
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 36, XXX-XXX (2020)
DOI: 10.6688/JISE.20200X_36(X).00XX

1

Monte-Carlo Simulation for Mahjong

JR-CHANG CHEN 1*, SHIH-CHIEH TANG 2 AND I-CHEN WU 2,3

1 Department of Computer Science and Information Engineering
National Taipei University

New Taipei City, 23741 Taiwan
2 Department of Computer Science

National Yang Ming Chiao Tung University
Hsinchu, 30050 Taiwan

3 Research Center for IT Innovation
Academia Sinica

Taipei, 11529 Taiwan
E-mail: jcchen@mail.ntpu.edu.tw, fight5566jay@gmail.com, icwu@cs.nctu.edu.tw

Mahjong is a four-player, stochastic, imperfect information game. This paper focuses

on the Taiwanese variant of Mahjong, whose complexity is higher than that of Go. We
design a strong anytime Monte-Carlo-based Taiwanese Mahjong program. First, we adopt
the flat Monte Carlo to calculate the win rates of all afterstates/actions such as discarding
each tile. Then, we propose a heuristic method, which we incorporate into flat Monte Carlo
to obtain the accurate tile to be discarded. As an anytime algorithm, we can stop simula-
tions and return the current best move at any time. In addition, we prune bad actions to
increase accuracy and efficiency. Our program, SIMCAT, won the championship in the
Mahjong tournaments in Computer Olympiad 2020 and TAAI 2019/2020.

Keywords: Monte-Carlo simulation, discard-twice method, Mahjong

1. INTRODUCTION

Mahjong is a game originated from China, and is popular around the world with an
estimation of about six hundred million players [24]. There are many different sets of Mah-
jong rules, such as the Japanese, Taiwanese, American, Beijing and Hong Kong rules. In
Asia, this game does not only provide entertainment for amateurs, but also has many pro-
fessional player associations and leagues [23]. Mahjong is a four-player, stochastic, im-
perfect information game. The complexity of Mahjong, estimated to be 4.3 ൈ 10ଵ଼ହ, is
higher than that of Go [21][25]. Moreover, there are more than 10ସ଼ hidden states during
the course of a game [12]. Therefore, it is a challenge to design a strong program. In this
paper, for simplicity of discussion, we adopt Taiwanese rules whose winning conditions
are relatively simple.

Since Mahjong is a multi-player partially-observable imperfect information game, it
is difficult to directly apply the techniques from perfect information games, such as alpha-
beta search [7], Maxn [14] and Monte-Carlo tree search [6][11]. Therefore, many programs,
including VERYLONGCAT [5] and MAHJONGDAXIA [22], search based on a simplified
model [5]. However, these programs do not use anytime search algorithms, and namely

* The corresponding author

JR-CHANG CHEN, SHIH-CHIEH TANG AND I-CHEN WU

2

cannot recommend the best move to play until the whole search completes. This shortcom-
ing in turn leads to a shallow search and weak playing strength since time control must be
considered strictly in tournament settings. Hence, it is better to have an algorithm that can
stop the search and return the current best move at any time.

In this paper, we present a Monte-Carlo-based Mahjong program following Taiwan-
ese rules. We use flat Monte Carlo [3] to approximate the win rates of given states as
described in Section 3, and use progressive pruning [1][2][4] to prune inferior actions for
better performance. Then, we design heuristics to enhance the strength in Section 4. In our
experiments in Section 5, these methods are analyzed to show the performance. The best
version of our programs, named SIMCAT, outperformed the baseline version with a win
rate of 66.2% and won the championship in the Mahjong tournaments in Computer Olym-
piad 2020 and TAAI 2019/2020. The rules are introduced in Section 2, and the concluding
remarks are given in Section 6.

2. BACKGROUND

In this section, we review Mahjong in Subsection 2.1 and the previous works in Sub-
section 2.2.

2.1 Mahjong

In this subsection, we only briefly mention the rules relevant to this paper. Detailed
information refers to [15][18].1

There are 144 tiles in Mahjong, among which 8 tiles are flowers and 136 tiles com-
pose 34 patterns, each of which contains four identical tiles. In Fig. 1, the patterns are
classified into five suits, which are wan (denoted by w), tong (or pin, denoted by t), sou
(or tiao, denoted by s), wind and dragon. Each of wan, tong and sou includes nine number
patterns, which are 1w to 9w, 1t to 9t, and 1s to 9s. Wind includes east, south, west and
north. Dragon includes white, green and red.

A meld is a sequence (a.k.a. shun in Chinese), a triplet (a.k.a. ker in Chinese) or a
gong. A sequence consists of three consecutive number tiles of the same suit, such as 1w,
2w and 3w, which are denoted by 123w for simplicity.2 A triplet (or a gong) consists of
three (or four) identical tiles, such as 111w (or 1111w). A pair consists of two identical
tiles, such as 11w. A tatsu consists of two or three tiles and need one more tile to form a
meld, such as 13w and 233w. Note that a pair is also a tatsu. A block is either a meld or a
tatsu.

1 This paper follows the terminologies and notations in [15].
2 The simplified notations are used in this paper. For example, 111w represents the three
tiles 1w, 1w, and 1w.

MONTE-CARLO SIMULATION FOR MAHJONG

3

 Fig. 1. The 34 patterns in Mahjong.

In Mahjong, four players around a square table take turns to play counterclockwise.
From the view of the current player (that is, the game-playing program, denoted by C), the
other three players are called the lower player (the player to the right), the opposite player
(the player who is opposite to C) and the upper player (the player to the left) by turns,
denoted by L, O and U respectively. At the beginning, all tiles are faced down and ran-
domly piled up into the wall, and each player takes 16 tiles, called a hand, from the wall.
Four players take turns to take a legal action (see below). The winning condition is satisfied
for a player when his/her hand contains five melds and one pair. A player can win a game
by picking a tile from the wall, or by taking the tile discarded by other players. When 16
tiles are left in the wall and no player wins, the game ends in a draw.

Legal actions include pick (a.k.a. mo in Chinese) and steal (a.k.a. bid). Pick indicates
that the player takes a tile from the wall. Steal includes eat, pong and gong. Eat indicates
that a player takes the tile discarded by the upper player to form a sequence. Pong indicates
that a player takes the tile discarded by other players to form a triplet. Gong indicates that
a player picks from the wall or takes the tile discarded by other players to form a gong, and
then picks again. After a player picks or steals a tile in case of not winning yet, he/she has
to discard a tile, maintaining a total of 3𝑛 1 tiles, where the integer 0 𝑛 5. The
𝑖-th round for a player indicates that it is the 𝑖-th time he/she discards a tile.

2.2 Previous Works

Maxn is the generalization of minimax which can be applied to multi-player perfect
information games [14]. A player in multi-player games makes a move that maximizes
his/her return value.

Due to the imperfect information and the complexity in Mahjong, a simplified model
was adopted where other players just picked a tile and then discarded it. For Taiwanese
rules, VERYLONGCAT [5] used the expectimax tree [10] to compute the win rate of a given
hand, and utilized expert knowledge for pruning. A lookup table for querying the minimum
number of tiles to win (MTW) was built in advance. A transposition table was used to ac-
celerate the computation. MAHJONGDAXIA used divide and conquer to decompose a hand,

JR-CHANG CHEN, SHIH-CHIEH TANG AND I-CHEN WU

4

and also used a complicated heuristic function to choose a tile to be discarded [22].
In the past, many researches focused on training. For Japanese rules, Mizukami and

Tsuruoka proposed a method that trained models including opponent models by using
game records of expert players and decided moves using Monte-Carlo simulation together
with these models [16]. Gao used supervised learning to train a convolution neural network
[9]. The network without any search reached 2-dan on the well-known Japanese Mahjong
online platform, Tenhou.3 Microsoft made a Japanese Mahjong program, SUPHX, using
deep reinforcement learning [12], and reached 10-dan on Tenhou. It required a considera-
ble amount of computational resources for training.

Monte-Carlo sampling [13][17] is a computational algorithm that uses random simu-
lations to obtain numerical results. For move decision problems, flat Monte Carlo (flatMC)
[3] has three stages, which are the generation of all possible states by playing each legal
action, the simulation of these states, and the choice of the final action with the highest
mean of simulated values. In this paper, we adopt flatMC to compute the win rate of a hand
and propose heuristics to decide the move based on simulation results, so that the program
is simple, effective, and suitable for the time constraint in tournaments since it is an any-
time algorithm.

3. FLAT MONTE CARLO FOR MAHJONG

We adopt flat Monte Carlo (flatMC) as described in Subsection 2.2, which consists
of three stages, for Mahjong. In this section, we describe the implementation of the simu-
lation stage in detail. To use flatMC to compute win rates, we simply simulate legal actions
for state transitions until a game ends. Given a state 𝑠, the next state after taking the action
𝑎 from 𝑠 is called an afterstate 𝑠, similar to the terminology used in [19]. Let 𝑆௧
be the set of all afterstates of 𝑠. We simulate each 𝑠 ∈ 𝑆௧ and obtain its win rate.

In Mahjong, we design the function FlatMCMJ(𝑠, 𝑚, 𝑛௧) for the above process,
where 𝑚 is the number of rounds for each player in each simulation, and 𝑛௧ is the total
number of simulations. To reduce the complexity, the simulation stage uses an optimistic
strategy. That is, in the beginning of a simulation, we generate 𝑚 tiles for each player
which he/she will pick from the wall in next 𝑚 rounds. As we foresee all tiles, we can
find an optimal solution to win by discarding useless tiles. Note that in FlatMCMJ, other
players do not declare a win even though their hands satisfy the winning condition. There-
fore, the result is either a win of the current player or a draw. Two simulation models are
proposed below.

3.1 Single-Player Model

This model only simulates the pick action by the current player, and ignores the tiles
discarded by other players. A tile is hidden from a player if it is in the wall or is in other
players’ hands. When a player picks a tile, the probability that the tile belongs to a pattern
is calculated by the number of hidden tiles of the pattern divided by the number of total
hidden tiles. For each simulation, the player repeatedly takes one tile 𝑚 times but does

3 Tenhou is available at http://tenhou.net/

MONTE-CARLO SIMULATION FOR MAHJONG

5

not discard any tile. So, his/her hand contains 16 𝑚 tiles in the end. The player wins
when 17 tiles among the 16 𝑚 tiles satisfy the winning condition, and otherwise it is a
draw.

The advantage is that the implementation is simple. Since it is not necessary to con-
sider the tiles other players discard, we only need to generate the current player’s tiles. A
characteristic of FlatMCMJ is to reserve as many blocks as possible, which will be dis-
cussed in detail in Section 4.

3.2 Four-Player Model

Based on the single-player model, this model additionally simulates the steal action
by the current player. We assume that other players are dummy players, just picking a tile
and then discarding it.

During a simulation, due to the uncertainty of Mahjong, when other players discard a
tile, the player may win after stealing it or after ignoring it (that is, picking another tile).
For example, assume that the hand is 1789t788s in Fig. 2(a). In next two rounds, a player
may win by stealing 9s and then picking 1t in Fig. 2(b), or not stealing 9s (that is, picking
2t) and then picking 3t in Fig. 2(c). Therefore, we store and simulate both hands such that
we can choose the best solution from these results.

(a) The hand.

(b) A win after stealing.

(c) A win after not stealing.

Fig. 2. Examples to illustrate both stealing and not stealing should be considered. The no-
tations, L, O, U, and C denote the lower player, the opposite player, the upper player, and
the game-playing program, respectively.

JR-CHANG CHEN, SHIH-CHIEH TANG AND I-CHEN WU

6

3.3 Implementation

In Fig. 3, the functions, FlatMCMJ and OneSim, implement the four-player model.
In FlatMCMJ, we generate all afterstates 𝑠 of a given state 𝑠. Then, we simulate for
each 𝑠 in OneSim and can elaborate its win rate. The number of total simulations 𝑛௧
is evenly distributed to each 𝑠. The best action is the one with the highest win rate. In
OneSim, let 𝑆 and 𝑆ାଵ be the set of current states and the set of afterstates. There are
𝑚 rounds in one simulation. In each round, all afterstates generated from the current states
in 𝑆 become the new set 𝑆ାଵ in the next round. After 𝑚 rounds, the player wins if
there exists a winning strategy in the set of states, and otherwise it is a draw.

In each round, we generate at most seven afterstates for each hand by taking legal
actions which are one pick, three pongs and three eats. For example, assume that the hand
is 234456w1199t258s, and the four tiles, 𝑡, 𝑡ை, 𝑡 and 𝑡, picked by the four players
are 1t, 9t, 4w and 2s respectively. The seven afterstates generated are one hand that con-
tains the picked tile 2s, three hands that contain triplets, 111t, 999t and 444w, and three
hands that contain sequences, 234w, 345w and 456w. After 𝑚 rounds, at most 7 hands
are generated, and hence the computational cost grows exponentially.

Function OneSim൫𝑠, 𝑚൯
Input: an initial afterstate 𝑠, the number of total rounds 𝑚
Output: win or draw
1. 𝑆 ← ሼ𝑠ሽ
2. for 𝑖 ൌ 0 𝑡𝑜 𝑚 െ 1 do
3. 𝑆ାଵ ← ∅
4. get four tiles 𝑡, 𝑡ை, 𝑡 and 𝑡, each of which is assigned to the lower,

 opposite, upper and current players respectively
5. for each 𝑠 in 𝑆 do
6. while a pong occurs do
7. 𝑠′ ← remove the two tiles identical to the discarded tile from 𝑠
8. 𝑆ାଵ ← 𝑆ାଵ ∪ ሼ𝑠′ሽ
9. end while
10. if an eat occurs then
11. for at most three combinations of eat do
12. 𝑠′ ← remove the two tiles related to 𝑡 from 𝑠
13. 𝑆ାଵ ← 𝑆ାଵ ∪ ሼ𝑠′ሽ
14. end for
15. end if
16. 𝑠′ ← add 𝑡 to 𝑠 /* pick */
17. 𝑆ାଵ ← 𝑆ାଵ ∪ ሼ𝑠′ሽ
18. end for
19. end for
20. if there exists a winning condition in 𝑆 then
21. return win
22. end if
23. return draw

MONTE-CARLO SIMULATION FOR MAHJONG

7

Function FlatMCMJሺ𝑠, 𝑚, 𝑛௧ሻ
Input: an initial state 𝑠, the number of rounds 𝑚, the number of total simulations 𝑛௧
Output: the best action
Local variables: an action array 𝐴[MAX_ACTIONS],

an integer array 𝑤𝑖𝑛𝐶𝑜𝑢𝑛𝑡[MAX_ACTIONS]
1. 𝐴 ← All actions from 𝑠
2. Initialize all elements in 𝑤𝑖𝑛𝐶𝑜𝑢𝑛𝑡ሾ ሿ to 0
3. for each 𝑎 in 𝐴 do
4. 𝑠 ← make 𝑎 at 𝑠 /* 𝑠 is an afterstate of 𝑠 */
5. repeat 𝑛௧/|𝐴| times do
6. 𝑤𝑖𝑛𝐶𝑜𝑢𝑛𝑡ሾ𝑖ሿ ← accumulate the win count by calling OneSimሺ𝑠, 𝑚ሻ
7. end repeat
8. end for
9. return the action with the highest win count in 𝑤𝑖𝑛𝐶𝑜𝑢𝑛𝑡ሾ ሿ

Fig. 3. The algorithm for FlatMCMJ of the four-player model of Mahjong.

4. DISCARD-TWICE METHOD

This section discusses an important issue called tatsu-breaking in Mahjong. The win-
ning condition is five melds and one pair, which implies exactly six blocks. If a hand has
more than six blocks, we call the hand has excessive blocks. Consider the hand ℎ𝑡 ൌ
445w1267t1144888999s with seven blocks. The hand will discard a tile from a tatsu even-
tually because only six blocks are needed to satisfy the winning condition. The breaking
operation is so-called to break a tatsu in this paper, such as discarding 1t from the tatsu
12t. In this example, FlatMCMJ will discard 4w and the hand will still maintain seven
blocks. In reality, we do not know which tatsu is useless before the winning condition is
satisfied, but it is a win in FlatMCMJ since the algorithm does not need to know which
tiles to be discarded while playing. Consequently, FlatMCMJ may overestimate the simu-
lated win rate in this case. This causes that FlatMCMJ tends to reserve as many blocks as
possible.

Therefore, we propose rule-based heuristics to find a reasonable tatsu-breaking option
to cope with this problem. We describe a method to calculate the number of blocks of a
hand in Subsection 4.1 and two heuristics in Subsection 4.2.

4.1 Calculate the Number of Blocks of a Hand

We propose a method that can quickly calculate the number of blocks for a given
hand. First, the minimum number of tiles to win, called MTW, is the least number of tiles
we need to pick or steal to satisfy the winning condition for a given hand [5]. Based on the
definition, we let the function MTWሺ𝑐ሻ be the minimum number of tiles that the player
has to pick and not discard to form 𝑐 െ 1 melds and one pair. Hence, MTWሺ6ሻ is the
minimum number of tiles to win. For example, for the hand ℎ𝑡 ൌ
445w1267t1144888999s, MTWሺ1ሻ ൌ MTWሺ2ሻ ൌ MTWሺ3ሻ ൌ 0 , MTWሺ4ሻ ൌ 1 ,

JR-CHANG CHEN, SHIH-CHIEH TANG AND I-CHEN WU

8

MTWሺ5ሻ ൌ 2, MTWሺ6ሻ ൌ 3, MTWሺ7ሻ ൌ 4 and MTWሺ8ሻ ൌ 6. The first three are ze-
ros, since there are already one pair and two melds, say 44w, 888s and 999s. For MTWሺ4ሻ,
we simply need to add one more tile, say 3t, to form one new meld for the tatsu 12t. Sim-
ilarly, for MTWሺ5ሻ, MTWሺ6ሻ and MTWሺ7ሻ, we only need to add one extra, say 8t, 1s
and 4s, respectively. However, for MTWሺ8ሻ, we need two tiles, say 67w, to form an extra
meld, since it runs out of tatsu after making MTWሺ7ሻ. Apparently, the function is mono-
tonically increasing.

Second, if MTWሺ𝑐ሻ െ MTWሺ𝑐 െ 1ሻ 2, it is impossible to find a block besides
those included in MTWሺ𝑐 െ 1ሻ. That is, it needs two tiles to form an extra meld or a pair
when computing MTWሺ𝑐ሻ. Thus, there are at most 𝑐 െ 1 blocks. For example, there are
at most seven blocks in ℎ𝑡 since MTWሺ8ሻ െ MTWሺ7ሻ ൌ 2. If MTWሺ𝑐ሻ െ MTWሺ𝑐 െ
1ሻ 1, the hand has at least one block that is not included in the blocks when computing
MTWሺ𝑐 െ 1ሻ. Thus, there are at least 𝑐 blocks. For example, there are at least seven
blocks in ℎ𝑡 since MTWሺ7ሻ െ MTWሺ6ሻ ൌ 1. Therefore, the number of blocks for a
given hand is the maximum 𝑐 such that

MTWሺ𝑐ሻ െ MTWሺ𝑐 െ 1ሻ 1 (1)

4.2 Rule-based Heuristics

In this subsection, we propose the discard-twice method to cope with excessive blocks.
This method considers the first discarded tile 𝑡ଵ and the next discarded tile 𝑡ଶ. The best
𝑡ଵ is discarded according to heuristics.

First, given a hand ℎ𝑡, we calculate the number of blocks after discarding each tile
𝑡ଵ in ℎ𝑡 using the method in Subsection 4.1. Then, we classify the tiles into two sets,
called the tatsu-breaking set and the non-tatsu-breaking set. If the number of blocks de-
creases after 𝑡ଵ is discarded, then 𝑡ଵ belongs to the tatsu-breaking set. Otherwise, 𝑡ଵ
belongs to the non-tatsu-breaking set. For example, there are five blocks in ℎ𝑡 ൌ
445w1267t1144s. If 1t is discarded, then the afterstate 445w267t1144s has four blocks
since the maximum 𝑐 satisfying Formula (1) is four. If 4w is discarded, the afterstate
45w1267t1144s has five blocks. Hence, 1t is in the tatsu-breaking set and 4w is in the non-
tatsu-breaking set. In ℎ𝑡, the eight tiles 1267t1144s are in the tatsu-breaking set, and the
three tiles 445w are in the non-tatsu-breaking set.

Second, we consider the effect of breaking a tatsu by consecutively discarding two
tiles, 𝑡ଵ and 𝑡ଶ in ℎ𝑡. We calculate the win rate for each afterstate using FlatMCMJ de-
scribed in Subsection 3.3, and obtain the following data.

 The discarded tile 𝑡ଵ௧ with the best win rate 𝑤𝑟ଵ௧ in the tatsu-breaking set
 The set of discarded tiles ሼ𝑡ଶ௧ሽ ⊆ ℎ𝑡 െ 𝑡ଵ௧ with good win rates 𝑤𝑟ଶ௧ after

𝑡ଵ௧ is discarded
 The set of discarded tiles ሼ𝑡ଵ௧ሽ with good win rates 𝑤𝑟ଵ௧ in the non-tatsu-

breaking set
 The discarded tile 𝑡ଶ௧ with the best win rate 𝑤𝑟ଶ௧, where 𝑡ଶ௧ ∈ ℎ𝑡 െ 𝑡

for each tile 𝑡 ∈ ሼ𝑡ଵ௧ሽ that is discarded

Given an action, the mean value 𝑚 and the standard deviation 𝜎 are calculated after
lots of simulations. The confidence interval of the action is between the lower bound 𝑚 െ
𝑟ௗ ൈ 𝜎 and the upper bound 𝑚 𝑟ௗ ൈ 𝜎, where 𝑟ௗ is a constant ratio. A good win rate

MONTE-CARLO SIMULATION FOR MAHJONG

9

𝑤𝑟ଶ௧ means that the confidence interval of 𝑤𝑟ଶ௧ overlaps with that of the best win rate
among the tiles in ሼ𝑡ଶ௧ሽ. That is, the upper bound of three standard deviations 3𝜎 of
𝑤𝑟ଶ௧ is equal to or greater than the lower bound of 3𝜎 of the best in 𝑤𝑟ଶ௧ assuming
𝑟ௗ ൌ 3. A good win rate 𝑤𝑟ଵ௧ is defined similarly.

Based on the above data, we propose two rule-based heuristics to decide which tile is
eventually discarded and give examples below.

(A) Heuristic 1 (H1): Choose the tile 𝑡ଵ whose next discarded tile achieves the best win
rate.

The idea is to break the tatsu in this round if the player is forced to break a tatsu in
the next round. First, we discard two tiles at once for all combinations of two tiles in ℎ𝑡.
Then, we analyze the win rates of afterstates by FlatMCMJ. Among all possible tile 𝑡ଵ,
we choose the one whose next discarded tile 𝑡ଶ achieves the best win rate. If 𝑡ଵ is in the
tatsu-breaking set, the tatsu is broken.

For example, in Table 1, given the hand ℎ𝑡 ൌ 445w1267t1144s, the best win rate is
16.7% obtained by discarding 1t and then 2t. Hence, the tile to be discarded in this round
is 1t and the tatsu 12t is broken. In contrast, FlatMCMJ discards 4w since it only considers
discarding one tile. However, if the player picks a useful tile such as 3w, 6w, 5t, 8t, 1s and
4s, the player must break a tatsu and lead to a lower win rate, which cannot be detected by
FlatMCMJ. By applying H1, this situation is considered by discarding two tiles, and the
tatsu can be broken.

Table 1. The decision made by H1. The hand is 445w1267t1144s.
 Discard the 1st tile Discard the 2nd tile

Tatsu-breaking
𝑡ଵ௧ ൌ 𝟏𝐭

𝑤𝑟ଵ௧ ൌ 18.7%
𝑡ଶ௧ ൌ 2t

𝑤𝑟ଶ௧ ൌ 𝟏𝟔. 𝟕%

Non-tatsu-breaking
𝑡ଵ௧ ൌ 4w

𝑤𝑟ଵ௧ ൌ 21.2%
𝑡ଶ௧ ൌ 1t

𝑤𝑟ଶ௧ ൌ 𝟏𝟑. 𝟒%

(B) Heuristic 2 (H2): Choose the good tile 𝑡ଵ that appears both in the non-tatsu-breaking
set in this round and in the tatsu-breaking set in the next round.

Although H1 can break a tatsu, it would be too aggressive sometimes because it is
possible to pick or steal a good tile before discarding 𝑡ଶ . Take the hand ℎ𝑡 ൌ
145w1267t1144s as an example. Obviously, a tatsu like 12t usually has a better chance of
forming a meld than a single tile like 1w. However, H1 only considers the win rate after
discarding 𝑡ଶ. After discarding the single tile 1w, the hand becomes 45w1267t1144s, and
all discarding actions will break a tatsu in the next round. That is, no matter which tile is
discarded in the first round, a tatsu is forced to be broken after two rounds in this case. So,
the hands after two rounds are similar, and their sampled win rates are close by FlatMCMJ.
In Table 2, H1 chooses to discard 1t since its 𝑤𝑟ଶ௧ ൌ 14.0% is slightly better than 13.5%.
Therefore, H1 cannot distinguish which one is better between discarding a single tile and
breaking a tatsu.

The idea of H2 is to discard the tile which is less likely to form to a meld before
breaking the tatsu. After discarding the tile 1t in the tatsu 12t in this round in the tatsu-
breaking set, discarding 1w or 2t in the next round may get close win rates. Thus, ሼ𝑡ଶ௧ሽ

JR-CHANG CHEN, SHIH-CHIEH TANG AND I-CHEN WU

10

includes 1w. On the other hand, 1w is less likely to form a meld. Discarding 1w often gets
a high win rate by FlatMCMJ and thus ሼ𝑡ଵ௧ሽ includes 1w. Hence, H2 chooses the single
tile 1w in ሼ𝑡ଵ௧ሽ ∩ ሼ𝑡ଶ௧ሽ rather than breaks the tatsu 12t.

Table 2. The decision made by H2. The hand is 145w1267t1144s.

 Discard the 1st tile Discard the 2nd tile

Tatsu-breaking
𝑡ଵ௧ ൌ 1t

𝑤𝑟ଵ௧ ൌ 15.1%
𝑡ଶ௧ ൌ 𝟏𝐰

𝑤𝑟ଶ௧ ൌ 𝟏𝟒. 𝟎%

Non-tatsu-breaking
𝑡ଵ௧ ൌ 𝟏𝐰

𝑤𝑟ଵ௧ ൌ 𝟐𝟏. 𝟑%
𝑡ଶ௧ ൌ 1t

𝑤𝑟ଶ௧ ൌ 𝟏𝟑. 𝟓%

(C) The Combination of FlatMCMJ and Heuristics

The property of FlatMCMJ is that it tends to reserve as many blocks as possible. H1
makes the decision according to the win rates after two tiles are discarded consecutively.
H2 discards the tile which is hard to form a meld prior to breaking a tatsu. In this subsection,
we design three versions of FlatMCMJ to mix these properties as follows.

 FlatMCMJoriginal: Choose 𝑡ଵ௧ if 𝑤𝑟ଵ௧ 𝑤𝑟ଵ௧, and choose a tile by Flat-
MCMJ otherwise. It indicates that when breaking a tatsu is judged to be good
in this round, we do not consider the next round. This version is the same as the
original FlatMCMJ.

 FlatMCMJH1: Choose 𝑡ଵ௧ if 𝑤𝑟ଵ௧ 𝑤𝑟ଵ௧, and choose a tile by H1 other-
wise. This version deals with the problem that FlatMCMJoriginal tends to reserve
excessive blocks.

 FlatMCMJH2+H1: Choose 𝑡ଵ௧ if 𝑤𝑟ଵ௧ 𝑤𝑟ଵ௧, and choose a tile by H2 oth-
erwise. If no tile is chosen by H2, namely ሼ𝑡ଵ௧ሽ ∩ ሼ𝑡ଶ௧ሽ ൌ ∅, choose a tile
by H1. This version suppresses the tendency of FlatMCMJH1 towards aggres-
sively breaking a tatsu.

5. EXPERIMENTS

The experiments are done on a desktop computer with an AMD Ryzen 5 2600 6-core
processor. Taiwanese rules are adopted. There are two teams, each of which includes the
two players sitting on the opposite side and uses the same version of the program. A match
includes 384 games according to the Computer Olympiad tournament [20].4 The team that
wins more games is the winner of the match. To avoid the influence of luck, each wall is
used in two games, so both teams can play the same hand once.

We compare the two models of FlatMCMJ in Subsection 5.1. We experiment with
progressive pruning to accelerate the computation in Subsection 5.2. Different numbers of
simulations are compared in Subsection 5.3 The discard-twice method is discussed in Sub-
section 5.4. Finally, the best version is compared with the baseline in Subsection 5.5.

4 In the Mahjong tournament of the Computer Olympiad, a match includes 384 games;
however, 192 games before 2014.

MONTE-CARLO SIMULATION FOR MAHJONG

11

5.1 Comparison of SP and FP Models of FlatMCMJ

We compare the performance of the single-player model (SP) and the four-player
model (FP) of FlatMCMJ proposed in Section 3. In Table 3, FP outperforms SP reaching
a win rate of 62.1%. The reason is that SP ignores all steals during simulations. The results
also show that the steal action is important in Mahjong. We use FlatMCMJ(FP) for the
following experiments.

Table 3. Comparison of the single- and four-player models. A total of 781 matches

and win rates with 95% confidence.
team # of win matches win rate

FlatMCMJ(SP) 228 37.9% (േ0.67%)
FlatMCMJ(FP) 374 62.1% (േ0.67%)

5.2 The Results of Using Progressive Pruning

Progressive pruning (PP) [1][2][4][13] adopts the confidence interval to prune infe-
rior actions/moves during search, and thus facilitates finding out the best action. The pro-
cess to find the best action includes many iterations. In each iteration, we compute the
confidence interval of each action by simulations. Inferior actions are pruned (see below),
and if exactly one action is left, the process ends and returns the action immediately. Since
the total number of simulations is fixed in the whole process, superior actions will obtain
more simulations in the next iteration after inferior actions are pruned.

The confidence interval of an action is ሺ𝑚 െ 𝑟ௗ ൈ 𝜎, 𝑚 𝑟ௗ ൈ 𝜎ሻ, where 𝑚, 𝜎 and
𝑟ௗ are the mean value, the standard deviation and a constant ratio, respectively, after lots
of simulations. Assume that a node has two actions 𝑎 and 𝑏. The mean and standard de-
viation of 𝑎 are 𝑚 and 𝜎 respectively, and those of 𝑏 are 𝑚 and 𝜎 respectively.
The action 𝑎 is inferior to 𝑏 if 𝑚 𝑟ௗ ൈ 𝜎 ൏ 𝑚 െ 𝑟ௗ ൈ 𝜎, which indicates the up-
per bound of 𝑎 is less than the lower bound of 𝑏. Hence, the action 𝑎 is pruned.

This subsection analyzes the effectiveness of progressive pruning in Mahjong. First,
we analyze the pruning rate 𝛿 affected by the constant ratio 𝑟ௗ and the number of simu-
lations 𝑛 of each action. When 𝑟ௗ is set to a smaller value or when 𝜎 decreases, the
confidence interval becomes smaller, filtering out more actions. In Fig. 4, 𝑟ௗ ൌ 2 filters
out more actions than 𝑟ௗ ൌ 3. The two lines of 𝑟ௗ are close (less than 5%) when 𝑛
9000 . When 𝑛 increases, 𝜎 decreases and thus 𝛿 increases. In Fig. 4, 𝛿 reaches
79.8% for 𝑟ௗ ൌ 2 and 75.0% for 𝑟ௗ ൌ 3 when 𝑛 ൌ 10000.

JR-CHANG CHEN, SHIH-CHIEH TANG AND I-CHEN WU

12

Fig. 4. The pruning rate 𝛿 under different 𝑛 and 𝑟ௗ.

Second, we investigate the percentage 𝛿 of the best actions that are filtered out.

Assume that the best action is obtained by making 15,000,000 simulations for each action
of a hand. As shown in Fig. 5, 𝛿 ൏ 0.2% when 𝑛 300 for 𝑟ௗ ൌ 2, and 𝛿 ൎ 0 for
𝑟ௗ ൌ 3. Almost all of the best actions are reserved by progressive pruning. We adopt 𝑟ௗ ൌ
3 in the following experiments.

Fig. 5. The percentage 𝛿 of the best actions filtered out.

Third, we compare the effectiveness of using and not using progressive pruning, de-

noted by FlatMCMJ(FP) and FlatMCMJ(FP)+PP respectively. In the experiments, the total
number of simulations is 10000 for each hand. In FlatMCMJ(FP)+PP, let each action sim-
ulates 300 times in the first iteration and 100 times in the following iterations. Table 4
shows that FlatMCMJ(FP)+PP performs slightly better than FlatMCMJ(FP). Since some
poor actions are pruned, the saved simulations are applied to good actions.

Table 4. Comparison of using and not using pruning.
team # of win matches win rate

FlatMCMJ(FP) 1162 49.7% (േ1.70%)

FlatMCMJ(FP)+PP 1177 50.3% (േ1.70%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

𝛿

n

 o = 2

 o = 3𝑟ௗ

𝑟ௗ

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

𝑒

n

 o = 2

 o = 3

𝑟ௗ

𝑟ௗ
𝛿

MONTE-CARLO SIMULATION FOR MAHJONG

13

5.3 Comparison using Different Numbers of Simulations

We compare different numbers of simulations for each hand. Table 5 shows the win
rates of FlatMCMJ(FP)+PP using 20000, 40000, 80000 and 200000 simulations against
that using 10000 simulations. The results show that more simulations we use, better per-
formance we have. In the following experiments, we adopt 200000 simulations which
achieve the best win rate of 53.5%.

Table 5. Comparison between different numbers of simulations (against 10000 sim-

ulations)
of simulations # of matches # of win matches win rate

 20,000 8558 4415 51.5% (േ0.89%)

 40,000 2435 1275 52.3% (േ1.67%)

 80,000 1604 849 52.9% (േ2.05%)

200,000 1188 635 53.5% (േ2.38%)

5.4 The Results of the Discard-twice Method

The discard-twice method includes two heuristics, H1 and H2, as mentioned in Sec-
tion 4. We compare the performance of the three versions, FlatMCMJoriginal, FlatMCMJH1
and FlatMCMJH2+H1, which does not use any heuristics, only uses H1, and uses both H1
and H2, respectively. In this experiment, the four-player model (FP) and progressive prun-
ing (PP) are used in all versions.

In Table 6(a), FlatMCMJ(FP)H1+PP weakens the strength. In practice, H1 makes the
program tend to break a tatsu even when a single tile exists in a hand. H2 makes up this
disadvantage. Hence, FlatMCMJ(FP)H2+H1+PP is the best, reaching a win rate of 59.5%, as
shown in Table 6(b).

Table 6. Comparison of the two heuristics of the discard-twice method.
(a) The version using no heuristics vs. the version using H1.

team # of win matches win rate

FlatMCMJ(FP)original +PP 150 53.8% (േ4.91%)

FlatMCMJ(FP)H1 +PP 129 46.2% (േ4.91%)

(b) The version using no heuristics vs. the version using both H1 and H2.
team # of win matches win rate

FlatMCMJ(FP)original +PP 133 40.5% (േ4.46%)

FlatMCMJ(FP)H2+H1 +PP 195 59.5% (േ4.46%)

While performing the best, the heuristic H2+H1 incurs little overhead. We use 10000
hands that have excessive blocks as testing data. Each hand is given 200000 simulations
in total. Note that PP is not used to make sure all simulations are executed. Table 7 lists
the execution time for the three versions, FlatMCMJ(FP)original, FlatMCMJ(FP)H1 and Flat-
MCMJ(FP)H2+H1. The results show that the three versions consume nearly the same com-
putation cost and that the overhead of heuristics H1 and H2+H1 is very small, about 4%.

JR-CHANG CHEN, SHIH-CHIEH TANG AND I-CHEN WU

14

Table 7. Computation time for different heuristics with 200000 simulations.
 FlatMCMJ(FP)original FlatMCMJ(FP)H1 FlatMCMJ(FP)H2+H1

Execution time (sec.) 5.015 (േ 0.0163) 5.214 (േ 0.0170) 5.215 (േ 0.0170)

5.5 Comparison with the Baseline

The final version, FlatMCMJ(FP)H2+H1+PP, adopts the four-player model, progressive
pruning and the discard-twice method. We compare its performance with that of the base-
line version, FlatMCMJ(SP). Both versions simulate 200000 times. As shown in Table 8,
the final version outperforms the baseline, reaching a win rate of 66.2%.

Table 8. Comparison of the final version and the baseline.
team # of win matches win rate

FlatMCMJ(SP) 214 33.8% (േ3.10%)

FlatMCMJ(FP)H2+H1 +PP 419 66.2% (േ3.10%)

6. CONCLUSIONS

This paper describes the design of our Monte-Carlo-based Mahjong program, SIMCAT.
We propose the single-player and four-player models for Mahjong that are used in the
simulation stage in flat Monte Carlo. Moreover, we design the discard-twice method that
includes two rule-based heuristics.

In the experiments, the version that uses flat Monte Carlo with the four-player model,
progressive pruning and the discard-twice method outperforms the baseline that uses the
single-player model, reaching a win rate of 66.2%. SIMCAT used the above methods and
won the championship in the Mahjong tournaments in Computer Olympiad 2020 and
TAAI 2019/2020.

Our work provides the basis for Mahjong programs. Several possible future works
can be developed based on our work. First, the discard-twice can be extended to discard-
𝑁 (𝑁 3). However, in the case of a given fixed number of simulations for each hand,
the average simulation count for each discard-𝑁 action decreases significantly, resulting
in inaccurate win rates for discard-𝑁 actions. Second, our model can be applied to other
Mahjong rules, such as American rules and Hong Kong rules. Third, based on flatMC, the
search may choose Monte Carlo Tree Search for further investigation. Fourth, our methods
may be merged with deep reinforcement learning, such as AlphaZero [7].

ACKNOWLEDGMENT

This research is partially supported by the Ministry of Science and Technology
(MOST) of Taiwan under Grant Number 110-2634-F-009-022, 110-2634-F-259-001
through Pervasive Artificial Intelligence Research (PAIR) Labs, and 108-2221-E-305-008-

MONTE-CARLO SIMULATION FOR MAHJONG

15

MY3. The computing resource is partially supported by National Center for High-perfor-
mance Computing (NCHC) of Taiwan. Thank Fong-Sheng Liao for the discussions that
inspired us to design the method.

REFERENCES

1. B. Bouzy, “Move-Pruning Techniques for Monte-Carlo Go,” Advances in Computer
Games, 2005, pp. 104-119.

2. B. Bouzy and B. Helmstetter, “Monte-carlo go developments,” Advances in Computer
Games, 2004, pp. 159-174.

3. C.B. Browne, et al., “A survey of monte carlo tree search methods,” IEEE Transac-
tions on Computational Intelligence and AI in Games, Vol. 4(1), 2012, pp. 1-43.

4. G.M.J.B. Chaslot, J.T. Saito, B. Bouzy, J.W.H.M. Uiterwijk, and H.J. van den Herik,
“Monte-Carlo Strategies for Computer Go,” Proceedings of the 18th Belgium-Nether-
lands Conference on Artificial Intelligence (BNAIC’06), 2006, pp. 83-91.

5. L.-K. Chuang and I-C. Wu, “A Study of Mahjong Program Design,” Master’s Thesis,
Department of Computer Science, National Chiao Tung University, Taiwan, 2015. (in
Chinese)

6. R. Coulom, “Efficient selectivity and backup operators in Monte-Carlo tree search,”
5th International Conference on Computers and Games, 2006, pp. 72-83.

7. D. Silver, et al., “Mastering chess and shogi by self-play with a general reinforcement
learning algorithm,” arXiv preprint arXiv:1712.01815, 2017.

8. D.J. Edwards and T. Hart, “The alpha beta heuristic,” Mass. Inst. Tech. Res. Lab. of
Electron. Artificial Intell., Group Memo 30, Cambridge, MA, 1963.

9. S. Gao, F. Okuya, Y. Kawahara, and Y. Tsuruoka, “Building a Computer Mahjong
Player via Deep Convolutional Neural Networks,” arXiv preprint arXiv:1906.02146,
2019.

10. T.G. Hauk, “Search in Trees with Chance Nodes,” Master’s Thesis, Department of
Computer Science, University of Alberta, Canada, 2004.

11. L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo Planning,” 15th European
Conference on Machine Learning, 2006, pp. 282-293.

12. J. Li, et al., “Suphx: Mastering Mahjong with Deep Reinforcement Learning,” arXiv
preprint arXiv:2003.13590, 2020.

13. F.-S. Liao, “Monte-Carlo Sampling Methods for Computer Mahjong,” Master’s The-
sis, Department of Computer Science, National Chiao Tung University, Taiwan, 2017.
(in Chinese)

14. C.A. Luckhardt and K.B. Irani, “An algorithmic solution of N-person games,” AAAI-
86, Vol. 1, 1986, pp. 158-162.

15. S.D. Millter, “Riichi Mahjong: The Ultimate Guide to the Japanese Game Taking the
World by Storm,” lulu.com publish, 2016.

16. N. Mizukami and Y. Tsuruoka, “Building a computer Mahjong player based on Monte
Carlo simulation and opponent models,” IEEE Conference on Computational Intelli-
gence and Games, 2015, pp. 275-283.

17. A. Ruszczynski and A. Shapiro, “Handbooks in operations research and management
science,” Vol. 10, 2003, pp. 353-425.

JR-CHANG CHEN, SHIH-CHIEH TANG AND I-CHEN WU

16

18. Y.-C. Shan, C.-H. Wei, C.-H. Lin, I-C. Wu, L.-K. Chuang, and S.-J. Tang, “A Frame-
work for Computer Mahjong Competitions,” ICGA Journal, Vol. 37(1), 2014, pp. 44-
56.

19. R.S. Sutton and A.G. Barto, Reinforcement learning: An introduction. MIT Press,
2018.

20. W.-J. Tseng, L.-K. Chuang, I-C. Wu, S.-S. Lin, and S.-J. Yen, “Longcat wins mahjong
tournament in ICGA 2013,” ICGA Journal, Vol. 36(3), 2013, pp. 184-185.

21. H.J. van den Herik, J.W. Uiterwijk, and J. van Rijswijck, “Games solved: Now and in
the future,” Artificial Intelligence, Vol. 134(1-2), 2002, pp. 277-311.

22. C.-W. Wu and S.-S. Lin, “The Design and Implementation of Mahjong Program Mah-
JongDaXia,” Master’s Thesis, Department of Computer Science and Information En-
gineering, Taiwan, 2016. (in Chinese)

23. Japan Mahjong Professional League, Available: http://www.ma-jan.or.jp/
24. Mahjong Time, online Mahjong platform, Available: http://mahjongtime.com/mah-

jong-about-mahjong-time.html/
25. Math of Mahjong (麻 雀 の 数 学), Available: http://www10.plala.or.jp/ras-

calhp/mjmath.htm/

Jr-Chang Chen (陳志昌) is an associate professor of the De-
partment of Computer Science and Information Engineering at Na-
tional Taipei University. He received his B.S., M.S. and Ph.D. de-
grees in Computer Science and Information Engineering from Na-
tional Taiwan University in 1996, 1998, and 2005 respectively. He
served as the Secretary General of Taiwanese Association for Artifi-
cial Intelligence in 2015-2017. Dr. Chen’s research interests include
artificial intelligence and computer games. He is the co-author of the
two Chinese chess programs named ELP and CHIMO, the Chinese

dark chess program named YAHARI, and the minishogi program named NYANPASS, which
won gold medals in the Computer Olympiad tournaments. He served as the general chair
of the 10th International Conference on Computers and Games (CG2018).

Shih-Chieh Tang (唐士傑) is currently a Ph.D. candidate in the
Department of Computer Science, National Yang Ming Chiao Tung
University. His research interests include artificial intelligence, ma-
chine learning and computer games. He is the leader of the team de-
veloping the Mahjong program, named SIMCAT, which won gold
medals in TAAI 2019/2020 and Computer Olympiad 2020.

MONTE-CARLO SIMULATION FOR MAHJONG

17

I-Chen Wu (吳毅成) is currently the executive officer of Ar-

tificial Intelligence Computing Center at Academia Sinica, a re-
search fellow of Research Center for IT Innovation at Academia
Sinica, and also a professor of the Department of Computer Science
at National Yang Ming Chiao Tung University. He received his B.S.
in Electronic Engineering from National Taiwan University (NTU),
M.S. in Computer Science from NTU, and Ph.D. in Computer Sci-
ence from Carnegie-Mellon University, in 1982, 1984 and 1993, re-

spectively. He serves the editor-in-chief of ICGA Journal and an associate editor in the
IEEE Transactions on Games. He currently serves as the vice president of the International
Computer Games Association, and the president of the Taiwanese Computer Games As-
sociation; and served as the president of the Taiwanese Association for Artificial Intelli-
gence in 2015-2017.

His research interests include computer games and deep reinforcement learning, and
his research achievements include several state-of-the-art game playing programs, winning
over 30 gold medals in international tournaments, like Computer Olympiad. He wrote over
150 technical papers, and served as chairs and committee in over 30 academic conferences
and organizations, including the general chair of IEEE CIG conference 2015.

