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Mahjong is a four-player, stochastic, imperfect information game. This paper focuses 

on the Taiwanese variant of Mahjong, whose complexity is higher than that of Go. We 
design a strong anytime Monte-Carlo-based Taiwanese Mahjong program. First, we adopt 
the flat Monte Carlo to calculate the win rates of all afterstates/actions such as discarding 
each tile. Then, we propose a heuristic method, which we incorporate into flat Monte Carlo 
to obtain the accurate tile to be discarded. As an anytime algorithm, we can stop simula-
tions and return the current best move at any time. In addition, we prune bad actions to 
increase accuracy and efficiency. Our program, SIMCAT, won the championship in the 
Mahjong tournaments in Computer Olympiad 2020 and TAAI 2019/2020.  
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1. INTRODUCTION 
 

Mahjong is a game originated from China, and is popular around the world with an 
estimation of about six hundred million players [24]. There are many different sets of Mah-
jong rules, such as the Japanese, Taiwanese, American, Beijing and Hong Kong rules. In 
Asia, this game does not only provide entertainment for amateurs, but also has many pro-
fessional player associations and leagues [23]. Mahjong is a four-player, stochastic, im-
perfect information game. The complexity of Mahjong, estimated to be 4.3 ൈ 10ଵ଼ହ, is 
higher than that of Go [21][25]. Moreover, there are more than 10ସ଼ hidden states during 
the course of a game [12]. Therefore, it is a challenge to design a strong program. In this 
paper, for simplicity of discussion, we adopt Taiwanese rules whose winning conditions 
are relatively simple.  

Since Mahjong is a multi-player partially-observable imperfect information game, it 
is difficult to directly apply the techniques from perfect information games, such as alpha-
beta search [7], Maxn [14] and Monte-Carlo tree search [6][11]. Therefore, many programs, 
including VERYLONGCAT [5] and MAHJONGDAXIA [22], search based on a simplified 
model [5]. However, these programs do not use anytime search algorithms, and namely 
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cannot recommend the best move to play until the whole search completes. This shortcom-
ing in turn leads to a shallow search and weak playing strength since time control must be 
considered strictly in tournament settings. Hence, it is better to have an algorithm that can 
stop the search and return the current best move at any time.  

In this paper, we present a Monte-Carlo-based Mahjong program following Taiwan-
ese rules. We use flat Monte Carlo [3] to approximate the win rates of given states as 
described in Section 3, and use progressive pruning [1][2][4] to prune inferior actions for 
better performance. Then, we design heuristics to enhance the strength in Section 4. In our 
experiments in Section 5, these methods are analyzed to show the performance. The best 
version of our programs, named SIMCAT, outperformed the baseline version with a win 
rate of 66.2% and won the championship in the Mahjong tournaments in Computer Olym-
piad 2020 and TAAI 2019/2020. The rules are introduced in Section 2, and the concluding 
remarks are given in Section 6.  

2. BACKGROUND 

In this section, we review Mahjong in Subsection 2.1 and the previous works in Sub-
section 2.2.  

2.1 Mahjong 

In this subsection, we only briefly mention the rules relevant to this paper. Detailed 
information refers to [15][18].1  

There are 144 tiles in Mahjong, among which 8 tiles are flowers and 136 tiles com-
pose 34 patterns, each of which contains four identical tiles. In Fig. 1, the patterns are 
classified into five suits, which are wan (denoted by w), tong (or pin, denoted by t), sou 
(or tiao, denoted by s), wind and dragon. Each of wan, tong and sou includes nine number 
patterns, which are 1w to 9w, 1t to 9t, and 1s to 9s. Wind includes east, south, west and 
north. Dragon includes white, green and red.  

A meld is a sequence (a.k.a. shun in Chinese), a triplet (a.k.a. ker in Chinese) or a 
gong. A sequence consists of three consecutive number tiles of the same suit, such as 1w, 
2w and 3w, which are denoted by 123w for simplicity.2 A triplet (or a gong) consists of 
three (or four) identical tiles, such as 111w (or 1111w). A pair consists of two identical 
tiles, such as 11w. A tatsu consists of two or three tiles and need one more tile to form a 
meld, such as 13w and 233w. Note that a pair is also a tatsu. A block is either a meld or a 
tatsu.  

                                                 
1 This paper follows the terminologies and notations in [15]. 
2 The simplified notations are used in this paper. For example, 111w represents the three 
tiles 1w, 1w, and 1w. 
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 Fig. 1. The 34 patterns in Mahjong. 
 

In Mahjong, four players around a square table take turns to play counterclockwise. 
From the view of the current player (that is, the game-playing program, denoted by C), the 
other three players are called the lower player (the player to the right), the opposite player 
(the player who is opposite to C) and the upper player (the player to the left) by turns, 
denoted by L, O and U respectively. At the beginning, all tiles are faced down and ran-
domly piled up into the wall, and each player takes 16 tiles, called a hand, from the wall. 
Four players take turns to take a legal action (see below). The winning condition is satisfied 
for a player when his/her hand contains five melds and one pair. A player can win a game 
by picking a tile from the wall, or by taking the tile discarded by other players. When 16 
tiles are left in the wall and no player wins, the game ends in a draw.  

Legal actions include pick (a.k.a. mo in Chinese) and steal (a.k.a. bid). Pick indicates 
that the player takes a tile from the wall. Steal includes eat, pong and gong. Eat indicates 
that a player takes the tile discarded by the upper player to form a sequence. Pong indicates 
that a player takes the tile discarded by other players to form a triplet. Gong indicates that 
a player picks from the wall or takes the tile discarded by other players to form a gong, and 
then picks again. After a player picks or steals a tile in case of not winning yet, he/she has 
to discard a tile, maintaining a total of 3𝑛  1 tiles, where the integer 0  𝑛  5. The 
𝑖-th round for a player indicates that it is the 𝑖-th time he/she discards a tile.  

2.2 Previous Works 

Maxn is the generalization of minimax which can be applied to multi-player perfect 
information games [14]. A player in multi-player games makes a move that maximizes 
his/her return value.  

Due to the imperfect information and the complexity in Mahjong, a simplified model 
was adopted where other players just picked a tile and then discarded it. For Taiwanese 
rules, VERYLONGCAT [5] used the expectimax tree [10] to compute the win rate of a given 
hand, and utilized expert knowledge for pruning. A lookup table for querying the minimum 
number of tiles to win (MTW) was built in advance. A transposition table was used to ac-
celerate the computation. MAHJONGDAXIA used divide and conquer to decompose a hand, 
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and also used a complicated heuristic function to choose a tile to be discarded [22].  
In the past, many researches focused on training. For Japanese rules, Mizukami and 

Tsuruoka proposed a method that trained models including opponent models by using 
game records of expert players and decided moves using Monte-Carlo simulation together 
with these models [16]. Gao used supervised learning to train a convolution neural network 
[9]. The network without any search reached 2-dan on the well-known Japanese Mahjong 
online platform, Tenhou.3 Microsoft made a Japanese Mahjong program, SUPHX, using 
deep reinforcement learning [12], and reached 10-dan on Tenhou. It required a considera-
ble amount of computational resources for training.  

Monte-Carlo sampling [13][17] is a computational algorithm that uses random simu-
lations to obtain numerical results. For move decision problems, flat Monte Carlo (flatMC) 
[3] has three stages, which are the generation of all possible states by playing each legal 
action, the simulation of these states, and the choice of the final action with the highest 
mean of simulated values. In this paper, we adopt flatMC to compute the win rate of a hand 
and propose heuristics to decide the move based on simulation results, so that the program 
is simple, effective, and suitable for the time constraint in tournaments since it is an any-
time algorithm.  

3. FLAT MONTE CARLO FOR MAHJONG 

We adopt flat Monte Carlo (flatMC) as described in Subsection 2.2, which consists 
of three stages, for Mahjong. In this section, we describe the implementation of the simu-
lation stage in detail. To use flatMC to compute win rates, we simply simulate legal actions 
for state transitions until a game ends. Given a state 𝑠, the next state after taking the action 
𝑎 from 𝑠 is called an afterstate 𝑠, similar to the terminology used in [19]. Let 𝑆௧ 
be the set of all afterstates of 𝑠. We simulate each 𝑠 ∈ 𝑆௧ and obtain its win rate.  

In Mahjong, we design the function FlatMCMJ(𝑠, 𝑚, 𝑛௧) for the above process, 
where 𝑚 is the number of rounds for each player in each simulation, and 𝑛௧ is the total 
number of simulations. To reduce the complexity, the simulation stage uses an optimistic 
strategy. That is, in the beginning of a simulation, we generate 𝑚 tiles for each player 
which he/she will pick from the wall in next 𝑚 rounds. As we foresee all tiles, we can 
find an optimal solution to win by discarding useless tiles. Note that in FlatMCMJ, other 
players do not declare a win even though their hands satisfy the winning condition. There-
fore, the result is either a win of the current player or a draw. Two simulation models are 
proposed below.  

3.1 Single-Player Model  

This model only simulates the pick action by the current player, and ignores the tiles 
discarded by other players. A tile is hidden from a player if it is in the wall or is in other 
players’ hands. When a player picks a tile, the probability that the tile belongs to a pattern 
is calculated by the number of hidden tiles of the pattern divided by the number of total 
hidden tiles. For each simulation, the player repeatedly takes one tile 𝑚 times but does 

                                                 
3 Tenhou is available at http://tenhou.net/ 
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not discard any tile. So, his/her hand contains 16  𝑚 tiles in the end. The player wins 
when 17 tiles among the 16  𝑚 tiles satisfy the winning condition, and otherwise it is a 
draw. 

The advantage is that the implementation is simple. Since it is not necessary to con-
sider the tiles other players discard, we only need to generate the current player’s tiles. A 
characteristic of FlatMCMJ is to reserve as many blocks as possible, which will be dis-
cussed in detail in Section 4.   

3.2 Four-Player Model  

Based on the single-player model, this model additionally simulates the steal action 
by the current player. We assume that other players are dummy players, just picking a tile 
and then discarding it.  

During a simulation, due to the uncertainty of Mahjong, when other players discard a 
tile, the player may win after stealing it or after ignoring it (that is, picking another tile). 
For example, assume that the hand is 1789t788s in Fig. 2(a). In next two rounds, a player 
may win by stealing 9s and then picking 1t in Fig. 2(b), or not stealing 9s (that is, picking 
2t) and then picking 3t in Fig. 2(c). Therefore, we store and simulate both hands such that 
we can choose the best solution from these results.  

 

(a) The hand. 

(b) A win after stealing.  

(c) A win after not stealing. 

Fig. 2. Examples to illustrate both stealing and not stealing should be considered. The no-
tations, L, O, U, and C denote the lower player, the opposite player, the upper player, and 
the game-playing program, respectively.  
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3.3 Implementation  

In Fig. 3, the functions, FlatMCMJ and OneSim, implement the four-player model. 
In FlatMCMJ, we generate all afterstates 𝑠 of a given state 𝑠. Then, we simulate for 
each 𝑠 in OneSim and can elaborate its win rate. The number of total simulations 𝑛௧ 
is evenly distributed to each 𝑠. The best action is the one with the highest win rate. In 
OneSim, let 𝑆 and 𝑆ାଵ be the set of current states and the set of afterstates. There are 
𝑚 rounds in one simulation. In each round, all afterstates generated from the current states 
in 𝑆 become the new set 𝑆ାଵ in the next round. After 𝑚 rounds, the player wins if 
there exists a winning strategy in the set of states, and otherwise it is a draw. 

In each round, we generate at most seven afterstates for each hand by taking legal 
actions which are one pick, three pongs and three eats. For example, assume that the hand 
is 234456w1199t258s, and the four tiles, 𝑡, 𝑡ை, 𝑡 and 𝑡, picked by the four players 
are 1t, 9t, 4w and 2s respectively. The seven afterstates generated are one hand that con-
tains the picked tile 2s, three hands that contain triplets, 111t, 999t and 444w, and three 
hands that contain sequences, 234w, 345w and 456w. After 𝑚 rounds, at most 7 hands 
are generated, and hence the computational cost grows exponentially.  

 
 

Function OneSim൫𝑠, 𝑚൯ 
Input: an initial afterstate 𝑠, the number of total rounds 𝑚 
Output: win or draw 
1. 𝑆 ← ሼ𝑠ሽ 
2. for 𝑖 ൌ 0 𝑡𝑜 𝑚 െ 1 do 
3.  𝑆ାଵ ← ∅ 
4.  get four tiles 𝑡, 𝑡ை, 𝑡 and 𝑡, each of which is assigned to the lower,  

  opposite, upper and current players respectively  
5.  for each 𝑠 in 𝑆 do 
6.   while a pong occurs do 
7.    𝑠′ ← remove the two tiles identical to the discarded tile from 𝑠 
8.    𝑆ାଵ ← 𝑆ାଵ ∪ ሼ𝑠′ሽ 
9.   end while 
10.   if an eat occurs then 
11.    for at most three combinations of eat do 
12.     𝑠′ ← remove the two tiles related to 𝑡 from 𝑠  
13.     𝑆ାଵ ← 𝑆ାଵ ∪ ሼ𝑠′ሽ 
14.    end for 
15.   end if 
16.   𝑠′ ← add 𝑡 to 𝑠                  /* pick */ 
17.   𝑆ାଵ ← 𝑆ାଵ ∪ ሼ𝑠′ሽ 
18.  end for  
19. end for  
20. if there exists a winning condition in 𝑆 then  
21.  return win 
22. end if 
23. return draw 
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Function FlatMCMJሺ𝑠, 𝑚, 𝑛௧ሻ  
Input: an initial state 𝑠, the number of rounds 𝑚, the number of total simulations 𝑛௧ 
Output: the best action  
Local variables: an action array 𝐴[MAX_ACTIONS],  

an integer array 𝑤𝑖𝑛𝐶𝑜𝑢𝑛𝑡[MAX_ACTIONS] 
1. 𝐴 ← All actions from 𝑠                                        
2. Initialize all elements in 𝑤𝑖𝑛𝐶𝑜𝑢𝑛𝑡ሾ ሿ to 0 
3. for each 𝑎 in 𝐴 do  
4.  𝑠 ← make 𝑎 at 𝑠                    /* 𝑠 is an afterstate of 𝑠 */ 
5.  repeat 𝑛௧/|𝐴| times do 
6.   𝑤𝑖𝑛𝐶𝑜𝑢𝑛𝑡ሾ𝑖ሿ ← accumulate the win count by calling OneSimሺ𝑠, 𝑚ሻ 
7.  end repeat 
8. end for 
9. return the action with the highest win count in 𝑤𝑖𝑛𝐶𝑜𝑢𝑛𝑡ሾ ሿ

Fig. 3. The algorithm for FlatMCMJ of the four-player model of Mahjong.  

4. DISCARD-TWICE METHOD 

This section discusses an important issue called tatsu-breaking in Mahjong. The win-
ning condition is five melds and one pair, which implies exactly six blocks. If a hand has 
more than six blocks, we call the hand has excessive blocks. Consider the hand ℎ𝑡 ൌ 
445w1267t1144888999s with seven blocks. The hand will discard a tile from a tatsu even-
tually because only six blocks are needed to satisfy the winning condition. The breaking 
operation is so-called to break a tatsu in this paper, such as discarding 1t from the tatsu 
12t. In this example, FlatMCMJ will discard 4w and the hand will still maintain seven 
blocks. In reality, we do not know which tatsu is useless before the winning condition is 
satisfied, but it is a win in FlatMCMJ since the algorithm does not need to know which 
tiles to be discarded while playing. Consequently, FlatMCMJ may overestimate the simu-
lated win rate in this case. This causes that FlatMCMJ tends to reserve as many blocks as 
possible. 

Therefore, we propose rule-based heuristics to find a reasonable tatsu-breaking option 
to cope with this problem. We describe a method to calculate the number of blocks of a 
hand in Subsection 4.1 and two heuristics in Subsection 4.2.  

4.1 Calculate the Number of Blocks of a Hand 

We propose a method that can quickly calculate the number of blocks for a given 
hand. First, the minimum number of tiles to win, called MTW, is the least number of tiles 
we need to pick or steal to satisfy the winning condition for a given hand [5]. Based on the 
definition, we let the function MTWሺ𝑐ሻ be the minimum number of tiles that the player 
has to pick and not discard to form 𝑐 െ 1 melds and one pair. Hence, MTWሺ6ሻ is the 
minimum number of tiles to win. For example, for the hand ℎ𝑡 ൌ 
445w1267t1144888999s, MTWሺ1ሻ ൌ MTWሺ2ሻ ൌ MTWሺ3ሻ ൌ 0 , MTWሺ4ሻ ൌ 1 , 
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MTWሺ5ሻ ൌ 2, MTWሺ6ሻ ൌ 3, MTWሺ7ሻ ൌ 4 and MTWሺ8ሻ ൌ 6.  The first three are ze-
ros, since there are already one pair and two melds, say 44w, 888s and 999s. For MTWሺ4ሻ, 
we simply need to add one more tile, say 3t, to form one new meld for the tatsu 12t. Sim-
ilarly, for MTWሺ5ሻ, MTWሺ6ሻ and MTWሺ7ሻ, we only need to add one extra, say 8t, 1s 
and 4s, respectively. However, for MTWሺ8ሻ, we need two tiles, say 67w, to form an extra 
meld, since it runs out of tatsu after making MTWሺ7ሻ. Apparently, the function is mono-
tonically increasing.  

Second, if MTWሺ𝑐ሻ െ MTWሺ𝑐 െ 1ሻ  2, it is impossible to find a block besides 
those included in MTWሺ𝑐 െ 1ሻ. That is, it needs two tiles to form an extra meld or a pair 
when computing MTWሺ𝑐ሻ. Thus, there are at most 𝑐 െ 1 blocks. For example, there are 
at most seven blocks in ℎ𝑡 since MTWሺ8ሻ െ MTWሺ7ሻ ൌ 2. If MTWሺ𝑐ሻ െ MTWሺ𝑐 െ
1ሻ  1, the hand has at least one block that is not included in the blocks when computing 
MTWሺ𝑐 െ 1ሻ. Thus, there are at least 𝑐 blocks. For example, there are at least seven 
blocks in ℎ𝑡  since MTWሺ7ሻ െ MTWሺ6ሻ ൌ 1. Therefore, the number of blocks for a 
given hand is the maximum 𝑐 such that 

MTWሺ𝑐ሻ െ MTWሺ𝑐 െ 1ሻ  1 (1) 

4.2 Rule-based Heuristics 

In this subsection, we propose the discard-twice method to cope with excessive blocks. 
This method considers the first discarded tile 𝑡ଵ and the next discarded tile 𝑡ଶ. The best 
𝑡ଵ is discarded according to heuristics.  

First, given a hand ℎ𝑡, we calculate the number of blocks after discarding each tile 
𝑡ଵ in ℎ𝑡 using the method in Subsection 4.1. Then, we classify the tiles into two sets, 
called the tatsu-breaking set and the non-tatsu-breaking set. If the number of blocks de-
creases after 𝑡ଵ is discarded, then 𝑡ଵ belongs to the tatsu-breaking set. Otherwise, 𝑡ଵ 
belongs to the non-tatsu-breaking set. For example, there are five blocks in ℎ𝑡 ൌ 
445w1267t1144s. If 1t is discarded, then the afterstate 445w267t1144s has four blocks 
since the maximum 𝑐 satisfying Formula (1) is four. If 4w is discarded, the afterstate 
45w1267t1144s has five blocks. Hence, 1t is in the tatsu-breaking set and 4w is in the non-
tatsu-breaking set. In ℎ𝑡, the eight tiles 1267t1144s are in the tatsu-breaking set, and the 
three tiles 445w are in the non-tatsu-breaking set.  

Second, we consider the effect of breaking a tatsu by consecutively discarding two 
tiles, 𝑡ଵ and 𝑡ଶ in ℎ𝑡. We calculate the win rate for each afterstate using FlatMCMJ de-
scribed in Subsection 3.3, and obtain the following data.  

 The discarded tile 𝑡ଵ௧ with the best win rate 𝑤𝑟ଵ௧ in the tatsu-breaking set 
 The set of discarded tiles ሼ𝑡ଶ௧ሽ ⊆ ℎ𝑡 െ 𝑡ଵ௧ with good win rates 𝑤𝑟ଶ௧ after 

𝑡ଵ௧ is discarded 
 The set of discarded tiles ሼ𝑡ଵ௧ሽ with good win rates 𝑤𝑟ଵ௧ in the non-tatsu-

breaking set 
 The discarded tile 𝑡ଶ௧ with the best win rate 𝑤𝑟ଶ௧, where 𝑡ଶ௧ ∈ ℎ𝑡 െ 𝑡 

for each tile 𝑡 ∈ ሼ𝑡ଵ௧ሽ that is discarded 

Given an action, the mean value 𝑚 and the standard deviation 𝜎 are calculated after 
lots of simulations. The confidence interval of the action is between the lower bound 𝑚 െ
𝑟ௗ ൈ 𝜎 and the upper bound 𝑚  𝑟ௗ ൈ 𝜎, where 𝑟ௗ is a constant ratio. A good win rate 
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𝑤𝑟ଶ௧ means that the confidence interval of 𝑤𝑟ଶ௧ overlaps with that of the best win rate 
among the tiles in ሼ𝑡ଶ௧ሽ. That is, the upper bound of three standard deviations 3𝜎 of 
𝑤𝑟ଶ௧ is equal to or greater than the lower bound of 3𝜎 of the best in 𝑤𝑟ଶ௧ assuming 
𝑟ௗ ൌ 3. A good win rate 𝑤𝑟ଵ௧ is defined similarly.  

Based on the above data, we propose two rule-based heuristics to decide which tile is 
eventually discarded and give examples below.  

(A) Heuristic 1 (H1): Choose the tile 𝑡ଵ whose next discarded tile achieves the best win 
rate. 

The idea is to break the tatsu in this round if the player is forced to break a tatsu in 
the next round. First, we discard two tiles at once for all combinations of two tiles in ℎ𝑡. 
Then, we analyze the win rates of afterstates by FlatMCMJ. Among all possible tile 𝑡ଵ, 
we choose the one whose next discarded tile 𝑡ଶ achieves the best win rate. If 𝑡ଵ is in the 
tatsu-breaking set, the tatsu is broken.  

For example, in Table 1, given the hand ℎ𝑡 ൌ 445w1267t1144s, the best win rate is 
16.7% obtained by discarding 1t and then 2t. Hence, the tile to be discarded in this round 
is 1t and the tatsu 12t is broken. In contrast, FlatMCMJ discards 4w since it only considers 
discarding one tile. However, if the player picks a useful tile such as 3w, 6w, 5t, 8t, 1s and 
4s, the player must break a tatsu and lead to a lower win rate, which cannot be detected by 
FlatMCMJ. By applying H1, this situation is considered by discarding two tiles, and the 
tatsu can be broken.  
 

Table 1. The decision made by H1. The hand is 445w1267t1144s. 
 Discard the 1st tile Discard the 2nd tile

Tatsu-breaking 
𝑡ଵ௧ ൌ 𝟏𝐭  

𝑤𝑟ଵ௧ ൌ 18.7% 
𝑡ଶ௧ ൌ 2t 

𝑤𝑟ଶ௧ ൌ 𝟏𝟔. 𝟕% 

Non-tatsu-breaking
𝑡ଵ௧ ൌ 4w 

𝑤𝑟ଵ௧ ൌ 21.2% 
𝑡ଶ௧ ൌ 1t 

𝑤𝑟ଶ௧ ൌ 𝟏𝟑. 𝟒% 

 

(B) Heuristic 2 (H2): Choose the good tile 𝑡ଵ that appears both in the non-tatsu-breaking 
set in this round and in the tatsu-breaking set in the next round.  

Although H1 can break a tatsu, it would be too aggressive sometimes because it is 
possible to pick or steal a good tile before discarding 𝑡ଶ . Take the hand ℎ𝑡 ൌ 
145w1267t1144s as an example. Obviously, a tatsu like 12t usually has a better chance of 
forming a meld than a single tile like 1w. However, H1 only considers the win rate after 
discarding 𝑡ଶ. After discarding the single tile 1w, the hand becomes 45w1267t1144s, and 
all discarding actions will break a tatsu in the next round. That is, no matter which tile is 
discarded in the first round, a tatsu is forced to be broken after two rounds in this case. So, 
the hands after two rounds are similar, and their sampled win rates are close by FlatMCMJ. 
In Table 2, H1 chooses to discard 1t since its 𝑤𝑟ଶ௧ ൌ 14.0% is slightly better than 13.5%. 
Therefore, H1 cannot distinguish which one is better between discarding a single tile and 
breaking a tatsu.  

The idea of H2 is to discard the tile which is less likely to form to a meld before 
breaking the tatsu. After discarding the tile 1t in the tatsu 12t in this round in the tatsu-
breaking set, discarding 1w or 2t in the next round may get close win rates. Thus, ሼ𝑡ଶ௧ሽ 
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includes 1w. On the other hand, 1w is less likely to form a meld. Discarding 1w often gets 
a high win rate by FlatMCMJ and thus ሼ𝑡ଵ௧ሽ includes 1w. Hence, H2 chooses the single 
tile 1w in ሼ𝑡ଵ௧ሽ ∩ ሼ𝑡ଶ௧ሽ rather than breaks the tatsu 12t.  

 
Table 2. The decision made by H2. The hand is 145w1267t1144s. 

 Discard the 1st tile Discard the 2nd tile

Tatsu-breaking 
𝑡ଵ௧ ൌ 1t  

𝑤𝑟ଵ௧ ൌ 15.1% 
𝑡ଶ௧ ൌ 𝟏𝐰 

𝑤𝑟ଶ௧ ൌ 𝟏𝟒. 𝟎% 

Non-tatsu-breaking
𝑡ଵ௧ ൌ 𝟏𝐰 

𝑤𝑟ଵ௧ ൌ 𝟐𝟏. 𝟑% 
𝑡ଶ௧ ൌ 1t 

𝑤𝑟ଶ௧ ൌ 𝟏𝟑. 𝟓% 

 

(C) The Combination of FlatMCMJ and Heuristics 

The property of FlatMCMJ is that it tends to reserve as many blocks as possible. H1 
makes the decision according to the win rates after two tiles are discarded consecutively. 
H2 discards the tile which is hard to form a meld prior to breaking a tatsu. In this subsection, 
we design three versions of FlatMCMJ to mix these properties as follows.  

 FlatMCMJoriginal: Choose 𝑡ଵ௧ if 𝑤𝑟ଵ௧  𝑤𝑟ଵ௧, and choose a tile by Flat-
MCMJ otherwise. It indicates that when breaking a tatsu is judged to be good 
in this round, we do not consider the next round. This version is the same as the 
original FlatMCMJ.  

 FlatMCMJH1: Choose 𝑡ଵ௧ if 𝑤𝑟ଵ௧  𝑤𝑟ଵ௧, and choose a tile by H1 other-
wise. This version deals with the problem that FlatMCMJoriginal tends to reserve 
excessive blocks.  

 FlatMCMJH2+H1: Choose 𝑡ଵ௧ if 𝑤𝑟ଵ௧  𝑤𝑟ଵ௧, and choose a tile by H2 oth-
erwise. If no tile is chosen by H2, namely ሼ𝑡ଵ௧ሽ ∩ ሼ𝑡ଶ௧ሽ ൌ ∅, choose a tile 
by H1. This version suppresses the tendency of FlatMCMJH1 towards aggres-
sively breaking a tatsu. 

5. EXPERIMENTS 

The experiments are done on a desktop computer with an AMD Ryzen 5 2600 6-core 
processor. Taiwanese rules are adopted. There are two teams, each of which includes the 
two players sitting on the opposite side and uses the same version of the program. A match 
includes 384 games according to the Computer Olympiad tournament [20].4 The team that 
wins more games is the winner of the match. To avoid the influence of luck, each wall is 
used in two games, so both teams can play the same hand once.  

We compare the two models of FlatMCMJ in Subsection 5.1. We experiment with 
progressive pruning to accelerate the computation in Subsection 5.2. Different numbers of 
simulations are compared in Subsection 5.3 The discard-twice method is discussed in Sub-
section 5.4. Finally, the best version is compared with the baseline in Subsection 5.5.  

                                                 
4 In the Mahjong tournament of the Computer Olympiad, a match includes 384 games; 
however, 192 games before 2014.  
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5.1 Comparison of SP and FP Models of FlatMCMJ 

We compare the performance of the single-player model (SP) and the four-player 
model (FP) of FlatMCMJ proposed in Section 3. In Table 3, FP outperforms SP reaching 
a win rate of 62.1%. The reason is that SP ignores all steals during simulations. The results 
also show that the steal action is important in Mahjong. We use FlatMCMJ(FP) for the 
following experiments.  

 
Table 3. Comparison of the single- and four-player models. A total of 781 matches 

and win rates with 95% confidence.  
team # of win matches win rate 

FlatMCMJ(SP)  228 37.9% (േ0.67%)
FlatMCMJ(FP)  374 62.1% (േ0.67%)

 

5.2 The Results of Using Progressive Pruning 

Progressive pruning (PP) [1][2][4][13] adopts the confidence interval to prune infe-
rior actions/moves during search, and thus facilitates finding out the best action. The pro-
cess to find the best action includes many iterations. In each iteration, we compute the 
confidence interval of each action by simulations. Inferior actions are pruned (see below), 
and if exactly one action is left, the process ends and returns the action immediately. Since 
the total number of simulations is fixed in the whole process, superior actions will obtain 
more simulations in the next iteration after inferior actions are pruned.  

The confidence interval of an action is ሺ𝑚 െ 𝑟ௗ ൈ 𝜎, 𝑚  𝑟ௗ ൈ 𝜎ሻ, where 𝑚, 𝜎 and 
𝑟ௗ are the mean value, the standard deviation and a constant ratio, respectively, after lots 
of simulations. Assume that a node has two actions 𝑎 and 𝑏. The mean and standard de-
viation of 𝑎 are 𝑚 and 𝜎 respectively, and those of 𝑏 are 𝑚 and 𝜎 respectively. 
The action 𝑎 is inferior to 𝑏 if 𝑚  𝑟ௗ ൈ 𝜎 ൏ 𝑚 െ 𝑟ௗ ൈ 𝜎, which indicates the up-
per bound of 𝑎 is less than the lower bound of 𝑏. Hence, the action 𝑎 is pruned.  

This subsection analyzes the effectiveness of progressive pruning in Mahjong. First, 
we analyze the pruning rate 𝛿 affected by the constant ratio 𝑟ௗ and the number of simu-
lations 𝑛 of each action. When 𝑟ௗ is set to a smaller value or when 𝜎 decreases, the 
confidence interval becomes smaller, filtering out more actions. In Fig. 4, 𝑟ௗ ൌ 2 filters 
out more actions than 𝑟ௗ ൌ 3. The two lines of 𝑟ௗ are close (less than 5%) when 𝑛 
9000 . When 𝑛  increases, 𝜎  decreases and thus 𝛿  increases. In Fig. 4, 𝛿  reaches 
79.8% for 𝑟ௗ ൌ 2 and 75.0% for 𝑟ௗ ൌ 3 when 𝑛 ൌ 10000.  
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Fig. 4. The pruning rate 𝛿 under different 𝑛 and 𝑟ௗ.  

 
Second, we investigate the percentage 𝛿 of the best actions that are filtered out. 

Assume that the best action is obtained by making 15,000,000 simulations for each action 
of a hand. As shown in Fig. 5, 𝛿 ൏ 0.2% when 𝑛  300 for 𝑟ௗ ൌ 2, and 𝛿 ൎ 0 for 
𝑟ௗ ൌ 3. Almost all of the best actions are reserved by progressive pruning. We adopt 𝑟ௗ ൌ
3 in the following experiments.  

 

 
Fig. 5. The percentage 𝛿 of the best actions filtered out. 

 
Third, we compare the effectiveness of using and not using progressive pruning, de-

noted by FlatMCMJ(FP) and FlatMCMJ(FP)+PP respectively. In the experiments, the total 
number of simulations is 10000 for each hand. In FlatMCMJ(FP)+PP, let each action sim-
ulates 300 times in the first iteration and 100 times in the following iterations. Table 4 
shows that FlatMCMJ(FP)+PP performs slightly better than FlatMCMJ(FP). Since some 
poor actions are pruned, the saved simulations are applied to good actions.  
 

Table 4. Comparison of using and not using pruning. 
team # of win matches win rate 

FlatMCMJ(FP) 1162 49.7% (േ1.70%) 

FlatMCMJ(FP)+PP 1177 50.3% (േ1.70%) 
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5.3 Comparison using Different Numbers of Simulations 

We compare different numbers of simulations for each hand. Table 5 shows the win 
rates of FlatMCMJ(FP)+PP using 20000, 40000, 80000 and 200000 simulations against 
that using 10000 simulations. The results show that more simulations we use, better per-
formance we have. In the following experiments, we adopt 200000 simulations which 
achieve the best win rate of 53.5%.  
 
Table 5. Comparison between different numbers of simulations (against 10000 sim-

ulations) 
# of simulations # of matches # of win matches win rate 

 20,000 8558 4415 51.5% (േ0.89%) 

 40,000 2435 1275 52.3% (േ1.67%) 

 80,000 1604  849 52.9% (േ2.05%) 

200,000 1188  635 53.5% (േ2.38%) 

 

5.4 The Results of the Discard-twice Method 

The discard-twice method includes two heuristics, H1 and H2, as mentioned in Sec-
tion 4. We compare the performance of the three versions, FlatMCMJoriginal, FlatMCMJH1 
and FlatMCMJH2+H1, which does not use any heuristics, only uses H1, and uses both H1 
and H2, respectively. In this experiment, the four-player model (FP) and progressive prun-
ing (PP) are used in all versions.  

In Table 6(a), FlatMCMJ(FP)H1+PP weakens the strength. In practice, H1 makes the 
program tend to break a tatsu even when a single tile exists in a hand. H2 makes up this 
disadvantage. Hence, FlatMCMJ(FP)H2+H1+PP is the best, reaching a win rate of 59.5%, as 
shown in Table 6(b).  
 

Table 6. Comparison of the two heuristics of the discard-twice method.  
(a) The version using no heuristics vs. the version using H1. 

team # of win matches win rate 

FlatMCMJ(FP)original +PP 150 53.8% (േ4.91%)

FlatMCMJ(FP)H1 +PP 129 46.2% (േ4.91%)

(b) The version using no heuristics vs. the version using both H1 and H2. 
team # of win matches win rate 

FlatMCMJ(FP)original +PP 133 40.5% (േ4.46%)

FlatMCMJ(FP)H2+H1 +PP 195 59.5% (േ4.46%)

While performing the best, the heuristic H2+H1 incurs little overhead. We use 10000 
hands that have excessive blocks as testing data. Each hand is given 200000 simulations 
in total. Note that PP is not used to make sure all simulations are executed. Table 7 lists 
the execution time for the three versions, FlatMCMJ(FP)original, FlatMCMJ(FP)H1 and Flat-
MCMJ(FP)H2+H1. The results show that the three versions consume nearly the same com-
putation cost and that the overhead of heuristics H1 and H2+H1 is very small, about 4%.  
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Table 7. Computation time for different heuristics with 200000 simulations. 
 FlatMCMJ(FP)original FlatMCMJ(FP)H1 FlatMCMJ(FP)H2+H1 

Execution time (sec.) 5.015 (േ 0.0163) 5.214 (േ 0.0170) 5.215 (േ 0.0170) 

  

5.5 Comparison with the Baseline 

The final version, FlatMCMJ(FP)H2+H1+PP, adopts the four-player model, progressive 
pruning and the discard-twice method. We compare its performance with that of the base-
line version, FlatMCMJ(SP). Both versions simulate 200000 times. As shown in Table 8, 
the final version outperforms the baseline, reaching a win rate of 66.2%.  
 

Table 8. Comparison of the final version and the baseline. 
team # of win matches win rate 

FlatMCMJ(SP) 214 33.8% (േ3.10%)

FlatMCMJ(FP)H2+H1 +PP 419 66.2% (േ3.10%)
 

6. CONCLUSIONS 

This paper describes the design of our Monte-Carlo-based Mahjong program, SIMCAT. 
We propose the single-player and four-player models for Mahjong that are used in the 
simulation stage in flat Monte Carlo. Moreover, we design the discard-twice method that 
includes two rule-based heuristics.  

In the experiments, the version that uses flat Monte Carlo with the four-player model, 
progressive pruning and the discard-twice method outperforms the baseline that uses the 
single-player model, reaching a win rate of 66.2%. SIMCAT used the above methods and 
won the championship in the Mahjong tournaments in Computer Olympiad 2020 and 
TAAI 2019/2020.  

Our work provides the basis for Mahjong programs. Several possible future works 
can be developed based on our work. First, the discard-twice can be extended to discard-
𝑁 (𝑁  3). However, in the case of a given fixed number of simulations for each hand, 
the average simulation count for each discard-𝑁 action decreases significantly, resulting 
in inaccurate win rates for discard-𝑁 actions. Second, our model can be applied to other 
Mahjong rules, such as American rules and Hong Kong rules. Third, based on flatMC, the 
search may choose Monte Carlo Tree Search for further investigation. Fourth, our methods 
may be merged with deep reinforcement learning, such as AlphaZero [7].  
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