
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING XX, XXXX-XXXX (2016)
DOI: XX.XXX.XXXX.XX

A New Formal Multi-Agent Organization Based on the
DD-LOTOS Language

SAMRA SABEG 1,+, TOUFIK MESSAOUD MAAROUK 1 AND MOHAMMED EL HABIB SOUIDI 1

1Faculty of Science and Technology
University Abbes Laghrour Khenchela

ICOSI Lab, BP 1252 EL Houria
E-mail: {samra.sabeg; maarouk.toufik; souidi.mohammed}@univ-khenchela.dz

A multi-agent organizational model represents a coordination mechanism that allows
tasks to be shared among agents to perform complex tasks. While the Agent-Group-Role
organizational model (AGR) provides a concise methodological framework for designing
multi-agent systems, it is expressed in informal language and lacks formal semantics. Con-
sequently, designers of multi-agent systems have been unable to exploit this model for
analysing and checking the behaviour of their systems. Some works propose investigat-
ing the issue of model transformation; unfortunately, no effort has been made to transform
AGR models using a formal language defined on the semantics of true concurrency. The
DD-LOTOS Language is one of the promising alternatives to this problem, as it is based
on true concurrency semantics and supports the distributed aspect of the system. This pa-
per proposes a formal approach that generates DD-LOTOS specifications from AGR mod-
els. This formalization permits the analysis, verification, and validation of the important
properties of an organization. Model-to-text (M2T) transformation uses the Xpand tools to
implement the approach. The e-commerce case study is used to illustrate our approach.

Keywords: Multi-agent systems, Coordination mechanism, Organizational model, Model
transformation, Formal semantics, DD-LOTOS

1. INTRODUCTION

In recent years, multi-agent systems (MAS) are considered a promising paradigm for
developing complex, distributed, and dynamic applications [1]. Therefore, a particular
interest nowadays is given to multi-agent systems because they heavily rely on efficient
methodologies, new techniques, and recent engineering methods that designers should
exploit when designing open and heterogeneous systems [2].

Multi-agent systems are applied to different domains, such as robotics, distributed
systems, e-commerce, communication protocols, networks, etc.[3]. Multi-agent systems
engineering may be summarized in two viewpoints [4]:

1) Agent-oriented approaches : in which a special attention is initially paid to agents’
behaviour and their architectures [5]. In [6] authors declared that agent-oriented systems
need no structure in advance and that their organization is implicitly emergent as an out-
come of agents’ interactions. The main problems of this type of MAS are uncertainty and

+Corresponding author

1

2 SAMRA SABEG, TOUFIK MESSAOUD MAAROUK, MOHAMMED EL HABIB SOUIDI

unpredictability. This approach may lead a system to unsuitable situation. As a result,
agent-oriented approaches cannot be used to engineer large-scale systems.

2) Organization-oriented approaches: this approach has been recently adopted to
overcome the major weaknesses of the first approach (uncertainty, unpredictability). An
important element of that approach is the concept of organization. An organization is
a set of agents and can be partitioned into partitions (groups). It minimizes the scope
of interactions and reduces unpredictability [7]. The adoption of organizations is a new
manner for defining the structure and the interactions between agents in MAS.i.e. specify
the structural and dynamical aspects of multi agent system. In this approach, the designer
describes the organisation and patterns of agents’ activities in advance [8] [9]. In addition,
the organization imposes a set of constraints that agents respect to achieve their global
objective easily. These constraints describe an organizational model that aims to model
coordination in MAS and guarantee a higher level of efficiency [10].

Several organizational models are currently adopted for modelling coordination in
organization oriented MAS, such as AGR [11], AGRE [12], MOISE [13], AGRMF
[14, 15], and others. An organizational model is a coordination mechanism used in a
development methodology to control agents’ behaviour and ensure the ability of organi-
zation to efficiently carry out its tasks, [16]. It is defined by means of new organizational
concepts (role, group, organization, goal, etc.).

Despite the wide use of these organizational models in the design of complex MAS,
they are usually expressed in an informal language and suffer from a lack of formal se-
mantics. This renders the essential step of verification and validation organizational model
difficult. Therefore, we cannot ensure that the system design contains no errors.

The AGR model is one of the most familiar and widely adopted organizational mod-
els for building MAS. However, it is described in intuitive and natural language. This lack
of formal semantics can hinder the correct interpretation and verification of the model
[17]. Thus, integrating formal languages with the AGR model in the modelling process
seems necessary to create verifiable and rigorous specifications.

To remedy this issue, several works have investigated the problem. Typically, the
proposed approaches depend on formal methods to design and verify complex systems.
The majority of these approaches are based on process algebras [18, 19], rewriting logic
and Maude [20], and Category Theory [21, 22] as specification languages.

In the context of this work, we propose a formal approach based on model trans-
formation to transform the AGR model into a DD-LOTOS specification. The choice of
AGR model among the existing organizational models is justified by several reasons.
Firstly, the AGR model is a simple but very generic and powerful organizational model
for the design of complex applications. Secondly, it conforms to the general principles of
organization-oriented systems in which we are interested. Thirdly, the AGR model uses
several notations (cheeseboard diagram, organizational structure, and organizational se-
quence diagrams) to represent both static and dynamic aspects of an organization. Lastly,
and most importantly, the AGR model is integrated with multi-agent systems development
methodology to complete the analysis and design phases of the development process.

The main contribution of our work is to define formal semantics for the AGR model
using the formal language DD-LOTOS [23]. The novelty of our approach compared
to existing works is that the DD-LOTOS language supports various aspects of complex
systems.

A NEW FORMAL MULTI-AGENT ORGANIZATION BASED ON THE DD-LOTOS LANGUAGE 3

The DD-LOTOS language represents a timed extension of the LOTOS description
language. However, DD-LOTOS is defined with true parallelism semantics, which avoids
assuming structural and temporal atomicity of actions. In other words, in DD-LOTOS,
actions are considered non-atomic and have a non-zero duration. In contrast, approaches
based on process algebras and timed Petri nets use interleaving semantics, where actions
are assumed to be atomic, indivisible, and have zero duration.

Furthermore, DD-LOTOS offers the advantage of allowing the explicit specification
of sites or localities. In the context of multi-agent systems, these sites can represent
the notion of a group. Another fundamental feature of DD-LOTOS is its capability to
verify quantitative properties of actions, owing to the assumption of non-atomicity in
their structure and timing.

This transformation gives a rigorous specification for the AGR model. The proposed
approach consists of two main steps. Firstly, we define a meta-model of the AGR model
using the EMF (Eclipse Modelling Framework) tool. Secondly, we use the Xpand tools to
generate the DD-LOTOS specification from the AGR model. The transformation is done
by a model-to-text transformation (M2T).

This transformation aims to enable model checking of AGR models using the model
checker UPPAAL. The choice of UPPAAL is motivated by two main reasons: firstly, UP-
PAAL takes the timed automata model as input, and secondly, it supports the verification
of timed properties such as bounded liveness.

When the formal DD-LOTOS specification is complete, a semantic model specific
to the DD-LOTOS language called C-DATA is generated, which is an extension of the
timed automatons; the generation approach is presented in [24]. Finally, we can use the
UPPAAL model checker to check the properties of the smooth behaviours; these proper-
ties are expressed in a temporal logic such as the TCTL logic. The UPPAAL tool gives
us a yes answer for each property if it is satisfied and a no answer with a diagnosis for
each property that is not satisfied. Several properties, including the absence of deadlock,
the respect of time constraints by agents, the absence of non-violation of confidentiality
properties between agents, and compliance with the specification, can be verified in the
AGR model.

The rest of this paper is structured as follows: Section 2 reviews the related work.
Section 3 describes the main concepts of both the AGR model and the DD-LOTOS lan-
guage. Section 4 presents the proposed formal approach. Section 5 details the implemen-
tation of the suggested approach using the Xpand language. We illustrate our approach
with the e-commerce example in Section 6. Section 7 presents the conclusion of the paper
and future work.

2. RELATED WORK

Currently, few approaches have been proposed for the formalization of organiza-
tional models in MAS. They aim to specify and verify formally multi-agent systems based
on organizational notions to deal with the lack of solid semantics of different models. This
lack hinders the verification, analysis, and correct interpretation of these models.

Many formal methods have been adopted to deal with this issue, such as the Maud
language, LOTOS, Petri net notation, and category theory. DD-LOTOS has not been

4 SAMRA SABEG, TOUFIK MESSAOUD MAAROUK, MOHAMMED EL HABIB SOUIDI

largely applied to multi-agent systems, especially not organizational models. Therefore,
the proposed approach differs from previous studies in that it addresses the transformation
of the AGR organizational model by using the DD-LOTOS language defined on maximal-
ity semantics.

In [20], the authors proposed a formal approach based on rewriting logic to prototype
the AGR model. The approach is implemented by the Maude language. This formal
specification allows the simulation, verification, and validation of the AGR organizational
model and is evaluated through a supply chain management case study.

Several new works, such as [21, 22, 25], have used category theory to formalize the
systems based on organisational notions.

In [21], the authors proposed an idea for formalizing organization in MAS. The
formalization is based upon collective phenomena using category theory. This study aims
to have a categorical model that enables studying some organizational properties such as
adaptation and stability.

In [22], the authors have exploited category theory to model the organization in
multi-agent systems. They transform the AGR model into a formal model by using cat-
egory theory. The obtained mathematical model enables the analysis and verification of
organizational proprieties. Firstly, they explored the concepts of organization: Agent,
Group, and Role. Second, they established categories and morphisms using these con-
cepts.

In [25], the authors proposed a new approach for verifying MAS properties. They
proposed a formal model of MAS by using categories, and morphisms between agents in
category theory without focusing on the agent’s architecture.

In [18, 19, 26] the authors have developed a formal specification approach for the
organizational model among MAS. In [18], the same authors presented a formal approach
to specifying, validating, and verifying MAS based on organizational models. They have
chosen the OZS notation, which allows verification of formal specifications. Their ap-
proach is illustrated through the satisfaction-altruism application. The benefit of this ap-
proach is that you can reuse a range of models in different applications by decomposing
the model into different reused formal concepts.

In [19], the authors developed a formal specification approach based on the organi-
zational model RIO (Role-Interaction-Organization). The approach manages the issue of
dynamic roles within organizational multi-agent systems. The authors used the OZ nota-
tion and illustrated their approach through the Satisfaction Altruism application. Finally,
they analysed the final specification to check the behaviour of the agents.

In [26], the authors developed a formal prototyping approach of multi-agent sys-
tems designed by an organizational model. This formal specification is given by using a
multi-formalism, which incorporates state charts into Object-Z to describe both reactive
and transformational aspects and to facilitate the analysis operation of the specification.
Finally, they examined the final specification to ensure that the agents behaved correctly.

Guerrouf and Chaoui [27] proposed an approach allowing a MAS to reorganize at
run time. The authors have used the graph grammar to specify their systems. First, they
described the organization using a type graph to model its structural aspects. Then, they
specified the dynamic aspect of the system by defining a list of rules using the AGG tool.
When an event occurs in the system, the equivalent rule is triggered to reorganize the
system at runtime. Finally, the approach is validated by the supply chain management

A NEW FORMAL MULTI-AGENT ORGANIZATION BASED ON THE DD-LOTOS LANGUAGE 5

application. In [28], the authors proposed a formal specification language called AgLO-
TOS to express agent plans from a set of agents’ intentions. Each agent plan is described
as a set of processes executed concurrently. In addition, the AgLOTOS semantics permit
updating the plans according to the new agent’s intentions. The approach aims to revise
the agent’s plan when their intentions change.

Another work [29] proposed a formal approach for modelling and analysing mobile
agent-centred systems. The authors used the Mobile UML to model the system. Then,
they proposed an automatic transformation approach to translating the concerned dia-
grams to the pi-calculus specification. The latter is analysed with analysis tools. Finally,
the approach is implemented using the AToM3 tool.

In [30], the authors have proposed an algorithm to generate a specification of MAS
from a Petri net model. A language named Maude is used to automatically generate the
Maude specification. First, a MAS is designed with Petri nets as the input of the algorithm
to generate its specification. Finally, they used this specification to verify their system.

Regarding the recent applications of the AGR model in complex problems, we can
note the work proposed in [31]. Specifically, the authors presented a multi-agent sys-
tem development framework, known as MaSMT, which is specially introduced to process
English to Sinhala agent-based machine translation. The main reason for using this or-
ganizational model in MaSMT is the fact that AGR provides an agent’s infrastructure, a
communication process for the agents, and agent status controlling, as well as a tool for
agent monitoring. About blockchain systems, AGR was recently used in [32] to propose
a generic multi-agent organizational modelling for studying blockchain systems, known
as AGR4BS. Precisely, the authors used AGR organizational model to identify and rep-
resent the generic entities that are common to blockchain systems. Moreover, the authors
demonstrated via the use of four real case studies how this generic model can be intro-
duced to model different blockchain systems. They also show how AGR4BS can be used
to model three well-known attacks on blockchain systems.

3. BACKGROUND

3.1 Overview of AGR organizational model

The choice of an organizational approach to designing MAS is based on the speci-
fication of some structural and functional constraints that agents should adopt to perform
their tasks easily within the system [33]. These constraints are generally described as an
organizational model, such as the AGR model. With an organizational model, the sys-
tem may manage many weaknesses such as uncertainty, complexity, and efficiency [34].
An organizational model is a coordination mechanism that controls the interactions and
behaviour of the agents. Such features make this approach appropriate for developing
distributed and complex systems.

The AGR model is proposed by Ferber in [11]. It complies with the organizational
system principles . The AGR model is a new extension of the AALAADIN model [35].
It provides a good solution for building organization-based multi-agent systems.

The AGR model relies on three organizational concepts: agents, groups, and roles
[36].

6 SAMRA SABEG, TOUFIK MESSAOUD MAAROUK, MOHAMMED EL HABIB SOUIDI

Agent: an agent is an autonomous and active entity that plays several roles in different
groups. Each agent may be a member of different groups to play one or several roles. One
of the AGR model principles is that no assumption is imposed on the agent’s language
and architecture.
Group: a group is a partition of a system. It contains agents with the same characteristics.
Two agents are able to communicate if they belong to the same group. A group is an
instance of a group structure, which describes it. This group structure defines interaction
patterns between roles within a group.
Role: a role is a generic representation of the agent’s behaviour within a group. A role
may be held by several agents, and an agent must at least holed a role in a group.

In the AGR model, two types of constraints have been proposed: dependence and
correspondence. A correspondence constraint means that when an agent holds one role
will automatically hold another role. This constraint defines a representative agent be-
tween two groups. A dependency constraint between two roles R1 and R2 expresses that
the agent acting R2 requires playing R1.
Several diagrams have been proposed to represent the organization. The organizational

Fig. 1. The UML meta-model of Agent-Group-Role [11]

structure notation describes the organization (i.e. abstract level). In this diagram, groups
are described by group structures, which define a set of interactions between roles. The
two types of constraints are expressed as arcs between roles. The cheeseboard diagram is
very suitable for representing the concrete organization (i.e. agent level). It is possible to
instantiate several concrete organizations from one organizational structure. In addition,
graphical elements are proposed to describe this diagram; ovals, skittles, and hexagons
that represent respectively groups, agents, and roles. Lastly, organizational sequence dia-
grams are used to describe the organizational activities dynamics (dynamic aspect). The
AGR meta-model is depicted in Fig. 1.

A NEW FORMAL MULTI-AGENT ORGANIZATION BASED ON THE DD-LOTOS LANGUAGE 7

3.2 The DD-LOTOS formal language

The DD-LOTOS (Distributed Durational Language Of Temporal Ordering Specifi-
cation) formal language is a powerful technique that permits the specification and the
verification of the behaviour of distributed and complex systems. [37, 38, 39]. The
DD-LOTOS language extends the D-LOTOS language [40] and is based on maximal-
ity semantics to support the duration of action. It takes into consideration three aspects:
distribution, remote communication, and mobility of processes.

The distribution aspect is ensured by the existence of localities, and the communi-
cation between localities is carried out by the exchange of messages on communication
channels. In its turn, the DD-LOTOS also allows for the mobility of processes between
localities. Fig. 2 shows a distributed system that is composed of localities l and k that
communicate via the communication channel b. Q, P, and E are processes, Q and P re-
side in the locality l and are synchronized through gate a. l(E) denotes the behavioural
expression E at the locality l. Therefore, the system is modelled as a set of processes that
are executed in several localities. This system is represented by the following behavioural
expression:

l(Q | [a] | P) | k(E)

l

EQ P
a b

k

Fig. 2. Distributed system with DD-LOTOS.

3.2.1 Syntax of DD-LOTOS language

The syntax of DD-LOTOS uses some notations:

• Let X ,Y,Z... are processes identifiers.

• Act = G ∪{i,δ ,go,create}, G is a range of observable actions a,b. i /∈ G is a silent
action, and δ /∈ G is the successful termination action, go and create provokes
respectively the migration and the creation process.

• L is a part of G

• B presents a range of behavioural expressions E,F ,...

• D presents the time, d ∈ D is a value of time.

Table 1 shows the essential DD-LOTOS elements:

• The temporal restriction is expressed by a{d}.

8 SAMRA SABEG, TOUFIK MESSAOUD MAAROUK, MOHAMMED EL HABIB SOUIDI

Table 1. Syntax of DD-LOTOS
E ::= Behaviours

stop | exit{d} | ∆dE | X [L] |
g@t[SP];E | i@t{d};E | hideLinE |
E[]E | E | [L] | E | E ≫ E | E[> E |
a!v{d};E Emission
a?x;E Reception
go(l,E){d} Migration
create(l,E) Creation of locality

S ::= Systems
φ | S | S | l(E)

• ∆dE : this expression permits to delay the execution of the expression E by an unit
of time d.

• In the behavioural expression g@t[SP];E, SP presents a logical predicate, and t
expresses a variable of time. HideLinE presents the hiding operator which hides
some actions of the process and considers them internal to it. E | [L] | E expresses a
parallel composition, E[]E expresses a non-deterministic choice, E [> E represents
a preemption, and E ≫ E expresses a sequential composition.

• b!m{d};E presents an expression that sends a message m on the gate b. This trans-
mission must be performed in a period of time [0,d].

• a?x;E states the reception of a message through the gate a.

• go(l,E){d} migrates the behavioural expression E to an other locality l, this opera-
tion of mobility must be carried out in a delay d.

• The expression create(l,E) creates a locality l with the behavioural expression E in
the locality l.

The system may be a composition of several systems S | S, a behaviour E in a locality or
empty φ .

3.2.2 Structured operational semantics

The DD-LOTOS has an operational semantics that is represented by a set of semantic
rules:

• a!v{d};E
The emission of the message v in the configuration M[a!v{d};E] cannot start until
each action of the set M has completed its execution, in other words Wait(M) =
f alse as the rule 1 shows. The passing of time is expressed in the rules 2 and 3.
The emission of message must be restricted by a certain time, otherwise; it is trans-
formed to Stop as depicted in Rule 4.

1. ¬Wait(M)

M [a!v{d};E] Ma!vx−→ {x:a!v:t}[E]
x = get(M)

A NEW FORMAL MULTI-AGENT ORGANIZATION BASED ON THE DD-LOTOS LANGUAGE 9

2. Wait(Md′)or(¬Wait(Md′)and ∀ε>0.Wait(Md′−ε)) d′>0

M [a!v{d};E] d′−→
Md′ [a!v{d};E]

3. ¬Wait(M)

M [a!v{d′+d};E] d−→ M [a!v{d′};E]

4. ¬Wait(M) and d′>d

M [a!v{d};E] d′−→ M [stop]

• distance communication
The flowing rule 1 expresses the receiving and sending of messages through the
same gate:

1. −
M [l(a!v{d};E1)]|M′ [k(a?xE2)]

τ−→M [l(E1)]|M′ [k(E2{v/x})]

• creation of localities l(create(k,E))
The configuration M [l(F | create(k,E))] expresses different evolutions according
to the actions of the set M. Rule 1 expresses that the creation of new localities can
not perform until all actions in the set M have finished their execution, expressed
by wait(M) = f alse. Rule 2 states that if the unit of time d is elapsed before the
process of creating a locality is sensitized, then this process cannot evolved.

1. ¬Wait(M)

M [l(F |create(k,E))] Mcreatex−→ φ [l(F)]|{x:create:0}[k(E)]

2. Wait(Md) d>0

M [l(F |create(k,E))] d−→ Md [l(F |create(k,E))]

• Process of deletion of localities
If all processes in the locality are Stop then, this locality will be deleted as shown
in the rule 1 and rule 2.

1. ¬Wait(M) and[l(Stop)]

M [l(Stop)] δ−→ φ [φ]

2. ¬Wait(M) and M [l(Stop)]|||N [k(E)]

M [l(Stop)]|||N [k(E)]
δ−→ N [k(E)]

• Process of migration M[(k(go(l,E){d})]
The rule 1 expresses that if actions of the set M have not completed their execution,
then the process of migration can not occur. Rule 2 expresses that the occurrence
of the action go has for the period d, in the contrary case the migration will never.
Rule 3, states the passage of time.

1. ¬Wait(M)

M [k(F |go(l,E){d})] Mgox−→ φ [k(F)]|{x:go:0}[l(E)]
x = get(M)

2. ¬Wait(M) and d′>d

M [k(go(l,E){d})] d′−→ M [k(Stop)]

10 SAMRA SABEG, TOUFIK MESSAOUD MAAROUK, MOHAMMED EL HABIB SOUIDI

3. ¬Wait(M) and d′>0

M [k(go(l,E){d+d′})] d−→ Md [k(go(l,E){d′})]

• Time evolution on system

1. E d−→E ′

l(E) d−→ l(E ′)

2. S1
d−→S′1 S2

d−→S′2
S1 | S2

d−→S′1 | S′2

4. The proposed transformation approach

In this paper, we profit from the advantage of the DD-LOTOS language and the AGR
model for the formal specification and validation of complex systems. Our approach
generates DD-LOTOS specifications from the AGR model. The basic idea is to interpret
each element in the AGR model into its equivalent in terms of DD-LOTOS language. As
an example, an agent is transformed into a process in DD-LOTOS. In the AGR model, the
system is specified using three major concepts: Agent, Group, and Role. Whereas in the
DD-LOTOS language, the system is specified by a set of processes. For this reason, we
consider in this approach that the system’s behaviour is modelled as a set of interacting
agents; each agent specifies the behaviour of an object in the system. These agents are
transformed into a set of processes in the DD-LOTOS language.

The proposed approach constitutes of three steps. Firstly, all agents are transformed
into DD-LOTOS processes. The generated processes in this step will constitute the re-
served section for the declaration of processes in the DD-LOTOS specification. Secondly,
all groups in the AGR model are transformed into localities in the DD-LOTOS language.
A locality is an environment that will contain a set of processes generated in the first step
from agents. Thirdly, in this latter step, the global specification of the system is estab-
lished, and its behaviour is formed from a set of localities generated in the second step.

The global specification will be checked for errors using DD-LOTOS tools. In the
following section, we will detail the transformation of each concept in the AGR model to
its equivalent concept in the DD-LOTOS language.

4.1 Transformation of agents into DD-LOTOS processes

A role is an important element in the AGR model [11]. It describes the behaviour of
an agent. On the other hand, a process in DD-LOTOS is an object defined by a behaviour
expression that describes its behaviour. On this basis, an agent is transformed into the
process in DD-LOTOS. The behaviour expression of this process is denoted by the role
of the agent. Thus, agents playing roles in a group are converted into a set of processes in
DD-LOTOS.
Fig. 3 illustrates the structure of the DD-LOTOS process generated from an agent. The
name of process <Agent>is the name of the agent in the AGR model. Its gates are the set
of agents’ interactions. The behavioural expression of this process is the role played by
the agent role played. For example, agent A in the system sends a message M to agent B.
In terms of DD-LOTOS, agents A and B are transformed into processes. The interaction

A NEW FORMAL MULTI-AGENT ORGANIZATION BASED ON THE DD-LOTOS LANGUAGE 11

between agents is converted into a gate named g. The role played by agent A (sending
message) is transformed into behaviour expression of the process A expressed as follow:
g! M, which means transmission message M via the gate g.

process <Agent>[gate List] :=
behavior

role played[gate list]
where

process <role played>[gate list]:=....endproc
endproc

Fig. 3. Structure of the DD-LOTOS process

4.2 Transformation of groups into localities

The AGR model specifies a system as a set of groups. Each group contains a set
of interacting agents. In the second step, each group is transformed into a locality in
DD-LOTOS. The name of the locality is the name of the specified group. The behaviour
expression E of the locality is formalized by agents of the group. Agents in a group are
transformed into processes and composed by the parallel composition operators:

i) These processes are composed using the partial synchronization operator |[<
messages >]| if there exist messages (interactions) between two agents. Messages be-
tween agents are transformed into synchronization gates of the operator. This operator is
used when simultaneous processes synchronize on the gates mentioned in the operator.

ii) If there is no interaction (messages) between agents, we use the interleaving op-
erator ||| instead the partial synchronization operator. The interleaving operator is used
when two parallel processes run completely independently without synchronization (the
list of gates is empty in this operator).

iii) In the case where each agent has to interact with every agent in the same group,
the full synchronization operator || must be used. The full synchronization operator means
that two processes executed in parallel have to synchronize on every gate. For exam-
ple, we use the AGR model to design an organization. The organization consists of two
groups: Group 1 and Group 2. The first group contains two interacting agents A and B.
The formalization of this system by using the DD-LOTOS language will be as follow:
first, both groups A and B are transformed into localities: locality 1 and locality 2. Sec-
ond, agents A and B are transformed into processes respectively named A and B. These
processes are composed using the partial synchronization operator for modelling the be-
haviour expression E of locality 1. Message m between the two agents is transformed
into a synchronization gate of the operator as follows: A|[m]|B, which means that two
processes A and B synchronize on the gate m. The use of the partial synchronization
operator is justified by the existence of an interaction between agents.

4.3 Building the global specification

In the third step, the global specification is built and its behaviour expression is ob-
tained from groups. Groups are used to model the behavioural expression E of the system.

12 SAMRA SABEG, TOUFIK MESSAOUD MAAROUK, MOHAMMED EL HABIB SOUIDI

Fig. 4 shows the essential elements of the global specification. The name of specification
<specification name>is the name of the system specified by the AGR model. The be-
haviour expression of this specification is derived from groups that model the system’s
behaviour. Groups in the AGR model are formalized as localities and composed using the
system composition operator | as follow: Locality1(E) | Locality2(F).... | Localityn(Q).
Knowing that E, F , and Q denote behavioural expressions of localities. Processes gener-
ated from agents in the first step are defined in the section ’where’ of the specification.

specification <specification name>:=
behavior

l(E) | k(F) | p(Z)
where
process E [gate list]:=

Agent1 [gate list] || Agentn [gate list]
where

process <Agent1>[gate list]:=
...
endproc
...
process <Agentn>[gate list]:=
...
endproc

endproc
...
endspec

Fig. 4. Structure of generated DD-LOTOS specification

Illustrative example
To illustrate our approach, we considered a simple organization of the reviewing process
[11]. The organization is established according to the AGR organizational model. Fig. 5
shows part of the organization that consists of two groups of agents.
The first group consists of two agents: the author and the receiver. The second group also

Group1 Group2

Submit paper C Distribute papers

Agent

Pr. chair

Agent

Member

Agent
Reciever

Agent
Author

Fig. 5. Agent-Group-Role based organization of reviewing process.

contains members and program chairs. An author agent submits its paper to the receiver,
who is also the program chair agent in the second group. (A representative agent is de-
fined between groups to coordinate the interactions by the correspondence constraint C).

A NEW FORMAL MULTI-AGENT ORGANIZATION BASED ON THE DD-LOTOS LANGUAGE 13

Table 2. The DD-LOTOS specification of a system designed by the AGR model
Specification Reviewing process[subm,distrib] :=
Behaviour

Group1(E) | Group2(P)
Where
Process E[subm] :=

Author[subm] | [subm] | Receiver[subm]

Where
Process Author[subm] :=

subm ! Submit ; exit
EndProc
Process Receiver[subm] :=

subm ? x : Message ; exit
EndProc
EndProc
Process P[distrib] :=

Pr.chair[distrib] | [distrib] | Member[distrib]
Where
Process Pr.chair[distrib] :=

distrib ! Distribute ; exit
EndProc
Process Member[distrib] :=

distrib ? x : Message ; exit
EndProc
EndProc
EndSpec

The program chair sends the paper to the member to be examined. Submit and Distribute
are interactions between agents.To transform this system into a DD-LOTOS specification,
we consider that a system consists of two localities: Group1 and Group2. E and P are
their behavioural expressions, respectively. Therefore, The system can be defined by the
following behaviour expression Group1(E) | Group2(P).

The behaviour expression E := Author[subm] | [subm] | Receiver[subm] specifies two
processes: author and receiver, executed in locality Group1. The processes are generated
from agents in Group1 and are synchronized on the gate. The message ”Submit paper”
is transformed into the gate subm in DD-LOTOS. In Group2, the behavioural expression
P := Pr.chair[distrib] | [distrib] | Member[distrib] specifies two processes: Pr.chair and
Member that are generated from agents. The message Distribute papers between agents is
transformed into a synchronization gate. Agents in the Group 2 are transformed into pro-
cesses and are composed using the synchronization operator | [synch gates] | to form the
behaviour of the locality. Interactions between agents are transformed into synchroniza-
tion gates in the operator. The role enacted by an agent is transformed into sub-process
that expresses the the agent’s behaviour. The global specification of the system in DD-
LOTOS is given in Table 2.

14 SAMRA SABEG, TOUFIK MESSAOUD MAAROUK, MOHAMMED EL HABIB SOUIDI

5. Automatic generation of the DD-LOTOS specification

In this section, we explain the automation of the proposed approach to generate
DD-LOTOS specifications from the AGR models. To this end, our approach passes on
two main phases (Fig. 6): first, we implement a meta-model for the AGR model us-
ing the Eclipse Modelling Framework (EMF). Second, a model-to-text transformation is
done to generate DD-LOTOS specification by using the EMF model and the Xpand tool
(https://eclipse. org/modeling/m2t/?project=Xpand).

The Xpand is a section of the Open Architecture Ware platform (OAW). It is used
for a model-to-text transformation (M2T). The selection of Xpand for generating code
is justified by its easiness and clarity of use, as well as its integration into the Eclipse
framework as a plug-in. It allows us to exploit the XMI format models created by the
EMF tool in the first step. It uses templates that control code generation. Our approach
helps developers to design multi-agent systems using the AGR model and then generate
the DD-LOTOS formal model for validation purposes.

Meta-modeling phase Transformation phase

Verification phase

AGR
Model

EMF

Conform to Code

generation

Transformation
M2T

AGR
Meta-Model

Xpand Template

DD-LOTOS
specification

s0start s1

s2s3

{φ} {x ≥ t1}

{y ≥ t5}{z ≥ t6}

a,Cφ ≥ d,x := 0

b,Cφ ≥ d

c,y ≥ t5 ,z := 0

a

a

Model-checker
UPPAAL

A [] not deadlock

Yes / No

Fig. 6. Proposed transformation approach.

5.1 The AGR meta-model

We have implemented our approach in the Eclipse platform, using especially EMF
(Eclipse Modelling framework) to develop the meta-model of the AGR model. EMF is
an environment specific for meta-modelling integrated into the Eclipse platform. It fa-
cilitates the construction of tools and applications based on structured data models. It is

A NEW FORMAL MULTI-AGENT ORGANIZATION BASED ON THE DD-LOTOS LANGUAGE 15

composed of a set of plug-ins, among these plug-ins we mention the Ecore meta-model,
which is used to describe EMF models. The AGR meta-model has an abstract syntax
that facilitates the specification of the static and dynamic aspects of the AGR model. By
having the AGR meta-model, the developer can generate different models specified in
the AGR formalism without understanding this meta-model. Since AGR models consist
of agents, groups, and roles, three main classes are proposed to meta-model the AGR:
”Agent”, ”Group”, and ”Role” to describe respectively agents, groups, and roles. A class
”Interaction” to describe interactions between agents. An interaction can occur between
different agents and is specified at the organizational level within roles. Each interaction
has one initiator role and one or more participating roles, as shown in Fig. 7. Further, two
classes ”dependency” and ”correspondence” are defined to describe types of structural
constraints that are imposed on agents. They inherit from a class ”RoleConstraint”. A
role specifies constraints, which an agent should satisfy to obtain a role. For this reason,
a structural constraint is described between roles in the meta-model. A class ”group-
Structure” describes groups, because each group is an instance of one group structure that
contains a set of roles.

After having developed the AGR meta-model, we are capable now, to generate DD-
LOTOS specifications by using the Xpand tool.

Fig. 7. The meta-model of the AGR model.

5.2 Model-to-Text (M2T) Transformation of the AGR model to DD-LOTOS
specification

The Model to Text transformation concentrate on the generation of code from de-
scribed models. There are two approaches to model-to-code transformation. Approaches

16 SAMRA SABEG, TOUFIK MESSAOUD MAAROUK, MOHAMMED EL HABIB SOUIDI

based on the principle of templates are currently the most used. The code generation typ-
ically uses templates. The template is a target code contains sections (parts) of the meta-
code executed during the instantiation of the source model to calculate variable parts.

In this phase of our approach, we explain code generation from EMF models using
Xpand templates. The process passes in three steps. First, we use the AGR model de-
scribed in the XMI model (an XML format to exchange models), which is conform to
the AGR meta-model implemented in Fig. 7 to write specification generation templates
(Fig. 8) in the .xpt file. Second, we use the Check language to specify some constraints
that the XMI model must satisfy to be correct. Specified constraints in the Check language
are stored in the .chk file. This file starts with an import of the meta-model according to
the format ”import metamodel; ”. Each constraint is specified in a context, which is a
meta-class of the imported meta-model, to which the constraint applies. Constraints can
be of two types: Warning or Error.

The following example shows an ”Error” constraint to verify that a group structure
is empty and must contain at least one role, for models conforming to the meta-model
”AGRModel”.

import AGRModel;
extension metamodel::Extensions;
context GroupStructure ERROR ”No roles defined in group-structure:” +gsName :
this.containeRole.exists(e| Role.isInstance(e));

Fig. 8. A template for DD-LOTOS code generation

Finally, we run the template to generate the specification. In the end, we should have
a specification generation. The specification is composed of a set of processes executed
in a concurrent way using parallel composition operators. Once we have a formal model
of the AGR model in the DD-LOTOS language, we will focus on the verification of the

A NEW FORMAL MULTI-AGENT ORGANIZATION BASED ON THE DD-LOTOS LANGUAGE 17

specified system with formal verification. For this reason, a semantic model specific
to the DD-LOTOS language called C-DATA is generated, which is an extension of the
timed automatons. We can use the UPPAAL model checker to check the properties of the
smooth behaviours; these properties are expressed in a temporal logic such as the TCTL
logic.

6. Case study

To illustrate the applicability of our approach, we show how a multi-agent system
designed by the AGR model is transformed into a DD-LOTOS specification to be checked
later using the UPPAAL model checker.

6.1 Description

We consider a well-known e-commerce example [11] that is an abstraction of a travel
agency example. Customers try to buy products from an agency via a brokering agent for
the agency. The system consists of three interacting group structures (Fig. 9). A group
structure of clients named ClientGS interacts with a brokering agent. A group structure
of providers, named ProviderGS interacts with a brokering agent, and a group structure
of contracts named ContractGS is created to establish a contract between client and
provider when a customer decides to buy the product.

To get the product, the client must join a client group and then requests the product
from the broker agent that resides in the same group. The broker (an agent that enacts
the broker role in both groups client and provider) diffuses a call for proposals to several
providers in the second group (Providers). Different proposals are presented to the client,
who decides and chooses one of them (this requires many interactions between broker
and providers). In that case, a contract group is established with two new roles Buyer
and Seller respectively enacted by the client and the selected provider. In this process,
we have used the organizational structure diagram (organizational level) to design this
organization using only organizational concepts (group structures, roles, and patterns
of activity). The use of organizational level is a new manner to describe two static and
dynamic aspects of the system. This level is responsible for representing the concrete
organization (agent level) abstractly, i.e. specifying the expected patterns of interactions
between roles in the organization.

6.2 Code generation

After specifying our e- commerce system example with the AGR model, we are now
capable to generate the DD-LOTOS specification by realizing the model-to-text transfor-
mation. First, we develop the EMF model representing our system. The model, which
is conforms to the AGR meta-model, presents the concrete organization of the system. It
is stored in the .xmi file. As shown in Fig. 10, the organization consists of three agent
groups: the Client group contains the client and broker agents, the Provider group con-
tains provider and broker agents, and the Contract group contains seller and buyer agents.
We define a correspondence constraint between the broker role in the Client group and
the broker role in the Provider group to identify a representative agent between the two
groups (an agent that plays the broker role in the Client group will automatically play

18 SAMRA SABEG, TOUFIK MESSAOUD MAAROUK, MOHAMMED EL HABIB SOUIDI

Fig. 9. Organizational structure diagram of an e-commerce example [11]

Fig. 10. XMI model of the AGR model

the same role in the Provider group). Second, the model-to-text transformation uses the
Xpand templates with the XMI model, generated by the EMF tool, to generate a specifi-
cation in the DD-LOTOS language. The transformation is obtained by a simple click on
the ’run’ button. Finally, a file with the .DDlotos extension is generated and contains the
DD-LOTOS specification (Fig. 11).

Each concept in the XMI model (agents, groups, roles, and interactions) is trans-
formed into its equivalent in the DD-LOTOS specification. In the generated textual spec-

A NEW FORMAL MULTI-AGENT ORGANIZATION BASED ON THE DD-LOTOS LANGUAGE 19

ification, three localities are generated from groups specified in the XMI model. These
localities are named Client, Provider, and Contract. The global behaviour expression of
the final specification is formalized from the composition of these localities using the
system composition operator | as follow: ClientGS(E) | ProviderGS(F) | ContratGS(P).

Agents playing roles are transformed into processes. These processes are composed
by using parallel composition operators to formalize the behaviour expressions (E, F , and
P) of each locality. Interactions between agents in the XMI model are transformed into
gates of generated processes. All roles specified in the XMI model describe the agents’
behaviours in the global specification. In our example, five sub-processes (behaviours)
are generated from roles that are: client, broker, provider, buyer, and seller. These sub-
processes are defined in the processes definitions section after the keyword ’where’ in the
specification. The final specification consists of a set of concurrent processes.

Once formal specification is generated in DD-LOTOS language, the final step will
focus on the verification of the smooth behaviour of the system using formal verification.
This last step will be carried out by calling the semantic model C-DATA with the UPPAAL
model checker to check some organization properties expressed in a temporal logic such
as the TCTL logic.

Fig. 11. The DD-LOTOS specification generated for the e-commerce system

7. Conclusion and future work

Several organizational models are used to design multi-agent systems. However,
these models lack formal semantics that can hinder the formal verification of these sys-
tems. Therefore, it is necessary to use formal methods with organizational models to

20 SAMRA SABEG, TOUFIK MESSAOUD MAAROUK, MOHAMMED EL HABIB SOUIDI

specify organizational multi-agent systems.
In the literature, several approaches have been proposed to address the lack of for-

mal semantics in the AGR model. The majority of these approaches define a mapping
between the AGR model and process algebras such as LOTOS, CCS, Petri nets, and their
extensions, as well as the rewriting logic and its formal language MAUDE. The main lim-
itation of these approaches is that they are defined on interleaving semantics, which does
not allow verifying properties concerning the durations of action executions.

In this paper, we defined formal semantics for the AGR organizational model using
the DD-LOTOS language that is defined on true concurrency. For this aim, we have pro-
posed an automatic model-to-text transformation approach that generates the DD-LOTOS
specification from the AGR model. The suggested approach permits capturing structural
and dynamic aspects of organizational multi-agent systems. This formalization enables
the creation of a formal model that can be used to validate specific organizational prop-
erties. We have used a set of tools in the Eclipse environment to automate this transfor-
mation. The EMF tool is used for the meta-modelling and the Xpand language is for the
generation of code from the AGR model. Finally, we have illustrated our transformation
approach through the e-commerce case study.

In future work, we intend to use this approach as a library to propose a generic ap-
proach that can be applied to other organizational models such as the AGRE and MOISE
models using new organizational concepts. In addition, we intend to use the C-DATA
(Communicating Durational Action Timed Automaton) semantics model, an interpreta-
tion model of the DD-LOTOS specifications in the verification and validation stage, to
verify some formal properties via model verification tools.

ACKNOWLEDGMENT

REFERENCES

1. N. R. Jennings, “An agent-based approach for building complex software systems,”
Communications of the ACM, Vol. 44, 2001, pp. 35–41.

2. M. Wooldridge, An introduction to multi-agent systems. John wiley & sons, 2009.
3. J. Ferber and G. Weiss, Multi-agent systems: an introduction to distributed artificial

intelligence. Addison-wesley Reading, 1999.
4. G. Picard, J. F. Hübner, O. Boissier, and M. P. Gleizes, “Reorganisation and self-

organisation in multi-agent systems,” in 1st International Workshop on Organiza-
tional Modeling, ORGMOD, 2009, pp. 66–80.

5. J. Upton, I. Janeka, and N. Ferraro, “The whole is more than the sum of its parts:
Aristotle, metaphysical,” Journal of Craniofacial Surgery., Vol. 25, 2014, pp. 59–63.

6. M. Wooldridge, N. R. Jennings, and D. Kinny, “The Gaia methodology for agent-
oriented analysis and design,” Autonomous Agents and multi-agent systems., Vol. 3,
2000, pp. 285–312.

7. K. S. Barber and C. Martin, “Dynamic reorganization of decision-making groups,”
in Proceedings of the fifth international conference on Autonomous agents, 2001, pp.
513–520.

A NEW FORMAL MULTI-AGENT ORGANIZATION BASED ON THE DD-LOTOS LANGUAGE 21

8. M. Kolp, P. Giorgini, and J. Mylopoulos, “Organizational patterns for early require-
ments analysis,” in International Conference on Advanced Information Systems En-
gineering, 2003, pp. 617–632.

9. N. R. Jennings, “On agent-based software engineering,” Artificial intelligence, Vol.
117, 2000, pp. 277–296.

10. B. Horling and V. Lesser, “Quantitative organizational models for large-scale agent
systems,” in International Workshop on Massively Multiagent Systems, 2004, pp.
121–135.

11. J. Ferber, O. Gutknecht, and F. Michel, “From agents to organizations: an organi-
zational view of multi-agent systems,” in International workshop on agent-oriented
software engineering LNCS, 2004, pp. 214–230.

12. J. Ferber, F. Michel, and J. Báez, “Integrating environments with organizations,” in
International workshop on environments for multi-agent systems, 2004, pp. 48–56.

13. J. F. Hübner, J. S. Sichman, and O. Boissier, “A model for the structural, functional,
and deontic specification of organizations in multi-agent systems,” in Brazilian Sym-
posium on Artificial Intelligence, 2002, pp. 118–128.

14. M. E. H. Souid, P. Songhao, L. Guo, and C. Lin, “Multi-agent cooperation pursuit
based on an extension of AALAADIN organisational model,” Journal of Experimen-
tal & Theoretical Artificial Intelligence, Vol. 28, 2016, pp. 1075–1088.

15. M. E. H. Souidi, A. Siam, and Z. Pei, “Multi-agent pursuit coalition formation based
on a limited overlapping of the dynamic groups,” Journal of Intelligent & Fuzzy Sys-
tems, Vol. 36, 2019, pp. 5617–5629.

16. E. Argente, V. Julian, and V. Botti, “Multi-agent system development based on or-
ganizations,” Electronic Notes in Theoretical Computer Science, Vol. 150, 2006, pp.
55–71.

17. C. G. Troya and M. A. Vallecillo, “A rewriting logic semantics for ATL,” Journal of
Object Technology, Vol. 150, 2011, pp. 1–29.

18. V. Hilaire, O. Simonin, A. Koukam, and J. Ferber, “A formal approach to design and
reuse agent and multiagent models,” in Agent-Oriented Software Engineering V: 5th
International Workshop, AOSE 2004, New York, NY, USA, July 19, 2004. Revised
Selected Papers 5, 2005, pp. 142–157.

19. V. Hilaire, P. Gruer, A. Koukam, and O. Simonin, “Formal specification approach
of role dynamics in agent organisations: Application to the Satisfaction-Altruism
Model,” International Journal of Software Engineering and Knowledge Engineering,
Vol. 17, 2007, pp. 615–641.

20. M. A. Laouadi, F. Mokhati, and B. H. Seridi, “ A formal framework for organization-
centered multi-agent system specification: A rewriting logic based approach,” Multi-
agent and Grid Systems, Vol. 13, 2017, pp. 395–419.

21. S. Abderrahim and R. Maamri, “A Category-theoretic Approach to Organization-
based Modeling of Multi Agent Systems on the Basis of Collective Phenomena and
Organizations in Human Societies,” Informatica, Vol. 42, 2018, pp. 563–576.

22. A. Boudjidj, E. Merah, and M. E. H. Souidi, “Towards a formal multi-agent organi-
zational modeling framework based on category theory,” Informatica, Vol. 45, 2021,
pp. 277–288.

23. T. M. Maarouk, D. E. Saidouni, and M. Khergag, “Dd-lotos : A distributed real time
language,” in Proceedings 2nd Annual International Conference on Advances in Dis-

22 SAMRA SABEG, TOUFIK MESSAOUD MAAROUK, MOHAMMED EL HABIB SOUIDI

tributed and Parallel Computing (ADPC 2011) Special Track: Real Time Embedded
Systems, 2011, pp. 45–50.

24. T. M. Maarouk, D. E. Saidouni, R. Mahdaoui, and H. Houassi, “Interpretation of DD-
LOTOS Specification by C-DATA,” Communications in Computer and Information
Science, Vol. 539, 2015, pp. 414–423.

25. O. Ormandjieva, J. Bentahar, J. Huang, and H. Kuang, “A Category-theoretic Ap-
proach to Organization-based Modeling of Multi Agent Systems on the Basis of Col-
lective Phenomena and Organizations in Human Societies,” Procedia Computer Sci-
ence, Vol. 52, 2015, pp. 538–545.

26. V. Hilaire, A. Koukam, P. Gruer, and J. P. Müller, “Formal specification and proto-
typing of multi-agent systems,” in International Workshop on Engineering Societies
in the Agents World, 2000, pp. 114–127.

27. G. Fayçal and A. Chaoui, “A graph transformation based approach for multi-agent
systems reorganization,” Multiagent and Grid Systems, Vol. 15, 2019, pp. 375–394.

28. A. C. Chaouche, A. E. Seghrouchni, J. M. Ilié, and D. E. Saidouni, “A dynamical
plan revising for ambient systems,” Procedia Computer Science, Vol. 32, 2014, pp.
37–44.

29. A. Belghiat and A. Chaoui, “A multi-paradigm approach to model and verify mobile
agent software systems.” Multiagent and Grid Systems, Vol. 14, 2018, pp. 337–356.

30. A. Boucherit, A. Khababa, and L. M. Castro, “Automatic generating algorithm of
rewriting logic specification for multi-agent system models based on petri nets,” Mul-
tiagent and Grid Systems, Vol. 14, 2018, pp. 403–418.

31. B. Hettige, A. S. Karunananda, G. Rzevski, and A. Meffre, “Masmt4: The agr or-
ganizational model-based multi-agent system development framework for machine
translation,” in Inventive Computation and Information Technologies: Proceedings
of ICICIT 2020. Springer Singapore, 2021, pp. 691–702.

32. H. Roussille, Ö. Gürcan, and F. Michel, “AGR4BS: A generic multi-agent organiza-
tional model for blockchain systems,” Big Data and Cognitive Computing, Vol. 06,
2021, p. 1.

33. H. A. Abbas, S. I. Shaheen, and M. H. Amin, “Organization of multi-agent systems:
an overview,” arXiv preprint arXiv:1506.09032., Vol. 4, 2015, pp. 46–57.

34. B. Horling and V. Lesser, “A survey of multi-agent organizational paradigms,” The
Knowledge engineering review, Vol. 19, 2004, pp. 281–316.

35. J. Ferber and O. Gutknecht, “A meta-model for the analysis and design of organiza-
tions in multi-agent systems,” in Proceedings international conference on multi agent
systems (Cat. No. 98EX160), 1998, pp. 128–135.

36. R. C. Patrice, N. Lachiche, P. Gançarski, A. Meffre, and C. Collet, “Generic ar-
chitecture for ambient intelligence based on an organizational centered multi-agent
approach,” in Proceedings of the 2012 ACM Conference on Ubiquitous Computing,
2012, pp. 786–789.

37. T. M. Maarouk, E. Merah, S. Ghaoui, and N. Rahabi, “Formal semantics and trans-
formation of BPMN models,” International Journal of Business Process Integration
and Management., Vol. 9, 2019, pp. 158–169.

38. T. M. Maarouk, M. E. H. Souidi, and N. Hoggas, “Formalization and Model Checking
of BPMN Collaboration Diagrams with DD-LOTOS,” Computing and Informatics,
Vol. 40, 2021, pp. 1080–1107.

A NEW FORMAL MULTI-AGENT ORGANIZATION BASED ON THE DD-LOTOS LANGUAGE 23

39. T. M. Maarouk, “Modèles formels pour la conception des systèmes temps réel,” 2012,
université Frères Mentouri-Constantine 1.

40. D. E. Saı̈douni and J. P. Courtiat, “Prise en compte des durées d’action dans les
algèbres de processus par l’utilisation de la sémantique de maximalité,” 2003, pro-
ceedings of CFIP.

Sabeg Samra She obtained her degree in Computer Sci-
ence from the Batna University, Algeria in 2006. She worked in
formal verification. She received her MSc in Computer Science
from the Khenchela University, Algeria in 2019. She is a PhD
student at the Khenchela University, Algeria.

Toufik Messaoud Maarouk is Lecturer in the Department
of Mathematics and Computer Science, Faculty of Sciences and
Technology, University of Khenchela, Algeria. He received his
Ph.D. in computer science from the Constantine University, Al-
geria, in 2012. His main areas of research include formal meth-
ods, concurrency theory, formal semantics and distributed com-
puting.

24 SAMRA SABEG, TOUFIK MESSAOUD MAAROUK, MOHAMMED EL HABIB SOUIDI

Mohammed El Habib Souidi is Lecturer in the Depart-
ment of Mathematics and Computer Science, Faculty of Sci-
ences and Technology, University of Khenchela, Algeria. He re-
ceived his Ph.D. in computer science from the Harbin Institute of
Technology (China), in 2017. His main areas of research include
multiagent task coordination, reinforcement learning, game the-
ory and path planning.

