
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING XX, XXXX-XXXX (2016)
DOI: XX.XXX.XXXX.XX

An Enhanced Software Reliability Growth Model
Considering Dynamic Fault Removal Efficiency and

Residual Error Change Rate∗

UMASHANKAR SAMAL+, AJAY KUMAR
Department of Engineering Sciences

Atal Bihari Vajpayee Indian Institute of Information Technology and Management
Gwalior, India

E-mail: umashankar@iiitm.ac.in

In our fast-paced modern world, software systems have become indispensable in both
personal and professional spheres. With increasing reliance on software products, the de-
mand for reliable and high-quality software has intensified, placing significant pressure on
developers to stay competitive. Software reliability growth models (SRGMs) play a vital
role in assessing the dependability of software systems during their development. These
models mathematically analyze the relationship between detected faults, testing time, and
failures, enabling the prediction of software failures. This paper introduces an approach to
software reliability evaluation, considering the dynamic nature of fault removal efficiency
(FRE) during development. Additionally, the model accounts for the change rate of residual
errors, considering both error introduction and correction processes. Moreover, the adop-
tion of S-shaped curves captures the learning process of software developers, enhancing the
model’s accuracy. This approach guides software developers to make informed decisions,
leading to improved software reliability and performance, meeting escalating demands.

Keywords: Software reliability growth model, non-homogeneous Poisson process, fault
removal efficiency, mean value function, residual error

1. Introduction

In the modern era, software systems have become indispensable in our lives, per-
meating both personal and professional spheres. From smartphones and smart home
devices to critical banking and financial systems, our reliance on software products is
ever-increasing. As the demand for dependable software rises, developers face mounting
pressure to deliver high-quality and reliable products to stay competitive in the market.

Software reliability models play a critical role in assessing the dependability of soft-
ware systems throughout their development process. The ultimate goal is to ensure that
the software performs without failure within specified time frames and under predefined
conditions [1]. These models achieve this by mathematically analyzing the relationship
between the number of faults detected and removed, or failures experienced, and the test-
ing time. Such mathematical frameworks are commonly referred to as software reliability

Received ** **, 2014; revised ****, ****; accepted ****.
+Corresponding author
∗Communicated by

1

2 UMASHANKAR SAMAL, AJAY KUMAR

growth models (SRGMs). Over the last few decades, researchers have proposed numerous
SRGMs that leverage the concept of non-homogeneous Poisson process (NHPP) [2, 3, 4].
These models aim to predict software failures and determine the optimal release time,
taking into account the dynamic nature of software development and testing.

Numerous researchers have actively contributed to the domain by proposing innova-
tive models that adeptly fit historical failure data. Goel and Okumoto [5] put forth a re-
liability assessment stochastic model, grounded in NHPP, which employs an exponential
curve to represent failure occurrences. Yamada et al. [6] introduced the delayed S-shaped
model, a type of SRGM that divides testing into fault detection and removal phases. This
model considers the team’s learning process and growing skills. Meanwhile, Ohba [7]
proposed the inflection S-shaped model, assuming that some faults remain undetected un-
til others are removed. Pham et al. [8] presented a software reliability model based on
NHPP that incorporates imperfect debugging and dynamic improvement of testing effi-
ciency throughout the testing phase. Previous models and empirical evidence indicate that
the learning-induced efficiency growth can follow various curves, ranging from linear to
logistic in nature.

Fault removal efficiency (FRE) is a vital concept in software reliability engineering,
assessing the effectiveness of fault removal during testing and development. It calculates
the proportion of identified and corrected faults compared to the total faults present in the
software, reflecting how well the testing process detects and resolves faults to enhance
software reliability. Numerous studies have explored SRGMs, integrating FRE as a key
factor in their analyses. Zhang et al. [9] presented a software reliability model in which
constant FRE and fault introduction rate were integrated. The model captured the learning
process of software developers with an inflection S-shaped curve and addressed imperfect
debugging by considering faults that could be introduced during debugging with a con-
stant fault introduction probability. Liu et al. [10] proposed a model with constant FRE
and fault introduction rate, implying a reduction in the number of residual faults during
effective software debugging. Li and Pham [11] proposed an innovative software relia-
bility model, taking into account error generation, constant FRE, and testing coverage.
By utilizing testing coverage to express the fault detection rate and incorporating FRE
for fault repair, their model represents a substantial advancement in software reliability
evaluation. Li and Mao [12] considered two crucial assumptions: the influence of differ-
ent field environments on software performance and reliability, and the imperfect nature
of fault removal during the debugging process. Their paper aimed to incorporate FRE,
testing coverage, and the randomness of field environments into a new software reliability
model. Kapur et al. [13] proposed a generalized SRGM that estimates faults during test-
ing and can be extended to the operation phase. In testing, it focuses on reliability growth
with respect to testing resources, while in the operational phase, FRE determines the effort
spent on user-reported faults, and reliability growth depends on software usage. Chatter-
jee and Shukla [14] introduced a general SRGM based on NHPP, constant FRE, and an
optimal software release policy considering cost and reliability criteria. Their study aimed
to develop a software release time decision model, taking into account maintenance cost
and warranty cost in a fuzzy environment. Chatterjee et al. [15] proposed an SRGM that
simultaneously considers fault detectability, fault removability, fault exposure ratio, and
constant FRE, while also incorporating the effect of the change point. The study’s results
revealed a significant correlation between FRE and fault removability, indicating that an

AN ENHANCED SRGM CONSIDERING DYNAMIC FRE AND RESIDUAL ERROR CHANGE RATE 3

increase in FRE corresponds to higher fault removability, and vice versa. Verma et al.
[16] introduced a unified SRGM that accounts for time-dependent fault removal factor
(FRF), constant FRE, and constant error generation. The model employed exponential,
Weibull, and delayed S-shaped distributions to effectively model FRF. Haque and Ahmad
[17] presented a software reliability model that factored in perfect debugging and constant
FRE. The fault detection rate was effectively represented using a two-parameter logistic
function. Samal and Kumar [18] proposed an SRGM that accounts for a constant FRE
within an perfect debugging environment.

Debugging assumes a critical role in maintaining and enhancing software reliability.
Whenever an error is reported, the debugging process is initiated to identify and resolve
the underlying issue. However, debugging is not always perfect and may unintentionally
introduce new faults during the fix. The error generation rate serves as a significant factor
in SRGM, quantifying the probability of introducing new faults while debugging. These
newly introduced faults can stem from coding errors, logic flaws, or incomplete under-
standing of the problem at hand during debugging. Numerous authors have explored the
influence of the error generation rate on SRGM.

Kapur et al. [19] introduced two general frameworks to derive multiple SRGMs
using NHPP with considerations for imperfect debugging and error generation. The pro-
posed models were formulated to accommodate scenarios with no differentiation between
failure observation and fault removal testing processes, and were later extended to address
cases where a clear differentiation between these processes exists. Roy et al. [20] intro-
duced a software reliability model with an exponentially increasing fault content function
and a constant fault detection rate. The total fault content of the software exhibited rapid
growth at the initial stages of testing but gradually slowed down towards the end, at-
tributed to the increasing efficiency of the testing team.

In the current literature, many authors have treated FRE as a constant value, over-
looking its dynamic nature throughout the software development process. This oversight
neglects potential variations in fault removal effectiveness over time as software devel-
opment involves a complex interplay of factors such as evolving requirements, changing
team dynamics, and shifting project priorities, all of which can influence the effectiveness
of fault removal activities. While some research has considered FRE, limited attention
has been given to exploring the dynamic nature of FRE and its impact on the change rate
of residual errors. Within the research paper, we present the following key contributions:

• Introducing a dynamic FRE function that depends on the mean value function
(mvf), representing the expected number of failures by a certain time.

• Taking into account the change rate of residual errors, encompassing both the in-
troduction of new errors and the correction of faults.

• Adopting S-shaped curve to describe the fault detection rate, capturing the learning
process of software developers.

The rest of the paper is systematized as follows: Section 2 of the paper explores the
study’s background and offers essential definitions to provide a foundational understand-
ing. In Section 3, the model assumptions and formulation are elaborated, presenting the
analytical model used for software reliability prediction. Section 4 presents experimental

4 UMASHANKAR SAMAL, AJAY KUMAR

details, including dataset descriptions, model comparisons, and goodness-of-fit criteria,
to validate the proposed SRGM. The results obtained from applying the model and pa-
rameter estimation technique to real-world data are presented and discussed in Section 5.
Finally, Section 6 presents the conclusion, summarizing the key findings, and discusses
future research directions, proposing areas for improvement in the model.

2. Background

In this section, we provide the foundational background necessary for understanding
the subsequent discussions on NHPP and software reliability. NHPP is characterized by
its intensity function, λ (t), which dictates the rate of events occurring over time. Follow-
ing this, we discuss concept of software reliability which is crucial in ensuring the de-
pendability and performance of software systems, with implications spanning from user
satisfaction to system safety criticality.

2.1 NHPP

A computing process N(t) is said to be NHPP with λ (t) as its intensity function if a
Poisson distribution with a mean value function m(t), t ≥ 0 describes it [8].

Pr{N(t) = k}= [m(t)]k

k !
e−m(t), k = 0,1,2, · · · (1)

where m(t) = E [N(t)] .

The fault intensity function λ (t) can be used to solve m(t).

m(t) =
t∫

0

λ (s)ds. (2)

2.2 Software reliability

Software reliability R(x/t) is the likelihood that no software fault will be found be-
tween the times (t, t + x), assuming that the prior fault occurred at time t, where t ≥ 0,
x > 0 [2].

R(x/t) = e−[m(t+x)−m(t)]. (3)

2.3 Least squares estimation (LSE)

Parameter estimation plays a crucial role in predicting software reliability. It involves
determining unknown parameters in a model’s analytical solution. The widely adopted
technique for this task is LSE, which works by minimizing the sum of squared differences
between observed data and model predictions. Mathematically, LSE aims to minimize the
objective function

∑
min

(yi −m(ti))2, (4)

which is the sum of squared discrepancies between the observed data yi and the model
predictions m(ti).

AN ENHANCED SRGM CONSIDERING DYNAMIC FRE AND RESIDUAL ERROR CHANGE RATE 5

Table 1. Notations
m(t) The anticipated quantity of software defects fixed by time t
a(t) Fault content function
b(t) Software fault detection rate per unit of time
ψ Fault removal efficiency
Ψ Initial fault removal efficiency
α Shape parameter
p Change rate of generalized residual errors
a0 Initial fault content

3. Model Development

In this section, we undertake the formulation of the proposed SRGM, focusing on
the integration of a dynamic FRE, the consideration of the change rate of residual errors,
and the incorporation of the learning process observed in software developers. We present
the notations employed throughout the study, establishing a foundational understanding
for our subsequent discussions. Following this, we articulate several key assumptions
that underpin our model’s construction, serving as guiding principles for our approach.
Subsequently, we explore the formulation of our model, drawing upon relevant literature.
However, while some research has addressed FRE, there has been limited exploration
into its dynamic nature and its impact on the change rate of residual errors. Our goal
is to address potential variations in FRE over time, recognizing the complex interaction
of factors such as evolving requirements, changing team dynamics, and shifting project
priorities, all of which can influence the efficacy of fault removal activities.

3.1 Notations

The study utilizes various symbols and abbreviations, which are listed in Table 1.

3.2 Assumption

The proposed model relies on the following assumptions:

1. Software failure process conforms to the principles of NHPP.

2. The debugging process promptly initiates as soon as an error occurs.

3. The debugging process is imperfect i.e. new errors are introduced.

4. The correction of errors is not absolute; rather, the detected error will be rectified
with a known probability ψ , referred to as the FRE.

5. The change rate of residual errors is modeled using a dynamic process that includes
both error introduction and error correction.

6. The fault detection process exhibits characteristics akin to a learning curve phe-
nomenon.

6 UMASHANKAR SAMAL, AJAY KUMAR

3.3 Formulation

An NHPP software reliability model that incorporates the consideration of FRE is
given by [9]:

dm(t)
dt

= b(t) [a(t)−ψm(t)] . (5)

The term dm(t)
dt represents the rate of change of the number of faults with respect to time

t. The expression b(t) [a(t)−ψm(t)] represents the net fault arrival rate at time t after
accounting for the effectiveness of fault removal. It captures the balance between new
faults being introduced into the system a(t) and the removal of existing faults ψm(t).

During actual debugging processes, FRE may decline as the number of detected
faults (errors) increases. This can be attributed to several reasons: the correlation infor-
mation among errors reduces over time, making it more difficult to modify errors, the
natural tendency to focus on the current task may limit consideration of error relation-
ships, while the mean modifying level and experience of debuggers can decrease due to
unpredictable factors. As a result, FRE can be represented by a decreasing exponential
function of m(t), as given in Equation 6 accounting for the decrease in efficiency as the
number of detected errors increases.

ψ = Ψe−α m(t), (6)

where Ψ is the initial FRE and α determines the shape of FRE.
The introduction of new errors tends to occur during the error correction phase rather

than the error detection phase. Regardless of whether corrections are successful or not
during the error debugging period, the probability of introduction of new errors increases
with the number of correction processes (sometimes requiring multiple attempts until the
error is completely resolved). Since the introduction of new errors happens alongside
error correction, it is appropriate to describe the change rate of residual errors using a
dynamic process that considers both the introduction and correction of errors. We define
the expression [a(t)−ψm(t)]′ as the change rate of generalized residual errors. Assuming
that the number of residual errors generally decreases over time, we consider the average
ratio between the error introduction rate and the change rate of generalized residual errors
to be −p, as given in Equation 7.

a′(t)
[a(t)−ψm(t)]′

=−p. (7)

In accordance with assumption 6, we have chosen a S-shaped curve, as given in Equa-
tion 8, to represent the fault detection rate. As the project team gains experience and
improves their skills over time, they become more proficient at detecting faults, leading
to the adoption of the S-shaped curve to represent this learning behavior.

b(t) =
b2t

1+bt
. (8)

Now, by solving Equation 5 considering Equation 6 and 7 under the initial conditions

AN ENHANCED SRGM CONSIDERING DYNAMIC FRE AND RESIDUAL ERROR CHANGE RATE 7

m(0) = 0, a(0) = a0, we will get:

m(t) =
1
α

log

(
pΨ−Ψ+a0αebt(a0α−Ψ+pΨ)(bt +1)Ψ−a0α−pΨ

a0α −Ψ+ pΨ

)
. (9)

4. Experimental setting

4.1 Model validation

A model’s effectiveness is assessed by contrasting its advantages, disadvantages,
and degree of accuracy. The proposed model’s performance analysis is described and
contrasted with a few SRGMs as given in Table 2. Notably, Model M4, M5, M6, M7, and
M8 incorporate FRE, while Model M1, M2, and M3 do not.

Table 2. SRGMs taken for comparison

Sl.No. Model MVF

1 M1 [6] m(t) =
ab

b+α

(
eαt − e−bt

)
2 M2 [8] m(t) =

a
1+βe−bt

([
1− e−bt

][
1− α

β

]
+αt

)
3 M3 [21] m(t) = N

1− β

β + ln
(

a+ebt

1+a

)
α

4 M4 [16] m(t) =
a

ψ −α

(
1− e−bβ (ψ −α)t

)
5 M5 [16] m(t) =

a
ψ −α

(
1− e−bβ (ψ −α)tk

)
6 M6 [16] m(t) = a

ψ−α

(
1−
(
(1+bt)β (ψ−α)e−btβ (ψ−α)

))
7 M7 [17] m(t) =

N
ψ

[
1− β +1

(β + ebt)
ψ

]
8 M8 [18] m(t) =

N
ψ

[
1− eψ(ln(bt+1)−bt)

]

4.2 Description of dataset

We have used two datasets to validate our model. The first dataset (DS-1), as given
in Table 3, was obtained from testing a medium-sized software system [22]. A number of
144 cumulative faults (C.F.) were observed during a 17-week testing period. The second
dataset (DS-2), as given in Table 4, was obtained from second release of Tandem Com-
puter project [23]. A total number of 120 faults were observed during a 19-week testing
period. These datasets have been extensively used in numerous researchers.

8 UMASHANKAR SAMAL, AJAY KUMAR

Table 3. DS-1
week C.F. week C.F. week C.F.

1 12 8 111 15 132
2 23 9 112 16 141
3 43 10 114 17 144
4 64 11 116 - -
5 84 12 123 - -
6 97 13 126 - -
7 109 14 128 - -

Table 4. DS-2
week C.F. week C.F. week C.F.

1 13 8 75 15 112
2 18 9 84 16 114
3 26 10 89 17 117
4 34 11 95 18 118
5 40 12 100 19 120
6 48 13 104 - -
7 61 14 110 - -

4.3 Goodness-of-fit criteria

In this paper, we compare the goodness of fit for all models using three criteria. The
mean squared error (MSE) measures the average squared error between the estimated
and actual values. Mean absolute error (MAE) quantifies the average absolute difference
between predicted and true values in a regression problem. It considers the magnitude
of errors without considering their direction. R-squared (R2) is a statistical metric that
indicates the proportion of the variance in the dependent variable explained by the inde-
pendent variables. R2 ranges from 0 to 1, with 0 indicating no explanation of variability
and 1 representing a perfect explanation of all variability.

MSE =

n
∑

i=1
(m̂(ti)− yi)

2

n− p
. (10)

MAE =

n
∑

i=1
| m̂(ti)− yi |

n
. (11)

R2 = 1−

n
∑

i=1
(m̂(ti)− yi)

2

n
∑

i=1
(m̂(ti)− y)2

. (12)

The terms n, p, m̂(ti), yi and y given in Equations 10, 11, and 12 represent the number
of samples, number of parameters, estimated cumulative number of faults by time ti, total
number of faults observed by time ti, and mean number of faults observed by time ti,
respectively.

5. Results and Discussion

The results obtained from analyzing the estimated parameters for DS-1 clearly
demonstrate the superiority of the proposed model over eight other models as listed in
Table 2. This conclusion is supported by the evaluation metrics of MSE, MAE, and R2,

AN ENHANCED SRGM CONSIDERING DYNAMIC FRE AND RESIDUAL ERROR CHANGE RATE 9

which exhibit the smallest values for the proposed model, 40.1132, 4.7471, and 0.9907,
respectively as given in Table 5. Among the nine models compared, the proposed model
stands out with the lowest MSE, indicating its excellent predictive accuracy in capturing
the cumulative failures of the software. The MAE, another important performance met-
ric, also confirms that the proposed model outperforms the others. The R2 value, which
measures the goodness of fit, further supports the superiority of the proposed model, as
it achieved an impressive value of 0.9907, closely followed by M6 with an R2 value of
0.9902. Figure 1 provides a visual representation of the comparison between the actual
cumulative failures and the predictions made by the seven software reliability models for
release-1.

The analysis of the estimated parameters for DS-2 leaves no doubt about the supe-
riority of the proposed model when compared to the other eight models listed in Table
2. This superiority is evident through the evaluation metrics of MSE, MAE, and R2, all
of which yield the smallest values for the proposed model: 9.3885, 1.9196, and 0.9974,
respectively as given in Table 6. Out of the nine models compared, the proposed model
stands out with the lowest MSE, signifying its exceptional predictive accuracy in captur-
ing the cumulative failures of the software. Furthermore, the MAE results confirm that
the proposed model outperforms all other models, including the second-best performer,
Model M5, which obtained MSE=13.7593 and MAE=2.2109. The R2 value, serving as a
measure of goodness of fit, further strengthens the case for the proposed model’s superi-
ority, achieving an impressive value of 0.9974, with Model M7 coming close with an R2

value of 0.9972. For a more intuitive understanding of the comparisons, Figure 2 visually
depicts the disparity between the actual cumulative failures and the predictions made by
all seven software reliability models for release-2.

Table 5. Parameter estimation: DS-1
Model MSE MAE R2 Parameter values

M1 57.8172 6.0271 0.9858 â = 318.0521, b̂ = 0.0637, α̂ =−0.0449

M2 45.9697 5.2001 0.9897 â = 87.5504, b̂ = 0.8607, α̂ = 0.0407, β̂ = 13.0771

M3 56.9518 5.6175 0.9852 N̂ = 175.0198, â = 10.3152, b̂ = 5.2920, α̂ = 3.2577, β̂ =
7.1144

M4 69.1474 5.9041 0.9862 â = 121.6908, b̂ = 0.3624, ψ̂ = 0.7019, α̂ = −0.0872, β̂ =
0.4922

M5 49.3629 4.8692 0.9896 â = 124.4562, b̂ = 0.3063, ψ̂ = 0.6714, α̂ = −0.2466, β̂ =
0.3448, k̂ = 1.3583

M6 47.9498 5.2059 0.9902 â= 158.5272, b̂= 0.8125, ψ̂ = 1.1405, α̂ = 0.0103, β̂ = 0.3149

M7 46.2469 5.1230 0.9886 N̂ = 91.5623, b̂ = 0.5174, β̂ = 2.4821, ψ̂ = 0.6821

M8 57.1466 5.8191 0.9818 N̂ = 49.8623, b̂ = 0.8169, ψ̂ = 0.3478

Proposed 40.1132 4.7471 0.9907 â0 = 27.3493, b̂ = 1.2388, p̂ = −0.7057, α̂ = −0.0003, ψ̂ =
0.1119

6. Conclusion and future scope

This study introduces an SRGM that incorporates dynamic FRE as a function of the
mvf, departing from the traditional assumption of constant FRE. The proposed model

10 UMASHANKAR SAMAL, AJAY KUMAR

Fig. 1. Performance analysis of models: DS-1

Table 6. Parameter estimation: DS-2
Model MSE MAE R2 Parameter values

M1 25.4541 4.1298 0.9926 â = 322.2684, b̂ = 0.0364, α̂ =−0.0213

M2 15.4319 2.8263 0.9963 â = 148.9516, b̂ = 0.2361, α̂ =−0.0074, β̂ = 3.6741

M3 37.9825 4.1728 0.9915 N̂ = 202.0216, â = 1.7805, b̂ = 6.7509, α̂ = 4.3357, β̂ =
14.4469

M4 31.5738 4.3562 0.9971 â= 118.4503, b̂= 0.2486, ψ̂ = 0.6511, α̂ = 0.0037, β̂ = 0.3821

M5 13.7593 2.2109 0.9968 â = 124.4731, b̂ = 0.2226, ψ̂ = 0.7165, α̂ = −0.2571, β̂ =
0.1944, k̂ = 1.4381

M6 28.2737 4.0491 0.9936 â= 155.2459, b̂= 0.4662, ψ̂ = 1.2921, α̂ = 0.0331, β̂ = 0.3417

M7 15.4335 3.1593 0.9972 N̂ = 99.4022, b̂ = 0.3173, β̂ = 3.3173, ψ̂ = 0.8398

M8 13.8120 2.5449 0.9921 N̂ = 55.8739, b̂ = 0.0.4211, ψ̂ = 0.4199

Proposed 9.3885 1.9196 0.9974 â0 = 1.3493, b̂= 0.3589, p̂= 0.9971, α̂ =−0.0424, ψ̂ = 0.1253

Fig. 2. Performance analysis of models: DS-2

provides a more accurate representation of software reliability improvement over time, as

AN ENHANCED SRGM CONSIDERING DYNAMIC FRE AND RESIDUAL ERROR CHANGE RATE 11

demonstrated through comparative analysis with widely used NHPP models and evalua-
tion of goodness-of-fit criteria using two datasets. Our model’s validation encompasses
two datasets. For DS-1, we observe an MSE value of 40.1132, an MAE value of 4.7471,
and an R2 value of 0.9907, surpassing all other models considered in this study. Simi-
larly, for DS-2, we note an MSE value of 9.3885, an MAE value of 1.9196, and an R2

value of 0.9974, indicating superior performance compared to alternative models. Our
research addresses a research gap in existing literature, where FRE is often treated as a
static parameter, overlooking its dynamic nature during software development. Moving
forward, there is ample scope to enhance our model by incorporating more advanced and
robust fault removal efficiency mechanisms. Research can focus on developing sophisti-
cated algorithms that dynamically adapt to changing conditions during the development
and testing phases. Moreover, exploring the integration of machine learning and artifi-
cial intelligence techniques may further optimize the prediction accuracy and enhance the
model’s performance.

REFERENCES

1. U. Samal and A. Kumar, “Enhancing software reliability forecasting through a hybrid
arima-ann model,” Arabian Journal for Science and Engineering, 2023, pp. 1–14.

2. U. Samal, S. Kushwaha, and A. Kumar, “A testing-effort based srgm incorporating
imperfect debugging and change point,” Reliability: Theory & Applications, Vol. 18,
no. 1 (72), 2023, pp. 86–93.

3. U. Samal and A. Kumar, “Redefining software reliability modeling: embracing fault-
dependency, imperfect removal, and maximum fault considerations,” Quality Engi-
neering, 2023, pp. 1–10.

4. U. Samal and A. Kumar, “A neural network approach for software reliability predic-
tion,” International Journal of Reliability, Quality and Safety Engineering, 2024.

5. A. L. Goel and K. Okumoto, “Time-dependent error-detection rate model for soft-
ware reliability and other performance measures,” IEEE transactions on Reliability,
Vol. 28, no. 3, 1979, pp. 206–211.

6. S. Yamada, M. Ohba, and S. Osaki, “S-shaped software reliability growth models
and their applications,” IEEE Transactions on Reliability, Vol. 33, no. 4, 1984, pp.
289–292.

7. M. Ohba, “Inflection s-shaped software reliability growth model,” in Stochastic Mod-
els in Reliability Theory: Proceedings of a Symposium Held in Nagoya, Japan, April
23–24, 1984. Springer, 1984, pp. 144–162.

8. H. Pham, L. Nordmann, and Z. Zhang, “A general imperfect-software-debugging
model with s-shaped fault-detection rate,” IEEE Transactions on reliability, Vol. 48,
no. 2, 1999, pp. 169–175.

9. X. Zhang, X. Teng, and H. Pham, “Considering fault removal efficiency in software
reliability assessment,” IEEE Transactions on Systems, Man, and Cybernetics-Part
A: Systems and Humans, Vol. 33, no. 1, 2003, pp. 114–120.

10. H.-W. Liu, X.-Z. Yang, Q. Feng, and Y.-J. Shu, “A general nhpp software reliability
growth model with fault removal efficiency,” Iranian journal of electrical and com-
puter engineering, Vol. 4, no. 2, 2005, pp. 144–149.

12 UMASHANKAR SAMAL, AJAY KUMAR

11. Q. Li and H. Pham, “A testing-coverage software reliability model considering fault
removal efficiency and error generation,” PloS one, Vol. 12, no. 7, 2017, p. e0181524.

12. Q. Li and C. Mao, “Considering testing-coverage and fault removal efficiency sub-
ject to the random field environments with imperfect debugging in software relia-
bility assessment,” in 2016 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW). IEEE, 2016, pp. 257–263.

13. P. Kapur, A. Gupta, and P. Jha, “Reliability analysis of project and product type
software in operational phase incorporating the effect of fault removal efficiency,”
International Journal of Reliability, Quality and Safety Engineering, Vol. 14, no. 03,
2007, pp. 219–240.

14. S. Chatterjee and A. Shukla, “An ideal software release policy for an improved soft-
ware reliability growth model incorporating imperfect debugging with fault removal
efficiency and change point,” Asia-Pacific Journal of Operational Research, Vol. 34,
no. 03, 2017, p. 1740017.

15. S. Chatterjee, A. Shukla, and H. Pham, “Modeling and analysis of software fault
detectability and removability with time variant fault exposure ratio, fault removal
efficiency, and change point,” Proceedings of the Institution of Mechanical Engineers,
Part O: Journal of Risk and Reliability, Vol. 233, no. 2, 2019, pp. 246–256.

16. V. Verma, S. Anand, P. Kapur, and A. G. Aggarwal, “Unified framework to assess
software reliability and determine optimal release time in presence of fault reduction
factor, error generation and fault removal efficiency,” International Journal of System
Assurance Engineering and Management, Vol. 13, no. 5, 2022, pp. 2429–2441.

17. M. A. Haque and N. Ahmad, “A software reliability model using fault removal effi-
ciency,” Journal of Reliability and Statistical Studies, 2022, pp. 459–472.

18. U. Samal and A. Kumar, “A software reliability model incorporating fault removal
efficiency and it’s release policy,” Computational Statistics, 2023, pp. 1–19.

19. P. Kapur, H. Pham, S. Anand, and K. Yadav, “A unified approach for developing
software reliability growth models in the presence of imperfect debugging and error
generation,” IEEE Transactions on Reliability, Vol. 60, no. 1, 2011, pp. 331–340.

20. P. Roy, G. Mahapatra, and K. Dey, “An nhpp software reliability growth model
with imperfect debugging and error generation,” International Journal of Reliabil-
ity, Quality and Safety Engineering, Vol. 21, no. 02, 2014, p. 1450008.

21. K. Y. Song, I. H. Chang, and H. Pham, “Nhpp software reliability model with inflec-
tion factor of the fault detection rate considering the uncertainty of software operating
environments and predictive analysis,” Symmetry, Vol. 11, no. 4, 2019, p. 521.

22. M. Xie, Q. Hu, Y. Wu, and S. H. Ng, “A study of the modeling and analysis of
software fault-detection and fault-correction processes,” Quality and Reliability En-
gineering International, Vol. 23, no. 4, 2007, pp. 459–470.

23. A. Wood, “Software reliability growth models,” Tandem technical report, Vol. 96, no.
130056, 1996, p. 900.

AN ENHANCED SRGM CONSIDERING DYNAMIC FRE AND RESIDUAL ERROR CHANGE RATE 13

Umashankar Samal graduated with a master’s degree in
Mathematics in 2019 from Sant Longowal Institute of Engineer-
ing & Technology, India. Currently, he is a research scholar at
Atal Bihari Vajpayee-Indian Institute of Information Technology
and Management, Gwalior, India. His research interests include
safety, quality, and reliability engineering.

Ajay Kumar joined ABV-IIITM, Gwalior in July 2009 and
now he is an associate professor at Department of Engineering
Sciences, ABV-IIITM, Gwalior. His primary areas of interest
are Reliability, Statistics, Fuzzy Sets, Fuzzy Logic, Optimiza-
tion, Machine Learning, and Modeling & Simulation. He has
published over 45 research papers in reputed journals and con-
ferences.

	Introduction
	Background
	NHPP
	Software reliability
	Least squares estimation (LSE)

	Model Development
	Notations
	Assumption
	Formulation

	Experimental setting
	Model validation
	Description of dataset
	Goodness-of-fit criteria

	Results and Discussion
	Conclusion and future scope
	Biographies
	Umashankar Samal
	Ajay Kumar

