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Spectrum-based fault localization (SBFL) is one of the most popular fault localization
techniques that uses coverage information and test results to calculate a suspicious score
for every program statement. The effectiveness of SBFL suffers from the occurrences of
coincidental correctness, which occurs when a fault is executed but no failure is detected.
Identifying coincidental correct (CC) test cases can be modeled as a classification problem.
Except in exceptional cases, proven identification of CC tests is not possible, so instead
of using 0/1 results, we propose a similarity-based approach to identify CC test cases. A
strategy is suggested to manipulate CC test cases for SBFL. In the first step, a low-cost
computational method is proposed to identify CC test cases based on the similarity of the
passed executions to the failed ones. Then, we proposed new similarity measures based on
the original ones (such as Jaccard similarity and Euclidean distance) and presented a method
to identify proven CC. Finally, a weighted CC test case manipulation strategy is proposed to
mitigate the negative impact of CC test cases in SBFL. We evaluated the proposed method
by conducting extensive experiments on 443 faulty versions of 13 popular subject programs,
containing artificial and real faults. The results show that the proposed method can improve
the accuracy of SBFL techniques with a very low computational cost.

Keywords: software debugging, spectrum-based fault localization, coincidental correct test
cases, similarity measures

1. INTRODUCTION

Software testing is the most popular method used for enhancing the quality of software
[1], and the most crucial step in it is software debugging. This step is much more
complicated and costly, especially for large and complex software [2]. Testing reveals
the presence of faults, while debugging locates and corrects faults in the program. When
software testing uncovers the faults, the software developer needs to localize the faulty
portions of code and correct them. Fault localization is the most expensive activity in
program debugging [3].
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One promising approach towards fault localization is Spectrum-Based Fault Localiza-
tion (SBFL) [4]. In SBFL, coverage information and test case results are used to calculate
the suspiciousness score of each program statement. The more suspicious a statement is,
the more likely it is to be faulty. A ranking list containing all ranked statements sorted by
their suspiciousness score is used for top-down checking by developers to locate faulty
statements. When the rank of the faulty statement is higher, the effort to locate it is less.

A coincidental correct (CC) test case executes the faulty elements of the program
under test (PUT) but does not reveal any failure. Such a test case reduces the effectiveness
of SBFL techniques because it is considered a passed test case. CCs are prevalent [5], and
when they are present, the faulty statement is likely to be ranked as less suspicious than
when they are not [6].

Several methods have been proposed to identify CCs based on different algorithms,
such as clustering algorithms, like k-means [6-13], and classification algorithms like
KNN [2, 14] and SVM [15, 16].

The insight behind the clustering method is that tests in the same cluster have similar
behaviors, and a passed test in a cluster with many failed tests is highly possible to be CC,
because it has the potential to execute faulty elements as those failed ones do [12]. To
identify CCs using the clustering method, it is common to use the execution profile of
each test as an object and the Euclidean distance as the distance function [2, 6-8, 14, 17,
18], but determining the appropriate number of clusters is challenging. A larger number
of clusters yield a higher rate of false negatives but a lower rate of false positives [12].
The main idea behind the clustering method is that the execution profile of a CC test is
similar to the execution profile of a failed test. Therefore, the CC probability (CC weight)
for a passed test can be considered as the degree of similarity between its execution profile
and the execution profile of failed test cases. By assigning weight to failed tests, they can
be more influential in ranking [19]. In this paper, we apply this method to passed test
cases and introduce a weighted CC test case manipulation strategy to mitigate the negative
impact of CC test cases.

The main contributions of this paper are as follows:

1. A low-cost similarity-based CC identification method is proposed.
2. Several new similarity measures are introduced based on the original ones.
3. We developed the method to identify proven CC test cases.
4. A new CC test case manipulation strategy (Weighted strategy) is introduced to

improve SBFL, and experimental results show that the effectiveness of SBFL is
enhanced.

The rest of this paper is organized as follows. Section 2 describes the background and
related works on SBFL and CC test case identification. Section 3 details the CC test case
identification and manipulation strategy. The experiment design and analysis of results are
shown in Section 4. Section 5 discusses threats to validity. Finally, Section 6 concludes
the paper and outlines future directions.

2. BACKGROUND AND RELATED WORK

In this section, we first mention the background of SBFL techniques. Then, we review
the proposed methods to reduce the negative impact of CC on SBFL.
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Table 1. ae f ,aep,an f and anp values for the statement st j.
Values
ae f = ∑t∈TF

e j
t

aep = ∑t∈TP
e j

t
an f = ∑t∈TF

(1− e j
t )

anp = ∑t∈TP
(1− e j

t )

Table 2. Four SBFL formulas.
Technique Formula
Tarantula Susp(si) =

ae f/
(
ae f +an f

)
ae f/

(
ae f +an f

)
+aep/(aep +anp)

Ochiai Susp(si) =
ae f√

(ae f +an f )×(ae f +aep)

DStar∗ Susp(si) =
a∗e f

aep+an f

Op Susp(si) = ae f −
ae f

aep+anp+1

2.1 Spectrum-Based Fault Localization

SBFL uses test case coverage, commonly known as Spectrum. Suppose PUT contains
n statements, which we call st1,st2, . . . ,stn. Also, we have a test suite T that comprises
m test cases t1, t2, ..., tm , where each test case consists of input parameters and expected
results. A test case is executed on the PUT and its output, known as the actual result,
is compared with the expected result. If the actual result is the same as the expected
result, the test case is labeled as a passed test case (P). On the other hand, if the actual
result is different from the expected result, the test case is labeled as a failed test case (F).
Therefore, the set of test cases in T is divided into two groups: TP for passed test cases and
TF for failed test cases. As shown in Fig. 1, the statement coverage of each test case ti can
be represented as an n-dimensional binary vector eti =< e1

ti ,e
2
ti , . . . ,e

j
ti , . . . ,e

n
ti > which is

called statement coverage vector (SCV) of ti. If the test case ti covers the jth statement,
the value of e j

ti is 1, otherwise, it is 0. In SBFL, four coefficients are used to calculate the
suspiciousness score of program statements. These coefficients are aep,anp,ae f and an f .
The first part of the subscript indicates whether the statement is executed (e) or not (n),
and the second one indicates whether the test case is passed (p) or failed ( f ). These values
are listed in Table 1.

Besides statement coverage, there are different types of elements to record test case
coverage information, such as call sequences [20], branches, du-pairs [21], statement
frequency [22], and the time of function calls [23].

There are different SBFL techniques in the literature. For instance, the suspiciousness
score calculation formulas of four popular SFBL techniques, namely Tarantula [24],
Ochiai [25], DStar∗ [26], and Op [27] are shown in Table 2. Ajibode et al. [28] defined
four new metrics from the program spectrum and then they combined these metrics to
propose a new heuristic SBFL formula (MECO).

To better illustrate how SBFL techniques work, consider the example shown in Fig.
1, which includes two seeded bugs in statements st3 and st6. The test suite contains 10 test
cases named t1 to t10. For each test case, inputs, expected result, actual result, statement
coverage vector, and test result are shown. Test results are labeled with P and F, which
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Name of test case t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Inputs
-2 -2 2 2 2 2 2 2 20 5
10 15 -3 13 -5 -3 -4 -3 -3 3
4 4 4 4 1 8 15 14 12 4

Expected Result 13 17 3 108 -4 7 -53 -35 -26 68
Actual Result 13 17 3 108 -4 7 -53 -35 24 71

TestProg(int a, int b, int c)
st1 { int r=0; 1 1 1 1 1 1 1 1 1 1
st2 if (a>0) 1 1 1 1 1 1 1 1 1 1
st3 {r=a*2; //correct: r=a+2 0 0 1 1 1 1 1 1 1 1
st4 if(b>0) 0 0 1 1 1 1 1 1 1 1
st5 r = r+a∗b∗ c; 0 0 0 1 0 0 0 0 0 1
st6 else if (c<10) // correct: c<13 0 0 1 0 1 1 1 1 1 0
st7 r = r+a∗b+ c; 0 0 1 0 1 1 0 0 0 0
st8 else r = r+a+b∗ c; 0 0 0 0 0 0 1 1 1 0
st9 }else r = a+b+ c; 1 1 0 0 0 0 0 0 0 0
st10 if (a+b<10) 1 1 1 1 1 1 1 1 1 1
st11 r++; 1 0 1 0 1 1 1 1 0 1
st12 printf(”%d”,r);} 1 1 1 1 1 1 1 1 1 1
Test Results (P: Passed , F:Failed , P*: Proven CC) P P P P P P P* P* F F

Fig. 1. A sample program with two seeded faults and a set of ten test cases.

Table 3. The suspiciousness and rank list of statements for the example in Fig. 1.
s# aep anp aep an f Ochiai Tarantula Dstar3

Susp Rank Susp Rank Susp Rank
st1 8 0 2 0 0.45 4 0.50 5 1.00 3
st2 8 0 2 0 0.45 4 0.50 5 1.00 3
st3 6 2 2 0 0.50 1 0.57 3 1.33 1
st4 6 2 2 0 0.50 1 0.57 3 1.33 1
st5 1 7 1 1 0.50 1 0.80 1 0.50 7
st6 5 3 1 1 0.29 9 0.44 9 0.17 9
st7 3 5 0 2 0.00 11 0.00 11 0.00 11
st8 2 6 1 1 0.41 8 0.67 2 0.33 8
st9 2 6 0 2 0.00 11 0.00 11 0.00 11
st10 8 0 2 0 0.45 4 0.50 5 1.00 3
st11 6 2 1 1 0.27 10 0.40 10 0.14 10
st12 8 0 2 0 0.45 4 0.50 5 1.00 3

means passed and failed, respectively. A proven CC test case is labeled with P*, which
refers to a passed test case that can be proven to be CC. More details on proven CC are
provided in Section 3.2.

The suspiciousness and rank of each statement calculated by the Ochiai, Tarantula,
and DStar3 formulas, for the example shown in Fig. 1, are presented in Table 3. The
fault localization accuracy of the DStar∗ is the best when parameter * is set to 3 [26]. In
Table 3, the Rank columns show the maximum number of statements that would have to
be examined if that statement were the first statement of that particular suspiciousness
level chosen for examination. In this case, for the faulty statement st3, Ochiai and DStar3

have better fault localization effectiveness than Tarantula and the faulty statement st6 is
ranked ninth by all three SBFL formulas.

2.2 Coincidental Correct Test Case

The Propagation-Infection-Execution (PIE) model proposed by Voas [29] emphasizes
that the occurrence of a failure must satisfy three conditions: (a) the faulty statement was
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executed, (b) the program has transitioned to an infectious state, and (c) the infection state
propagated to program output. Coincidental correctness occurs when condition (a) is met,
but condition (c) is not. There are two types of coincidental correctness: weak and strong.
In weak CC, execution of the faulty statement is met, whereas the infected state might or
might not met, whereas, in strong CC, both conditions are met [6]. Strong and weak CC
are prevalent [5, 30]. They have a destructive effect on fault localization [5, 29, 31].

Many researchers suggest different approaches to identify CC test cases and then try
to eliminate their adverse effects with cleansing or relabeling strategies. The cleansing
strategy is to remove identified CC test cases from the test set, and the relabeling strategy
is to label those test cases from passed to failed [9,12]. Both the cleansing strategy and the
relabeling strategy are based on the distinct result of CC classification. In the fuzzy-based
classification method, the possibility of CC test cases (CC weight) is given rather than 1 or
0. Therefore, Liu et al. [2, 14] proposed three fuzzy-based strategies to manipulate CC
test cases for SBFL. They redefined Ochiai [14] and DStar3 [2] with three fuzzy-based
strategies F − cleansing, F − relabelling and F − exchanging based on the coincidental
correct probability of each passed test case.

To identify CC test cases, several techniques, including unsupervised learning like
clustering [6, 7, 9, 10, 12, 13, 32] and supervised learning like support vector machines
(SVM) [15, 16] and K-nearest neighbors (KNN) [2, 14] are used to apply the similarity
metric to the CC identification problem. In clustering-based techniques, test cases are
grouped into different clusters using their structural execution profile, and K-means is
mainly employed as the clustering algorithm [6--13]. The insight behind cluster analysis is
that tests in the same cluster have similar behaviors. Thus, a passed test in a cluster with
many failed tests is highly possible to be coincidentally correct because it has the potential
to execute the faulty elements as those failed ones do [12]. Clustering-based techniques
suffer from the challenging task of selecting the number of clusters, and some researchers
set the number of clusters according to the size of the test set [9, 12]. Euclidean distance
has been widely used as the distance function for the clustering of test case execution
profile [6-8, 17].

Some researchers proposed different approaches to improve the effectiveness of
SBFL techniques in the presence of CC test cases. Bandyopadhyay and Ghosh [33]
present an approach to improve the effectiveness of SBFL by incorporating the relative
importance of different test cases in calculating suspiciousness scores. The importance
of a passing test case is proportional to its average proximity to the failing test cases.
Bandyopadhyay [34] assigns weights to passing test cases such that the test cases that are
likely to be coincidentally correct obtain low weights and finally defines the weighted
Ochiai formula. Zhou et al. [35] estimate the probability that coincidental correctness
(CCP) happens for each program execution using dynamic data-flow analysis and control-
flow analysis. Then, by changing the calculation of the values of some variables in the
Tarantula formula using CCP, they defined a new suspicious metric. Wang et al. [36]
refine code coverage of test runs using control- and data flow patterns prescribed by
different fault types. They conjecture that this extra information can strengthen the
correlations between program failures and the coverage of faulty program entities.

Metallaxis [37] is a fault localization approach based on mutation analysis that tries
to reduce the negative impact of CC on SBFL indirectly. The idea behind this method is
that mutants that are killed mainly through failing tests provide a good indication of the
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location of a fault. In order to reduce the overhead of mutation analysis, Papadakis and
Traon [38] proposed mutation-based fault localization, which uses a sufficient mutant set
to locate faulty statements efficiently. FCCI [18] models the CC identification process as
a decision-making system by constructing a fuzzy expert system and uses the Euclidean
similarity of passed executions to the failed ones as a factor to identify CC test cases.

Given the above discussion, clustering-based CC identification methods need to
measure the similarity between the execution profile of the passed and failed runs, and some
methods also need to assign weights to passed test cases based on the CC probability. The
SCV of a test case as its execution profile can be easily extracted with low computational
cost. Therefore, research on measuring the similarity between SCV of passed and failed
test cases seems necessary.

3. CC TEST CASE IDENTIFICATION AND MANIPULATION

3.1 Similarity-Based CC Test Case Identification

In data science, the similarity measure is often expressed as a number between zero
and one and gets a higher value when the data samples are more alike. Sometimes, the
measure of similarity is expressed as a distance (like Euclidean distance), and a large
distance means a low degree of similarity and vice versa.

We propose a similarity-based method to identify CC test cases and the SCV of each
test is regarded as an object. The insight behind our method is that a passed test whose
SCV is very similar to the SCV of a failed test is highly possible to be CC. Therefore, we
assign weight to a passed test (CC weight) based on its similarity (s method) to a failed test.
In Eq. (1), the CC weight of passed test case tp is calculated based on the failed test case t f
using Sim similarity measure. Using Eq. (2), we integrate the CC weights calculated for
test tp based on all failed test cases to calculate the CC weight of the passed test case tp.

wccs
(
tp|t f

)
= Sim(etp ,et f ) (1)

wccs(tp) = max
t f ∈TF

wccs(tp|t f ) (2)

Table 4 shows some similarity measures and some of them have been modified to be
useful for our method. Cosine similarity [39] measures the cosine of the angle between two
vectors projected in a multi-dimensional space. We use the original formula to calculate
the similarity between the two SCVs. The Euclidean distance [40] between two points
in Euclidean space is the length of a line segment between the two points. The original
formula has been modified to calculate a value in the interval [0,1]. A higher value means
more similarity.

Jaccard similarity [41] can be used to find the similarity between two sets. The
original formula is shown in Eq. (3), where A and B are two sets. We have modified the
original formula to be useful for calculating the similarity between two real vectors. For
this purpose, t-norm and s-norm operators related to fuzzy logic were used to calculate
the intersection and union of two vectors, respectively. In JaccardMM, Minimum and
Maximum for t-norm and s-norm are used, respectively. In JaccardAP, Algebraic Product
and Probabilistic SUM are used for t-norm and s-norm, respectively.
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Table 4. The similarity measures.
Name Method Explanation
Cosine Sim(x,y) = ∑xiyi√

∑x2
i

√
∑y2

i
Original

Euclidean Sim(x,y) = 1

1+
√
(xi−yi)

2
Modified to calculate similarity

JaccardMM Sim(x,y) = ∑min(xi,yi)
∑max(xi,yi)

Modified for real vector comparison

JaccardAP Sim(x,y) = ∑xiyi
∑xi+yi−xiyi

Modified for real vector comparison

J(A,B) =
|A∩B|
|A∪B|

(3)

3.2 Weighted and Proven CC Test Case Identification

In [14], the KNN algorithm is used to identify CC tests, and weighted Euclidean
distance is used as similarity measure, in which the weight value of each statement is
calculated by the Tarantula formula. We use this idea and introduce Eq. (4), which
calculate the CC weight of the passed test case tp based on the failed test case t f using
weighted similarity (ws method). In this Equation, w =

〈
w1,w2, ...,wk, ...,wn

〉
is a real

vector and the value of wk is the normalized suspicious score of statement stk, which is
calculated using a SBFL formula. To calculate the normalized wk, we divide the suspicious
score of stk by the maximum suspicious score. Eq. (6) shows the product of two real
vectors used in Eqs. (4) and (5).

wccws
(
tp|t f

)
= Sim(etp ×w,et f ×w) (4)

wccwps
(
tp|t f

)
= Sim(etp × et f ×w,et f ×w) (5)

x× y =
〈
x1 × y1,x2 × y2, ...,xn × yn〉 (6)

Each failed test case covers at least one faulty statement. Therefore, if a passed test case
covers all statements covered by a failed test case, such a passed test case must cover the
faulty statement, then it can be identified as a proven CC test case. As shown in Fig. 1, the
statements covered by the passed test case t7 or t8 include those covered by the failed test
case t9. Therefore, t7 and t8 are proven CC test cases. It is desirable to calculate the CC
weight of a proven CC equal to 1, but Eq. (4) does not necessarily calculate the value of 1
for a proven CC. We modify Eq. (4) and introduce Eq. (5), which is based on weighted
similarity and can identify proven CC (wps method). If the statements covered by test case
tp include all the statements covered by test t f , then the SCV of test case t f will act like a
mask and the relation etp × et f = et f will be established. As a result, Eq. (5) calculates the
maximum value of CC weight for the passed test case tp based on the failed test case t f .
Therefore, this equation has the ability to distinguish a proven CC test case.
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Table 5. CC weight calculation for passed test cases of program shown in Fig. 1.
Method t1 t2 t3 t4 t5 t6 t7 t8
s 0.33 0.31 0.37 0.50 0.37 0.37 0.50 0.50
ws 0.41 0.41 0.79 0.90 0.79 0.79 0.90 0.90
wps 0.41 0.41 0.80 0.90 0.80 0.80 1.00 1.00

Table 6. Modified inputs of the spectrum-based formula based on each manipulation
strategy.

F − cleansing F − relabeling F − exchanging F −deleting
aep aep − cce aep − cce aep − cce aep − cce
anp anp − ccn anp − ccn
ae f ae f + cce ae f + cce
an f an f + ccn

The CC weights of passed test cases for the sample program in Fig. 1 are shown in
Table 5. In this table the modified Euclidean similarity is used. The DStar3 formula is
used to calculate the normalized vector w. Normalized means that the suspicious score
is divided by the maximum suspicious score. According to the values of column DStar3
in Table 3, the vector w is < 0.75,0.75,1,1,0.375,0.125,0,0.25,0,0.75,0.11,0.75 >. All
three proposed methods have calculated more weight for CC test cases t3, t4, t5, t6, t7, t8.
Based on the wps method, the weights of proven CC tests t7 and t8 are calculated as 1.

3.3 Weighted CC Test Case Manipulation Strategy

CC weights of passed test cases must be integrated into calculating statement suspi-
ciousness in SBFL. Miao et al. [12] proposed two strategies for CC test case manipulation:
cleansing, and relabeling. The cleansing strategy is based on removing the identified CC
test cases from the test set, and relabeling strategy, flips these test cases from passed to
failed. Both strategies are based on the distinct results of CC classification.

To integrate CC weights of passed test cases in SBFL, Li et al. [14] introduced
three fuzzy-based strategies: F − cleansing, F − relabeling, and F − exchanging. Then,
they introduced three modified versions of the Ochiai formula based on these three strate-
gies. Li et al. [2] proposed a Fuzzy Weighted KNN algorithm (FW −KNN) to calculate
the CC probability (CC weight) of a passed test case and presented three modified ver-
sions of the DStar3 formula based on three strategies F − cleansing, F − relabeling, and
F − exchanging. We summarize their three strategies in Table 6 based on the modified
coefficients of the SBFL formula (No need to change the SBFL formula), and similarly,
a fourth strategy F −deleting can be introduced. The values of cce, and ccn, are shown
in Table 7. The cce is the sum of the CC weights of passed test cases that covered the
statement st j, and the ccn is the sum of the CC weights of passed test cases that did not
cover the statement st j. As shown in Table 6, for example, in the F −deleting strategy,
we replace the aep value with aep − cce and the anp value with anp − ccn. The values of
ae f and an f are calculated as usual.

In this paper, we introduce a new strategy for manipulating CC test cases based on
assigning weights (Weighted strategy) to passed test cases. The weight value depends
on the CC weight of the passed test case. First, using Eq. (7), we define a weight w(tp),
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Table 7. The values of cce and ccn for statement st j.
Values
cce = ∑tp∈TP

e j
tp
×wcc(tp)

ccn = ∑tp∈TP
(1− e j

tp
)×wcc(tp)

for each passed test case tp, which is inversely proportional to the CC weight of tp. This
weight is used in calculating the inputs of the SBFL formula. wcc(tp) is the CC weight of
this test case. wcc(t) is the CC weight of test case t, and |TP| is the number of passed test
cases. To calculate wcc(t) and wcc(tp), we can use any of the three proposed methods s,
ws, or wps.

Based on the Weighted strategy, to compute coefficient aep for a statement st j, we
calculate the sum of weights of passed tests in which it was executed, and to compute
coefficient anp, we calculate the sum of weights of passed tests in which it was not executed.
We call these modified coefficients aw

ep and aw
np, whose calculation methods are shown in

Eqs. (8) and (9), respectively.

w(tp) =
(1−wcc(tp))×|TP|
∑t∈TP(1−wcc(t))

(7)

aw
ep = ∑

t∈TP

e j
t ×w(t) (8)

aw
np = ∑

t∈TP

(1− e j
t )×w(t) (9)

For example, with the data of Table 5, using the wps method, the weights for tests
t1 − t8 are 2.52, 2.52, 0.85, 0.41, 0.85, 0.85, 0, and 0 respectively. The aw

ep values for
statements st1 − st12 of Fig. 1 are 8, 8, 2.97, 2.97, 0.41, 2.56, 2.56, 0, 5.03, 8, 5.07, and 8
respectively. The greater weights of t1 and t2 compared to the weights of t7 and t8 lead
the aw

ep for the statement st9 being greater than the aw
ep for the statement st8, and this is

desirable because t7 and t8 are CC tests. The aw
np values can be calculated using Eq. (9), or

we can simply use |TP|−aw
ep, since the total number of weights is equal to |TP| (According

to Eq. (7)). Table 8 shows the statement suspiciousness and ranking of Tarantula for the
sample program in Fig. 1, before and after identifying CC test cases using the combination
of wps method and Euclidean similarity measure. As can be seen, the wps method has
led to assigning the rank of 5 to the faulty statement st6, which performs better compared
to the rank of 9 in the original Tarantula.

4. EXPERIMENT AND RESULTS ANALYSIS

4.1 Research Questions

We hope that s, ws, and wps will provide a useful measure for assigning CC weights
to the passed test cases to improve SBFL. The empirical study is conducted to address the
following research questions:



10 M. M. ESTESNAEI, S. ARABAN, A. HARATI

Table 8. The suspiciousness and rank list of statements for the example in Fig. 1
using: Weighting strategy, wps Method with Euclidean similarity and comparison
with the original Tarantula.

s# aw
ep aw

np ae f an f Tarantula Tarantula (wps)
Susp Rank Susp Rank

st1 8.00 0.00 2 0 0.50 5 0.50 6
st2 8.00 0.00 2 0 0.50 5 0.50 6
st3 2.97 5.03 2 0 0.57 3 0.73 3
st4 2.97 5.03 2 0 0.57 3 0.73 3
st5 0.41 7.59 1 1 0.80 1 0.91 2
st6 2.56 5.44 1 1 0.44 9 0.61 5
st7 2.56 5.44 0 2 0.00 11 0.00 11
st8 0.00 8.00 1 1 0.67 2 1.00 1
st9 5.03 2.97 0 2 0.00 11 0.00 11
st10 8.00 0.00 2 0 0.50 5 0.50 6
st11 5.07 2.93 1 1 0.40 10 0.44 10
st12 8.00 0.00 2 0 0.50 5 0.50 6

• RQ1: Compared to the state-of-the-art weighted fuzzy classification approach
(FW −KNN), are our proposed methods better in terms of classification metrics?

• RQ2: Does similarity-based CC test case identification improve the performance of
SBFL techniques to locate faults?

• RQ3: Which method, similarity measure and strategy have better results in terms of
fault localization metrics?

• RQ4: Compared to FW −KNN, which combination is better in terms of fault
localization metrics?

To implement FW −KNN, weighted Euclidean is used as the similarity measure,
where the suspicious value of a statement is considered as the weight of this state-
ment. The suspicious value of each statement is calculated with DStar3 as in
the original paper. To compare our method with FW −KNN, we used Ochiai to
calculate the statement weights in ws and wps methods.

4.2 Subject Programs

The empirical study is conducted on 13 open source and popular programs, including
seven programs from Siemens [42] and six programs from Defects4j suite [43] as the
subject programs. They have been widely used to evaluate fault localization techniques
[18,26,27,42,44--46] and CC identification approaches [2,6,8,11,12,14,15,18,47]. Table
9 shows the subject programs and related versions. The Siemens suite is downloaded
from the Software-artifact Infrastructure Repository (SIR1), which contains seven small-
sized programs with seeded faults. Gcov (GNU call-coverage profiler) is used to collect
the statement coverage information of test cases. Some versions were discarded due to
compiler error or segment error because it is not possible to extract the statement coverage

1http://sir.unl.edu: University of Nebraska.
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Table 9. Subject programs.

Program
Faulty

versions LOC #Tests
#Passed Testes #CC Testes Fault

type
All Used Max Ave Max Ave

printtokens 7 6 565 4130 4124 4060 4042 2502 Seeded
printtokens2 10 7 510 4115 4082 3891 3606 1413 Seeded
schedule 9 5 374 2650 2643 2561 2627 1641 Seeded
schedule2 10 9 307 2710 2710 2680 2636 2500 Seeded
tcas 41 38 173 1608 1607 1568 1577 1043 Seeded
tot info 23 20 412 1052 1050 964 1047 680 Seeded
replace 32 29 563 5542 5542 5437 5211 2272 Seeded
Apache commons-lang 65 50 22K 2245 2240 1745 14 9 Real
Apache commons-math 106 75 85K 3602 3599 2476 57 15 Real
Mockito framework 38 33 23K 1457 1450 1104 218 90 Real
Joda-Time 27 27 28K 4130 4084 3816 242 92 Real
JFree Chart 26 19 96K 2205 2186 1790 43 19 Real
Closure compiler 133 125 90K 7927 7876 6602 4124 608 Real

Predicted
Positive Negative

Actual
Positive T P:True Positive FN: False Negative
Negative FP: False Positive T N: True Negative

Fig. 2. Confusion matrix.

of test cases. We also used Defects4J (one of the largest available datasets of Java defects)
for which coverage information (spectrum) is available [48]2. In this dataset, we excluded
versions that did not have a failed test or CC.

4.3 CC Test Case Identification Results

Some metrics that are commonly used to evaluate the performance of the binary
classification algorithm, which are calculated based on the confusion matrix as shown in
Fig. 2. For CC test case identification problem, True Positive (T P) indicates the number
of CC test cases classified accurately, False Positive (FP) is the number of actual passed
test cases classified as CC, False Negative (FN) means the number of actual CC test cases
classified as passed test cases and True Negative (T N) shows the number of actual passed
test cases classified accurately.

Instead of binary classification, we assign a CC weight to a passed test case. Table 10
shows how to calculate T P, FP, FN and T N values, where TP is the set of all passed test
cases, TCC is the set of actual CC test cases, which is a subset of TP, and wcc(t) is the CC
weight calculated for passed test case t. It should be noted that wcc(t) is in the range of
[0,1], and a higher value indicates that the passed test is more likely to be CC. To evaluate
the effectiveness of s, ws and, wps methods in terms of identifying CC test cases, we use
the following measurement metrics:

Precision =
T P

T P+FP
(10)

2https://bitbucket.org/rjust/fault-localization-data
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Table 10. TP, FP, FN and TN values for weight-based evaluation.
Values
T P = ∑t∈TCC

wcc(t)
FP = ∑t∈TP−TCC

wcc(t)
FN = ∑t∈TCC

(1−wcc(t))
T N = ∑t∈TP−TCC

(1−wcc(t))

Table 11. Comparison of classification evaluation metrics.
CC weighting approach

Precision Recall F −Measure Accuracy AUC
Similarity Method
Cosine s 0.3752 0.8431 0.5193 0.4752 0.7354

ws 0.4491 0.7527 0.5626 0.6064 0.7964
wps 0.4493 0.7655 0.5662 0.6056 0.7980

Euclidean s 0.5985 0.2035 0.3037 0.6863 0.7178
ws 0.4421 0.3826 0.4102 0.6301 0.7014
wps 0.4774 0.4498 0.4631 0.6494 0.7216

JaccardMM s 0.4019 0.7432 0.5216 0.5417 0.7329
ws 0.4290 0.7612 0.5488 0.5791 0.7827
wps 0.4290 0.7853 0.5549 0.5763 0.7883

JaccardAP s 0.4019 0.7432 0.5216 0.5417 0.7329
ws 0.6414 0.2142 0.3212 0.6955 0.7645
wps 0.6447 0.2226 0.3310 0.6974 0.7655

FW −KNN 0.9639 0.0121 0.0240 0.0240 0.6858

Recall =
T P

T P+FN
(11)

F −mesure =
2×Precision×Recall

Precision+Recall
(12)

Accuracy =
T P+T N

T P+T N +FP+FN
(13)

The ROC curve (receiver operating characteristic curve) is created by plotting the
true positive rate (T PR) against the false positive rate (FPR) at various threshold settings.
T PR is also known as Recall and FPR is the proportion of negative examples predicted
incorrectly, both of them have a range of 0 to 1. Below are the formulas:

T PR =
T P

T P+FN
(14)

FPR =
FP

FP+T N
(15)

AUC (area under the curve) is the area under the ROC curve, which is an evaluation
metric for measuring the performance of any classification model. The higher the AUC,
the better the performance of the model at distinguishing between the two classes. The
ideal AUC value is 1. Higher values of Precision, Recall, F −measure, Accuracy, and
AUC indicate a better classification approach, and values range from 0 to 1.
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Table 12. The CNSE of Op for different CC weighting approaches (the CNSE of
original Op = 498459).

CC weighting approach
Weighted F −deleting F − cleansing F − relabeling F − exchanging

Similarity Method
Cosine s 480228 480228 481432 1046768 1046503

ws 484860 484860 484136 1017113 1016621
wps 483783 483781 483162 1018375 1017881

Euclidean s 494051 494051 494050 835673 835342
ws 492171 492170 492174 982319 980898
wps 492282 492279 492294 982271 980724

JaccardMM s 482058 482058 483533 1014830 1014589
ws 483625 483625 483246 1029240 1029037
wps 482309 482305 481862 1032040 1031792

JaccardAP s 482058 482058 483533 1014830 1014589
ws 493978 493978 493979 829239 830110
wps 493980 493980 493983 830595 831530

FW −KNN 499645 497418 497408 480783 480785

The empirical study is conducted on 443 versions of 13 subject programs listed in
Table 9. To answer RQ1, three CC test case identification methods (s, ws and wps ) were
applied, and the CC weight of each passed test case was calculated. Table 11 presents the
results of the classification evaluation metrics for CC test case identification, and bold
data indicate the best results. The results are very close to each other. However, in all the
similarity measures, the wps method is always the best in the three metrics. For example,
in Cosine similarity, the wps method has the highest value in three measures: Precision,
F −Measure and, AUC. The last row of Table 11 presents the results for the FW −KNN
method [2]. The Precision value of FW −KNN method is higher than our proposed
methods. FW −KNN calculates the most K similar test cases as k-nearest neighbors and
uses the ratio of failing of k-nearest neighbors to compute the CC weight of a passed test
case. Any passed test cases in k-nearest neighbors that are not proven CC, are considered
passed. Therefore, the FW −KNN method is very cautious in identifying the CC test,
and as a result, the Precision value is too high and the Recall value is too low. Other
evaluation metrics are also lower in the FW −KNN method compared to the proposed
methods.

4.4 Fault Localization Results

To evaluate the performance of a fault localization technique, we use three metrics:
CNSE, EXAM and, Accuracy (acc@n).

The Cumulative Number of Statements Examined (CNSE metric) [26] is calculated
by Eq. (16). In this equation, SP is the set of all subject programs, FV (pr) is the set of all
faulty versions of subject program pr and FL(v) is the number of statements that must be
examined to locate all faults in the faulty version v. A lower CNSE value means a better
fault localization technique.

CNSE = ∑
pr∈SP

∑
v∈FV (pr)

FL(v) (16)

The EXAM [49] is the percentage of code that has to be examined before a given bug
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Table 13. The CNSE of Ochiai for different CC weighting approaches (The CNSE of
original Ochiai = 603724).

CC weighting approach
Weighted F −deleting F − cleansing F − relabeling F − exchanging

Similarity Method
Cosine s 604517 604802 604802 479597 1010265

ws 603386 605575 605575 419936 957121
wps 604904 606924 606924 410017 959225

Euclidean s 603477 603471 603471 385173 637612
ws 602847 603011 603011 407058 893008
wps 603312 603453 603453 405027 888574

JaccardMM s 604753 604756 604756 464947 961601
ws 604515 606800 606800 456835 986622
wps 604648 606737 606737 442615 991657

JaccardAP s 604753 604756 604756 464947 961601
ws 603314 603502 603502 384942 647555
wps 603322 603509 603509 385748 652592

FW −KNN 606138 604061 604061 565973 565886

Table 14. The CNSE of Tarantula for different CC weighting approaches (The CNSE
of original Tarantula = 609834).

CC weighting approach
Weighted F −deleting F − cleansing F − relabeling F − exchanging

Similarity Method
Cosine s 607967 607967 609686 907988 460957

ws 608473 608473 609247 935047 455698
wps 607809 607821 609126 930190 425754

Euclidean s 609505 609505 609601 773912 358142
ws 609284 609284 608138 909577 405591
wps 609556 609556 608345 912740 370251

JaccardMM s 608239 608239 609200 905381 459221
ws 608437 608437 609068 924791 480421
wps 607895 607895 609204 920581 455250

JaccardAP s 608239 608239 609200 905381 459221
ws 609492 609492 609642 781365 374567
wps 609345 609345 609663 788621 372740

FW −KNN 612452 612452 609826 572253 573978

Table 15. The CNSE of DStar3 for different CC weighting approaches (The CNSE of
original DStar3 = 607459).

CC weighting approach
Weighted F −deleting F − cleansing F − relabeling F − exchanging

Similarity Method
Cosine s 606311 610212 610212 918744 1045397

ws 610466 613331 613331 902625 1014880
wps 628961 631459 631459 906587 1016114

Euclidean s 607157 607192 607192 734333 794864
ws 606762 606899 606899 915440 968651
wps 606839 606980 606980 908422 968391

JaccardMM s 606006 608861 608861 887750 1011938
ws 606359 609509 609509 914147 1027415
wps 606583 609711 609711 911022 1030187

JaccardAP s 606006 608861 608861 887750 1011938
ws 607212 608738 608738 732952 790425
wps 607223 608739 608739 735049 795939

FW −KNN 609951 607716 607716 571346 572974
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is detected and is computed based on the ranking of all statements. The EXAM is defined
in Eq. (17), and a lower EXAM value means a better fault localization technique. The
average EXAM (AvgEXAM) of all faulty versions of programs in the dataset is calculated
by Eq. (18). In this equation, pr is the number of faulty versions of program pr.

EXAM =
# o f statements examined to f ind all f aults

# o f all program statements
×100% (17)

AvgEXAM =
∑pr∈SP ∑v∈FV (pr) EXAM(v)

∑pr∈SP pr
(18)

Accuracy (acc@n) counts the number of successfully localized faults within the top-n
positions of the ranked lists [50]. A higher acc@n value means a better fault localization
technique.

To answer RQ2 and RQ3, the CNSE results for proposed methods with different
strategies, based on different similarity measures, for Op, Ochiai, Tarantula and DStar3

formulas are shown in Tables 12, 13, 14, and 15, respectively. Bold data show that
according to the CNSE metric, the fault localization method performed better than the
original formula. We can get the following observations for the four SBFL formulas:

1. Op formula: Weighted, F −deleting, and F − cleansing strategies always improve
SBFL.

2. Ochiai formula: F − relabeling strategy always improves SBFL. Euclidean simi-
larity always improves SBFL, except in the F − exchanging strategy. Combining
JacardAP similarity with ws or wps methods always improves SBFL except in the
F − exchanging strategy.

3. Tarantula formula: Except for the F − relabeling strategy, an improvement is
always observed in SBFL.

4. DStar3 formula: Euclidean similarity always improves SBFL except in the F −
relabeling and F − exchanging strategies. Weighting strategy always improves
SBFL except in the Cosine Similarity.

The FW −KNN always outperforms the original SBFL formula in strategies F −
relabeling and F − exchanging.

To better answer RQ3, we summarize the data in Tables 12, 13, 14, and 15. Table 16
shows the percentage of times that combining a method and a similarity measure improves
the original SBFL. For example, consider the value 45% at the intersection of the s row
and the Cosine column in Table 16. The first rows of Tables 12, 13, 14, and 15 show the
CNSE values for combining method s with five strategies using Cosine similarity. There
are 20 values in these four tables and, 9 values are bold. Therefore, the percentage of times
that combining the s method with the Cosine similarity improves the original SBFL is 45%.
In Table 16, the values in the Euclidean column are the largest values. The results show
that regardless of the method, Euclidean similarity performs better than other similarity
measures. JaccardAP is also in second place. In each column, the maximum value can be
seen in the ws row, which shows that this method has the best performance.
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Table 16. The percentage of times that SBFL is improved by combining different
methods with different similarity measures.

Method Cosine Euclidean JaccardMM JaccardAP
s 45% 70% 45% 45%
ws 45% 70% 45% 60%
wps 40% 70% 45% 60%

Table 17. The percentage of times that SBFL is improved by combining different
methods with different strategies.

Method Weighted F −deleting F − cleansing F − relabeling F − exchanging
s 81.25% 62.50% 62.50% 25.00% 25.00%
ws 87.50% 68.75% 68.75% 25.00% 25.00%
wps 81.25% 68.75% 68.75% 25.00% 25.00%

Table 17 shows the percentage of times that combining a method and a strategy
improves the original SBFL. In Tables 12, 13, 14, and 15, CNSE values for the combination
of wps method and Weighted strategy are shown at the intersection of wps rows and
Weighted columns. There are 16 values in these four tables and 13 values are bold.
Therefore, the percentage of times that combining the wps method with the Weighted
strategy improves the original SBFL is 81.25%. In Table 17, this value is located at the
intersection of the wps row and the Weighted column. In each row, the largest value
belongs to the Weighted column, which means that the Weighted strategy performs better
than the other strategies. In each column, the maximum value can be seen in the ws row,
which shows that this method has the best performance. wps is also in second place.

Table 18 shows the percentage of times combining a similarity measure and a strategy
improves the original SBFL. The largest value in each row belongs to the Weighted column.
The largest value in each column belongs to the Euclidean row, and JaccardAP ranks
second.

The following results can be summarized from the above discussion:

1. It seems that the ws and wps methods perform better than the s method, and the best
result belongs to the ws method.

2. Overall, the Weighted strategy shows better results than the other four strategies.

3. It seems that Euclidean and JacardAP are better similarity measures to identify CC
test cases.

Table 18. The percentage of times that SBFL is improved by combining different
similarity measures with different strategies.

Similarity Weighting F −deleting F − cleansing F − relabeling F − exchanging
Cosine 66.67% 50% 50% 25% 25%
Euclidean 100% 100% 100% 25% 25%
JaccardMM 75% 50.00% 50% 25% 25%
JaccardAP 91.67% 66.67% 66.67% 25% 25%
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Table 19. Comparison of Ews method with FW −KNN based on CNSE metric.
Formula Method Weighted F −deleting F − cleansing F − relabeling F − exchanging
Op Ews 492171 492170 492174 982319 980898

FW −KNN 499645 497418 497408 480783 480785
Ochiai Ews 602847 603011 603011 407058 893008

FW −KNN 606138 604061 604061 565973 565886
Tarantula Ews 609284 609284 608138 909577 405591

FW −KNN 612452 612452 609826 572253 573978
DStar3 Ews 606762 606899 606899 915440 968651

FW −KNN 609951 607716 607716 571346 572974

Table 20. Comparison of Ews method with FW −KNN based on AvgEXAM metric.
Formula Method Weighted F −deleting F − cleansing F − relabeling F − exchanging
Op Ews 10.22% 10.22% 10.22% 32.45% 32.42%

FW −KNN 10.50% 10.31% 10.30% 11.60% 11.60%
Ochiai Ews 11.09% 11.05% 11.05% 11.58% 27.68%

FW −KNN 11.48% 11.29% 11.29% 11.28% 11.16%
Tarantula Ews 12.39% 12.39% 12.79% 26.38% 13.90%

FW −KNN 12.66% 12.66% 12.47% 12.90% 12.67%
DStar3 Ews 10.63% 10.63% 10.63% 26.94% 30.18%

FW −KNN 10.94% 10.75% 10.75% 10.65% 10.69%

Table 21. Comparison of Ews method with FW −KNN based on acc@1 metric.
Formula Method Weighted F −deleting F − cleansing F − relabeling F − exchanging
Op Ews 9 9 9 0 0

FW −KNN 9 9 9 7 7
Ochiai Ews 7 7 7 8 0

FW −KNN 7 7 7 7 8
Tarantula Ews 8 8 8 8 8

FW −KNN 8 8 8 8 8
DStar3 Ews 8 8 8 2 0

FW −KNN 8 8 8 9 9

Table 22. Comparison of Ews method with FW −KNN based on acc@3 metric.
Formula Method Weighted F −deleting F − cleansing F − relabeling F − exchanging
Op Ews 40 40 40 0 0

FW −KNN 37 37 38 29 29
Ochiai Ews 35 35 35 36 5

FW −KNN 32 32 32 30 31
Tarantula Ews 32 32 31 21 31

FW −KNN 29 29 30 28 28
DStar3 Ews 37 37 37 9 0

FW −KNN 34 34 34 30 30
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Table 23. Comparison of Ews method with FW −KNN based on acc@5 metric.
Formula Method Weighted F −deleting F − cleansing F − relabeling F − exchanging
Op Ews 62 62 62 3 3

FW −KNN 61 61 61 45 45
Ochiai Ews 56 56 56 51 10

FW −KNN 54 54 54 52 53
Tarantula Ews 51 51 51 29 42

FW −KNN 48 48 48 43 44
DStar3 Ews 57 57 57 15 5

FW −KNN 56 56 56 54 54

Table 24. Comparison of Ews method with FW −KNN based on acc@15 metric.
Formula Method Weighted F −deleting F − cleansing F − relabeling F − exchanging
Op Ews 120 120 120 17 17

FW −KNN 119 119 119 104 104
Ochiai Ews 108 108 108 100 31

FW −KNN 107 107 107 105 104
Tarantula Ews 102 102 100 56 89

FW −KNN 101 101 100 89 95
DStar3 Ews 111 111 111 34 26

FW −KNN 109 109 109 105 104

According to the above discussion, the combination of Euclidean similarity with the
ws method (Ews) calculates a better CC weight for a passed test case. To answer RQ4, an
empirical study is conducted to compare CC test case identification effectiveness between
Ews and FW −KNN. The results are shown in Tables 19, 20, 21, 22 23, and 24. Table 19
shows the comparison of the CNSE metric between Ews and FW −KNN. Better results
are shown in bold. In all four formulas, Ews has better results than FW −KNN in three
strategies: Weighted, F −deleting, and F − cleansing. There are 20 comparisons in this
table, 13 of which are bold in the Ews rows. This result shows that in 65% of the cases,
Ews performed better than FW −KNN.

Table 20 shows the comparison of the AvgEXAM metric between Ews and FW −
KNN. Better results are shown in bold. There are 20 comparisons in this table, 11 of
which are bold in Ews rows. This result shows that in 55% of the cases, Ews performed
better than FW −KNN.

Tables 21, 22, 23 and 24 present the results of acc@1, acc@3, acc@5 and acc@15
metrics, respectively. A higher value indicates a better fault localization technique. Better
results are shown in bold. The results of acc@1 metric are slightly different from other
results. Table 21 shows that our method and FW −KNN have the same results in three
strategies Weighted, F − deleting, and F − cleansing. In most cases, the FW −KNN
method performs better than our method in F − relabeling and F − ecchanging strate-
gies. The results of Tables 22, 23, and 24 show that in 65%, 60% and 55% of cases,
Ews performed better than FW −KNN based on acc@3, acc@5 and acc@15 metrics,
respectively.

The results of Tables 19, 20, 22, 23, and 24 have significant similarities. These results
show that in terms of different evaluation metrics, the Ews method performs better with
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strategies Weighted, F −deleting, and F −cleansing. Also, two strategies F − relabeling
and F − exchanging give better results with FW −KNN.

5. THREATS TO VALIDITY

The main threats to the external validity of our approach, which address the ability to
generalize our results and empirical findings, are related to the choice of subject programs
and fault types. As explained in Section 4.2, we chose a set of 13 open source and popular
subject programs widely used in the literature. These programs differ significantly in terms
of size, functionality, number of faulty versions, types of faults, and number of test cases.
All of the faults in the Siemens suite’s programs are hand-seeded. Artificial faults may not
represent the characteristics of real faults. Therefore, we used 6 programs from Defects4J,
which contained real world open source programs with real faults. All this allows us better
to generalize the findings and results of this paper. However, conducting experiments on
more applications can better evaluate the effectiveness of our methods.

The threat to construct validity is related to the measurements of the results. We
predict a continuous value as the CC weight of a passed test case, so we treat the CC test
case identification problem as a regression problem. In terms of CC test case identification
accuracy, we use five metrics to evaluate the effectiveness of the proposed methods. The
critical question is whether improving which of these metrics has a more significant effect
on improving the accuracy of fault localization. We intend to answer this question in our
future work. In terms of fault localization accuracy, we use the CNSE, EXAM, and acc@n
metrics to compare the proposed methods with FW −KNN. CNSE, EXAM, and acc@n
may not be the best metrics to compare the effectiveness of fault localization techniques.
In future work, we plan to use more metrics to measure the experimental results.

The threats to the internal validity of our approach are as following:

• A test oracle is available, and test case execution results can be marked as passed or
failed.

• The faults must be deterministic, meaning that the execution results (success or
failure) of the test cases are not affected by the run-time environment.

These two assumptions have been accepted in many studies and the threats appear to
be limited.

6. CONCLUSION AND FUTURE WORKS

Spectrum-based fault localization (SBFL) techniques use test results and the coverage
information of test executions to identify the faulty elements of a program. Coincidentally
correct test cases are those that execute faulty statements but do not cause failures. Such
test cases reduce the effectiveness of SBFL techniques. It is essential to identify CC test
cases and eliminate their destructive effects. A proven CC test case is a passed test case
that can be proved as CC, but other passed test cases have the possibility to be CC.

To identify the CC test case, we assign a weight to each passed test case and hope that
a greater weight is calculated for the actual CC. The weight is calculated by comparing the
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coverage information of a failed and passed test case using similarity measures. We also
proposed two new similarity measures (JaccardMM and JaccardAP). Then we improved
the method by calculating weights for program elements and using the similarity measures
in a way that can identify proven CC. Finally, to reduce the negative impact of CCs,
we proposed the Weighted strategy to manipulate the CC weights of passed test cases in
SBFL.

A comprehensive empirical study is conducted on 443 faulty versions of 13 subject
programs, and the results show that: 1) In most cases, combining similarity-based CC test
case identification and the Weighted strategy can improve SBFL. 2) Proposed similarity
measure (JacardAP) and Euclidean similarity are two proper similarity measures to
identify CC test cases. 3) The proposed CC test case manipulation strategy (Weighted
strategy) seems to give better results compared to other strategies.

Research on test case generation and selection techniques has shown that using certain
test cases can lead to more effective fault localization than others [33, 51]. Therefore,
assigning weights to passed test cases can improve SBFL. In our future work, we are going
to investigate the effect of integrating our proposed CC test case weighting methods with
other passed test case weighting methods on the accuracy of the SBFL.
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