paper proposes a novel method to remove the strangers from the background of the panorama. In the proposed system the object segmentation, dynamic background inpainting, and panorama creation phases are used to compose a panorama. If the detected face data of the stranger are not in the face database of the camera, the stranger is automatically removed from the panorama in the background repair phase which is known as inpainting. Panorama creation of the developed system is fully automatic. If a moving human object in the background that the user intended to remove from the panorama is not automatically detected, the user can manually select that stranger in the object segmentation phase. Then the manually selected stranger is removed from the panorama in the background repair phase. Experimental results demonstrate that the proposed system effectively removes strangers in the background and generates the panorama. Complete results set can be accessed at http://video.minelab.tw/PanoramaInpainting.

Keywords: Panorama, inpainting, automatic grabcut.

1. INTRODUCTION

Panorama photography has become popular within the general users, skilled photographers, and computer and Internet based applications. With the introduction of panorama photography support in the general purpose digital cameras and smart phones, users and applications that use the panorama photos have also increased in numbers. People take photographs of their preferred scenes every day either with standalone cameras or the ones equipped in the mobile devices. It often requires to avoid the moving human objects from the background while capturing, since such objects usually obscure the structures and scenery in the background. These moving human objects in the background is referred as strangers in the rest of the paper. If the strangers are still visible in the photograph, tools like smoothing and fading, which are available in image editing software are mostly used to remove such strangers. Due to the series of steps to be followed and required expertise on the tool, most of the image or video editing software are not suitable for a general user for daily requirements. On the other hand additional background information of the scenery can be obtained with a panorama. Panorama photography is mostly used to capture natural scenery or famous buildings which are
normally dense with strangers. These strangers in the scene result in foggy shades in the panorama and obscure the background. Two example panoramas generated with the Autostitch\(^1\) application [1], [2] with such noticeable artifacts are shown in Figure 1.

![Figure 1. Selected example results obtained with the Autostitch where strangers in the background appear as foggy shades in the panorama.](image)

The main objective of this research was to develop a panorama generation system eliminating foggy shades caused by the strangers, as a simple tool for a general user to use in the daily life. To generate a panorama with the proposed system the user first captures a short video focusing the main human character following a clockwise trajectory starting from the center. Then the captured short video is fed in to the system to extract several frames. Finally, the system generates the panorama without the strangers in the background as illustrated in Figure 2.

![Figure 2. The main phases of proposed method.](image)

Two main contributions can be highlighted in this paper. First, a systematic approach is presented to compose a panorama without strangers in the background using inpainting techniques. Panorama generation technologies proposed so far are lack of user input or any automatic method to adjust the result based on the user preferences. As an example the user may want to compose the panorama with only the people she preferred to have. Image inpainting technique has been used here addressing that gap. Second, an integrated panorama generation system is implemented which improves and combines several available image processing techniques like face detection, video inpainting, feature point detection and matching etc.. This is a very suitable application that can be introduced as a mobile application. Then the user have the freedom in capturing panorama with the people she preferred to have.

\(^1\) http://www.cs.bath.ac.uk/brown/autostitch/autostitch.html
The proposed system consists of three main phases namely, object segmentation, dynamic background inpainting and panorama creation as shown in Figure 3. The proposed system is fully automatic. A face database of the camera is used and panorama is generated with no strangers in the background. If the automatic face detection fails to detect a stranger that the user prefers to remove from the panorama, she can select which strangers to be removed. This guarantees panorama generation as the user expected.

The rest of the paper is organized as follows. Sections 2 and 3 discuss the related work and proposed method in detail. Next, experimental results and analysis are presented in section 4. Finally, the contributions and future works are concluded in section 5.

![Flowchart of the proposed approach](image)

Figure 3. The flowchart of the proposed approach.

2. RELATED WORK

Even though the widely used face detection techniques nowadays are capable of detecting the structure of face in an image very fast, sometimes structure of the face may be misjudged. One of the simple concepts in enhancing face detection and finding correct face structure in an image is to use the skin color. A model of classifier like Haar-Features [3], [4] can also often used in face detection for better results.

Background subtraction can be used for object tracking in the images with fixed background but it is difficult to use if the background is dynamic. Among numerous object tracking and extracting technologies graph-cut is an often used technique. GrabCut technology [5]-[8] which is based on the graph-cut is the algorithm of clustering used in the proposed solution to extract the object to be removed. In the source image each pixel is a graph node and a cost function is used to label each as object or background. In GrabCut the user draws a sample range of the object to be removed and the background by using different colored lines. Then growing that drawn line inside or outside starting from the marked sample range of object and background, objects can be extracted.

The empty region created in the source image after removing the object detected by GrabCut algorithm should be correctly filled with the relevant background information before the panorama generation. One of the effective methods that can be used for the
The herein purpose is video inpainting [9]-[15]. First, the appropriate moving path of an object in different frames should be found. Motion estimation can be used in such situations to find the direction of motion in consecutive frames via similarity comparison. The Cross Diamond Hexagonal Search (CDHS) algorithm [16] can be used when the camera follows a non-linear trajectory. In video, appropriate path of moving object appears in frame$_{i+n}$ or frame$_{i-n}$ where t represents time in video and n represents a constant. Then relevant background information is found in frame$_{i+n}$ or frame$_{i-n}$ and copied covering the target region.

Feature point matching is very important in panorama generation. Some methods require manual marking of the structure points which is time consuming and less accurate [17]. Hence, feature matching and structure recognition based solutions are used like Scale-Invariant Feature Transform (SIFT) algorithm [2], [18]-[20]. SIFT algorithm can detect and describe local features in an image and can find matching features in a different image. It uses difference of Gaussian function and image pyramid technology to find extreme values in difference scale-space. Then a linear least square solution and a threshold value is used to detect high-contrast or low-contrast feature points. Then each feature points’ gradient direction and strength is used to allocate the feature points. Finally histograms are used to compute orientation value of samples in different scale-space to create direction of the feature points. SIFT feature points can be used to find the same objects in an image pair taken at different camera locations or directions. SIFT feature matching is not satisfactory if the angle between shooting directions of two images is too wide or features in the images are too similar (like a grassland hill). Since it is difficult to find adequate features in such situations, and to improve the said shortcomings Morel [21] proposed Affine-SIFT (ASIFT) algorithm. M. Brown and D. G. Lowe [2] presented example results of SIFT and ASIFT algorithms [19], [21] which are actually capable in compensating the differences in zooming, rotation and translation. In ASIFT algorithm Morel proposed two important concepts as the angles defining the camera axis orientation and any prognosis simulating all views. Speeded-Up Robust Features (SURF) algorithm [22], [23] is another algorithm used for feature and object extraction which is based on summations of approximated Haar wavelet responses. Even though the SURF and SIFT algorithms are similar in detecting features and the number of features detected, SURF algorithm is better in processing time comparatively.

M. Brown et al., [2] used SIFT algorithm for feature matching to find the position of each source image in the panorama. Since the number of features can be very large and not every feature is needed in image matching, in order to find the most intensive area in two source images authors have used the Random Sample Consensus (RANSAC) method. In calibration and consolidation, authors have used bundle adjustment to calculate geometry relations in each, then after consolidation panorama can be produced. Yingen X. et al., [24] proposed a fast panorama creation method for mobile devices. They used the default direction of photography instead of the calibration method to reduce the processing time. It is similar to filming a video but the panorama remains the same scale of one photo frame. In image matching, since the direction of photography and overlapping area can be calculated, the optimal seam can be found in each overlapping area using dynamic programming. They used processing in the cache memory so the processing speed is optimized.
Figure 4. An example cylindrical projection.

There can be several candidate source pixels for a pixel in the panorama. Averaging of the color values of the source pixels may produce foggy shades in panorama. In the proposed system a reliable method called image stitching is used to produce the background from next source image. Image stitching first finds the optimal seam in the overlapping region of two images. Image stitching can produce the foggy shades in the matching structure of panorama. Image stitching can be divided into three stages as registration, calibration and blending [1], [2]. Image registration uses matching features in a set of images. Or direct alignment method is used to search for image alignment that minimizes the Sum of Absolute Differences (SAD) in overlapping region of two images. In some image stitching methods, the registration is done manually because of less processing time. Image calibration [25] minimizes differences between an ideal lens models and the camera-lens combination reducing optical defects such as distortions. Absolute positions of the detected features can be now used for geometric optimization of the images. In the proposed system ASIFT algorithm is used to find feature matching in the set of source images. Image blending involves executing the adjustments of source images resulted in the calibration stage and combine with remapping of the images to an output projection. Colors are adjusted between images to compensate exposure differences. In this part color obtained can also use the averaging and interpolation to compute the pixel value.

The calibration of image stitching and panorama creation may encounter barrel distortion. The solution is to use the concept of projection with a common model like rectilinear, cylindrical or spherical projection. The concept uses matrix to transform the position of pixel. Barrel-shaped distortion can be improved by selecting an appropriate parameter matrix. An example result of barrel-shaped distortion is shown in Figure 4.

In camera calibration the homography [26] is used to project all source images to the same plane. The homography matrix is calculated using the features extracted by ASIFT algorithm. Relationship between the same point before and after applying the homography projection can be shown as [26],

\[s \times m' = H \times m, \]

where, \(s \) is the scale matrix, \(H \) is the homography matrix, \(m = (x, y, 1) \) and \(m' = (x', y', 1) \) is a pair of corresponding points in the original image and in panorama plane in the homogeneous coordinate system. At least four pairs of corresponding points are required to solve eight parameters in the resultant equation. Moreover according to the characteristic of homography matrix these points in the three-dimensional space must be on the same plane.

Optimal seam is found in the proposed system using graph cuts with dynamic programming. Each pixel in the source image can be considered as nodes and the
relationship of neighboring pixels can be regarded as paths between two nodes. Then the source image can be converted into a multi-stage graph. The energy map is used to find the optimal seam in overlapping region of two images as shown in the schematic diagram in Figure 5 (top). The red line is the optimal seam between images A and image B. Seam craving [27] is used to find the optimal seam in the proposed method. A seam can be found using energy map by avoiding the important area in an image. By avoiding the important area, foggy shades problem can also be reduced since the human area in energy map is relatively large in background area. The main function of optimal seam is shown in (2) where, $D(h, w)$ represents the energy value in energy map, and h and w represent height and width of image respectively. Schematic diagram of the process is shown in Figure 5 (bottom).

$$D(h, w) = D(h, w) + \min(D(h-1, w-1), D(h-1, w), D(h-1, w+1)) \ . \quad (2)$$

3. PROPOSED METHOD

As explained in the introduction the user captures a short video focusing the main human character that he intended to focus following a clockwise trajectory starting from the center. Then the captured short video is fed in to the system to extract $S_f = 5$ set of frames as the panorama source image set $\{Sframe_{1+iN}\}$ where $i = 0, \ldots, 4$, from all video frames V_f with an interval of $N = (V_f/S_f)$. Then the selected source image set follows three main phases of the system, object segmentation, dynamic background inpainting, and panorama creation as displayed in Figure 3. Details of the three phases are given in the following sub sections.

3.1 Object Segmentation

As it is required to remove unwanted strangers visible in the background of the panorama, first such strangers should be recognized in the selected source frame set. Process detects such stranger faces, identifies object location definition, and finally segment the objects.
The proposed solution uses skin color and Haar-features in the face detection process. Two example results of face detection are shown in Figure 6 (top). It is required to add the face data to the face database in the proposed system using the face detection feature available in the system, whereas all other faces in the photograph with no matching face data in the database are considered as strangers. Users are allowed to mark the face area manually if the automatic face detection is unable to detect face structures in the images correctly.

Since the object location is very important in object segmentation, an excellent object location definition not only reduces the processing time but also contributes to a good result after object segmentation. In the proposed system it is only required to define a probable region of an object in run time. Hence a ratio between face and body is used to detect the human body area based on the detected face area, focusing only the standing adult strangers excluding other situations like lying down or sitting adults or children. Height ratio between 6.0 and 6.5 and, width ratio between 2.5 and 3.0 are used to mark the region of object location definition. Two selected results of object location definition are shown in Figure 6 (bottom). Automatic face detection may fail if a person is looking away from the camera or if the face is blurred. Then the user is allowed to draw an approximate region of the face area using a diagonal oblique line. The body area is then drawn automatically using the same face to body ratios, or can be manually marked by the user.

Algorithm 1 lists steps of object segmentation based on Automatic GrabCut (AutoGrabCut). First, Sobel edge detection method is applied in the definition area A_D of human (Figure 7 left). Then the conspicuous points I_C are found if the Sobel value p is greater than or equal to a Sobel threshold th_S. $th_S = 180$ is used during the experiment which gives a better threshold when finding conspicuous points (Figure 7 middle). Next, the definition area is equally divided into two parts and if the GrabCut result A_{GC} in each part is greater than or equal to 40% of the definition area A_D, erosion and dilation is applied in the GrabCut result A_{GC} to extract the human object (Figure 7 right). 40% was used as it makes sure extraction of the stranger correctly; else, a human body sample model M is used in the definition area A_D. Then overlapping parts of sample model and definition area is fed to the mean-shift algorithm. Finally GrabCut is used in the large detected color clusters.
Algorithm 1: Object segmentation with Auto-GrabCut
Input: source image I, definition area A_D
Output: auto-grabcut image O

$\forall p \in I_S$
If $I_S(p) \geq t_{S}$ // t_{S}: Sobel threshold
$I_{BGR}(p) \leftarrow (255, 0, 0)$
$I_C \leftarrow I_C \cup \{p\}$
$I_{RGB}(p) \leftarrow (255, 255, 255)$

$\forall i \in A_D$
$A_{GC} \leftarrow A_{GC} \cup \text{GrabCut}(i)$
If $(A_{GC}) < (0.4 \times A_{D})$
$A_{GC} \leftarrow \text{GrabCut}(\text{mean-shift} \{A_D \cap M\})$ // t_{A}: area threshold
$O \leftarrow \text{erosion and dilation}(A_{GC})$

![Figure 7. An example result of object segmentation. Sobel edges (left), conspicuous points (middle), and Auto-GrabCut result (right).]

3.2 Dynamic Background Inpainting

Algorithm 2: Background structure inpainting
Input: source frame $frame_i$, 20 consecutive frames $\{frames\}$
Output: background inpainted image

$n \leftarrow 1$
$\forall \text{frame}_{i+n} \in \{frames\}$
$d \leftarrow \text{CDHS}(O_i, \text{frame}_i, \text{frame}_{i+n})$
$M_i \leftarrow B_i$ and O_i labels
if M is updated
$\text{SAD}(O_i, B_i)$
$O_i - O_{i+n} \leftarrow (O_i \cap B_{i+n}) - O_{i+n}$

$n++$

In order to provide further background information into panorama image, it is required to remove the conspicuous foreground of strangers in the source image. An approximate region to remove in the object can be obtained with Auto-GrabCut algorithm as explained in previous subsection. The resultant empty region in the source image after removing the object should be correctly filled with the relevant background information before composing the panorama. Video inpainting gives better results if the background is fixed or the camera movement is linear [28]-[33]. But in the proposed method the input
video was captured following a circular trajectory. Therefore the original concept of video inpainting is not suitable in system herein because background shows both vertical and horizontal movements in consecutive frames. Since the video in the proposed system follows a circular trajectory during capturing, motion information of background follows the same circular trajectory while dynamic foreground objects may further have different motion directions. Therefore the suitable similar background information can be obtained by following the background motion of circular trajectory. Nine directions are defined in the proposed CDHS based motion estimation method as eight major compass directions and one with null motion direction.

![Figure 8. The schematic diagram, $n \in 1-20$ (top) and an example inpainting process for several frames with the final result (bottom).](image)

After segmenting object to be removed in the reference frame, next 20 subsequent frames are considered to copy the background information from, as listed in Algorithm 2. First, covering regions O_t and O_{t+n} in frame t and frame $t+n$ are found using Auto-GrabCut, as explained in Algorithm 1. Next, main direction d of the boundary of O_t is found using CDHS algorithm in a 15x15 pixels block search area in frame $t+n$, which is based on Sum of Squared Differences (SSD) value. Then, O_t and the background area B_t exposed due to the movement of the O_t, are tagged as foreground and background pixels in the relevant mark map M_t. Later, similarity between O_t and B_t is calculated with the Sum of Absolute Difference (SAD) [34] and the exposed area $O_t - O_{t+n}$ in frame t is replaced by $(O_t \cap B_{t+n}) - O_{t+n}$ from frame $t+n$. Then repeat the process for all subsequent set of frames ($n \in 1-20$) with respect to the selected source frame in order to inpaint the selected stranger. Finally the whole process is repeated for every source frame in the panorama source frame set. The schematic diagram of the process, and several selected frames of a background structure inpainting example are shown in Figure 8. Figure 9 show an example output of video inpainting and the proposed method. The proposed method clearly demonstrates better inpainted results inside the circle marked in red.

![Figure 9. The final result of background structure inpainting using video inpainting (left) and proposed modified method (right).](image)
3.3 Panorama Creation

After inpainting the strangers in the selected source frame set, coordinates of the matching feature points in the source frame set is required to find. First, matching features of two frames is found using ASIFT algorithm. Next, if the slope between each matching pair \(M_p \neq 0 \), number of high similarity matching feature points are found using SAD in a 3×3 pixels block. Finally calibration parameters matrix is found based on those high similarity matching feature points for all source frames. Even though the background structure details are well maintained in the panorama generated using the matching feature points and camera calibration details, the requirement of retaining the main human object with as much as possible background information is not fulfilled. The structure of the main human object may look distorted as shown in the example in Figure 10 (left).

![Figure 10. The poor result of human in panorama creation (left) and the disarray structure of human (right).](image)

Therefore a method using panorama creation and inpainting technology is proposed to overcome the shady effect or the wrong structure of human object. The position of human object in each source image, the region and position of human object in panorama is obtained first. Then using the human object and its position, human object can be pasted in to panorama. Finally, inpainting can be used to fill the regions around human object with no background information in the panorama. Since the main human object is not moving with respect to landscape during capturing, background information in that region is not available due to the fact that human object obscure the background information always. In order to solve this problem the surrounding region patch is used to fill the structure. This concept is simple and fast but does not guarantee the structure in the repaired regions. In order to retain the structure in repaired regions image inpainting method is used. In image inpainting method the patch used to repair, considers the similarity of structure in background and filters incorrect structure being copied \([36]-[40]\). It was found that the use of image inpainting fails to repair the structure of background accurately. In image inpainting the sequence selection of repair regions depends on the similarity of structure. Therefore the structure boundary is distinguishing. So instead, the complete human object from source frames is captured and pasted to panorama. Therefore the result of panorama becomes disarray and unnatural in the repaired regions of inpainting as shown in Figure 10 (right).

In order to solve the problem of the structure in repaired region it is required to add the original background information around the boundary of human object. Therefore the sequence selection of the repair region in image inpainting finds the structure that can obtain background information and human object boundary. The dilation can control the
size of the boundary effectively. The large area of object region can be obtained via
dilation method and the expansion region has the background information. Note that in
order to avoid image inpainting method to find the wrong structure in processing, the
expansion region in human object boundary in image is not allowed expanding
unnecessarily in the proposed method. If the expansion region of human object boundary
in source frame is too large, the image inpainting method may find difference in repair
structure in panorama. Therefore the panorama quality is not satisfactory. After above
method the human panorama is created effectively. First, the largest human region in each
source images is found and position information of that region in panorama is recorded.
Then, dilation method is used to obtain the expansion of human object boundary and the
information of human and expansion boundary (small area of background information) is
restored in the panorama. Finally, image inpainting is performed to repair any missing
structure details in panorama. After the above algorithm, the integrity structure of human
object in panorama can be obtained as shown in Figure 11.

After the structure matching is ensured in panorama creation with main human in
source images, the integral panorama can be composed without the removed object. It
was observed that the periphery of image produces wrong structure during the
combination of images. The main problem is the barrel-shaped distortion caused during
the capture due to properties of the camera lens. This problem of barrel-shaped distortion
was solved before image stitching.

![Figure 11. The integrity structure of human.](image)

In the proposed system image stitching is used to produce the background from next
source image as explained below. Algorithm 3 clusters all feature points and calculate the
best homography matrix. First, using the mean-shift algorithm feature points are clustered
in to groups C_f according to color features. Clustering is performed based on L and U
values of the CIELuv color space, by eliminating small regions merging with neighbor
regions. Next, for each group the homography matrix is calculated using the feature
points within the group whereas groups with less than four matching feature
points are neglected. Then, the homography matrix of each group is fed into (1) to calculate the
value of $(H \times m)$ and compare the deviation d between the actual m' and the calculated
$(H \times m)$ where n is the number of matching feature pairs. Hence d is a measure of
correspondence accuracy of the selected pair of points with the homography matrix
found. Finally, the optimal homography matrix H_{opt} is the one with the minimum
deviation (one with the smallest d).

The method of optimal seam used in the proposed system is the graph cuts with
dynamic programming. In seam carving the seam can be found via energy map and avoid
the important area in image. By avoiding the important area foggy shades problem can
also be reduced since the human area in energy map is relatively large with background area (Figure 12).

Algorithm 3: Finding optimal homography matrix

Input: Source frames and coordinates of feature points
Output: Optimum homography matrix H_{opt}

\[
\{C_f\} \leftarrow \text{mean-shift (feature points)}
\]
\[
\forall C_f \in \{C_f\}
\]
 `if size (C_f) \geq 4`
 \[
 H \leftarrow \text{homography matrix (C_f)}
 \]
 \[
 d \leftarrow \left(\sum^n_{j=0} (m' - Hm_j)\right)/n
 \]
 \[
 H_{opt} \leftarrow \min (d)
 \]

![Image combination](image.png)

Figure 12. Image combination (top: original images, bottom: combined photo with overlapped region is marked in red).

4. EXPERIMENTAL RESULTS

The main interface of the developed tool based on the proposed method is shown in the Figure 13. First the source video is fed in the proposed system with the face database. Then, the system obtains source frames automatically and finds the faces in selected source frames that match with face database face data. If a face cannot be detected in source frame, user is required to define the face region in source frame. The system then defines the region of stranger automatically as shown in Figure 13 (bottom). After user defined the region of stranger, Background Inpainting menu item can be selected to remove stranger and to repair the background in the region of stranger. In Background Inpainting phase, system defines the area of stranger via Auto-GrabCut, and shows result of Auto-GrabCut in interface as shown in Figure 13 (bottom). After that user can select repair background via dynamic background inpainting or can define the area of stranger again if the result is not satisfactory. System shows only the result of dynamic background inpainting in interface as shown in Figure 13 (bottom). Then, user can select the create panorama option or can re-select the repair background option after dynamic background inpainting for better results. Finally system shows the panorama result in the interface as shown in Figure 13 (bottom).
Figure 13. Main interface of the system. Screen capture of the tool (top left), menu structure and planes (top right), phases of the tool and result (bottom): select object - select and detection stranger face, select object - definition stranger region, object segmentation - object segmentation via Auto-GrabCut, background Inpainting – background repair via dynamic background inpainting, background inpainting – showing panorama in interface.
Figure 14. Experimental results, for each video source video frames are shown in top and the resultant panorama is shown in bottom.
Several selected experimental results are shown in Figure 14. S01 and S02 videos were taken in indoor and inpainting have clearly removed the walking person in the background. S03 to S10 videos were captured in outdoor and the resultant panorama clearly shows that inpainting have removed the walking person in the background. S11 and S12 videos were also captured in outdoor and here inpainting have removed two moving persons in background. In S11 video the direction of two walking persons is from left to right and have spacing in between them. S12 video contains two walking persons, one from left to right and the other from right to left in the background. Comparing panorama views obtained using the proposed system shown in Figure 14 with the results obtained with AutoStitch shown in Figure 1 as, Figure 1 (left) with Figure 14 (S03) and Figure 1 (right) with Figure 14 (S07) it is clear that the proposed system provides better results comparing to the AutoStitch specially in the main human character and removal of the moving strangers. Specially as marked by red color triangles in the Figure 1 moving human being in the background is clearly visible in the resultant panorama as a foggy shade, once in the left images and twice in the right image. Reason for appearing the moving human being twice in the right image is multiple images were used to compose the panorama and the moving subject can be at different locations in the sources images which are used to generate the panorama. And in the other hand none of the moving background human subjects are not available in the generated panoramas in Figure 14. Second, the blurred areas around the face of the human subject in the Figure 1 which was generated with the AutoStich, is not available in the panorama generated using the proposed method as shown in Figure 14 (S03). Figure 15 shows panorama generated with AutoStitch for each dataset in Figure 14. Still visible unremoved moving human subjects in the background are marked with red color rectangles to highlight the improvements in the proposed method. Further as mentioned above blurred areas around the face of the main human subject is still clearly noticeable whereas the results of the proposed work shows not blurred clear background around the face and body of the main human subject.
Figure 15. Panorama generated from AutoStitch for the datasets in Figure 14.

Tripod was not used during the example capturing, simulating a general user. A PC with 1.8 GHz CPU and 2 GB RAM is used for the processing. 5 frames were obtained from video automatically to compose the panorama. To measure the performance of the system, time taken in each phase in the above given PC setup is measured and shown in Figure 16. Time consumed in the object segmentation phase is almost similar for S01 to S10 videos since only one stranger was removed, and the time consumed in the same phase for S11 and S12 is higher since two strangers were removed in both cases instead. Similar time patterns can be observed in dynamic background inpainting as well, since same constraints are applicable here with respect to the number of strangers inpainted.
Time consumed in panorama generation phase is different for each video. The reason could be the number of similar features detected in each frame in panorama generation. Specially, the reason for considerably less time consumption in S01 and S02 videos could be the less complexity in the source frames since it was captured indoor. Interestingly S07 video as well consumed less time in the panorama generation phase even though it was captured in outdoor. Comparatively less background complexity could be the reason which makes less best matching feature points in different frames. Complete results set can be accessed at http://video.minelab.tw/PanoramaInpainting.

Figure 16. Time taken in each phase of the proposed system in seconds for results in Figure 14.

Current works are going on to further improve the computation time in order to implement the proposed application for mobile devices. Comparatively less processing power of such mobile devices is a main factor here. Y. Xiong and K. Pulli have proposed a panorama generation application for mobile devices in [24]. But automatically removing moving human subjects in the background is not considered in their work. With respect to the GrabCut used in our proposed approach, in the solution proposed in [24] only currently processing source image is kept in memory, which gives a better performance. Instead our proposal is to use Cloud processing space in order to perform the task fast. As an example Google Photos use cloud processing to perform different image editing functions. In this way user video can be uploaded to Cloud, can perform the panorama generation fast, and then can be prompted back to the user’s mobile device.

5. CONCLUSION AND FUTURE WORKS

This paper proposed a novel panorama generation method automatically removing strangers from the background. The proposed system uses a GrabCut algorithm based object segmentation method. If the system did not detect strangers automatically that the user wants to remove from the panorama, she can select the intended stranger manually. In dynamic background restoration of the obscured objects, a solution combining motion estimation and video inpainting is used. The proposed method is effective and shows better results in dynamic background restoration comparing to traditional video inpainting methods. In panorama creation, the advantages of traditional panorama creation and image stitching are combined in the proposed method. The experimental
results presented clearly demonstrate that the proposed method is effective in use. Further based on the experimental results this would be an attractive and useful application to be included in the cameras.

It is required to pay more attention to reduce the processing time in the panorama creation phase occurred mainly due the time spent on image matching and feature matching. So far this was implemented for Windows 7 platform only. It is planned to implement and test on the mobile operating system platforms with Cloud backend processing in order to improve the processing time. A proper solution to fill the empty regions around the boundary of the panorama is another objective to be achieved in near future.

REFERENCES

W. G. C. W. Kumara is currently reading for the Ph. D. at the Department of Computer Science and Information Engineering, National Central University (NCU), Taiwan (R.O.C.). He acquired his Masters and Bachelors respectively from Asian Institute of Technology (AIT), Thailand and Faculty of Engineering, University of Ruhuna, Sri Lanka. Currently he is on leave from South Asian Institute and Technology and Medicine (SAITM), Sri Lanka. His research interests are in image processing and computer vision.

Timothy K. Shih is a Professor at the Department of Computer Science and Information Engineering, National Central University, Taiwan. Before that he was the Chair of Dept. of CSIE, Tamkang University, Taiwan. Prof. Shih is a fellow of IET, a senior member of
ACM, a senior member of IEEE, and also serves for the Educational Activities Board of the Computer Society. His current research interests include multimedia computing, human computer interaction and distance learning.

Shih-Ming Chang is a Ph. D. student at Department of Computer Science and Information Engineering of Tamkang University, Taiwan. He acquired the Master degree in Department of Computer Science and Information Engineering of Tamkang University of Taiwan in 2009. His research interests are in the area of computer vision, interactive multimedia and multimedia processing.