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Anomaly detection on industrial multivariate time-series data is an important re-

search topic for industrial control systems. Due to the high dimensionality of industrial 

multivariate time-series and the lack of labeled anomaly samples, deep neural networks 

with the ability of learning temporal patterns in an unsupervised way have become the 

mainstream techniques, but there is still remaining limitations. First, they have not ex-

plicitly modeled the complex correlations between different dimensions. Second, they 

cannot make a balance between pattern deviation anomalies and single metric anomalies. 

Aiming at these limitations, this paper proposes AD-FGP, a framework for industrial 

multivariate time-series anomaly detection. AD-FGP has two novel features. First, it ex-

plicitly learns the correlations between different dimensions using a graph neural net-

work. Second, it fuses a generative model and a predictive model to detect both pattern 

deviation anomalies and single metric anomalies effectively. We conducted extensive 

experiments based on both real-world and public datasets. Experiment results show that 

AD-FGP has a best overall anomaly detection performance by increasing the F1-score 

5% to 40% as compared to the baseline methods.      

 

Keywords: anomaly detection, multivariate time-series, industrial control system, graph 

neural network 

 

1. INTRODUCTION 
 

Industrial Control System (ICS) refers to the technology used to monitor and control 

industrial processes. These systems can range from simple machines that control a single 

function, to complex networks of interconnected devices that control entire factories [1]. 

As ICSs become more complex and interconnected, there is a growing need for anomaly 

detection in ICSs. Anomaly detection is the identification of deviations from expected 

behavior, which can indicate a malfunction, an attack, or other types of unexpected 

events [2]. Early detection of anomalies can prevent equipment failures, improve process 

efficiency, and enhance overall performance. 

To establish information exchange between humans, devices, and systems, ICSs 

connect a large number of monitoring devices and sensors and collect data that can re-

flect the process and status of production. These data are in the form of multivariate 

time-series [3]. Therefore, multivariate time-series analysis has become the main tech-
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nique for anomaly detection in ICSs [3, 4]. However, industrial multivariate time-series 

anomaly detection is a challenging task due to the following reasons. 

High dimensionality: The data of ICSs are continuously collected from a large 

number of monitoring devices and sensors, resulting in high-dimensional time series data, 

making it challenging to extract effective features. For example, we have collected real 

ICS data from the production line of a tobacco factory, which has more than 128 moni-

toring devices and sensors. 

Complex correlations: The different dimensions of ICSs (i.e., the data collected 

from different monitoring devices or sensors) might have potential correlations. For ex-

ample, the data of one sensor could affect the data of another sensor, and a specific state 

of the ICS is jointly influenced by the data from multiple monitoring devices. 

Lack of labeled data: The operating processes and collected data of ICSs are high-

ly complex, making it difficult to understand the abnormal states. Therefore, labeling the 

abnormal states in the collected data of ICSs requires in-depth domain knowledge and is 

of high cost. In practice, it is usually difficult or impossible to obtain abnormal samples 

from real ICSs. 

Most state-of-the-art industrial anomaly detection methods apply data-driven tech-

niques, including traditional machine learning and deep learning. Due to the lack of la-

beling data, most previous studies focus on unsupervised learning techniques [5, 6]. In 

traditional machine learning techniques, existing studies typically involve two steps. 

They firstly extract a large number of features from industrial multivariate time-series 

data, and then discover anomalies by using outlier detection algorithms (e.g., clustering 

[7], One-Class SVM [8], iForest [9], etc.). However, feature engineering relies on do-

main knowledge, and the high-dimensional and dynamic nature of ICS data makes it dif-

ficult to design effective features. In recent years, thanks to the ability of automatically 

learning features from high-dimensional data, deep learning has been increasingly ap-

plied to the ICS anomaly detection tasks. Since univariate time-series anomaly detection 

methods (e.g., threshold-based methods) cannot detect pattern deviation anomalies [5], 

most existing multivariate time-series anomaly detection studies design the deep neural 

networks based on the generative encoder-decoder framework [10, 11]. Specifically, they 

use an encoder to learn the low-dimensional semantic features of the multivariate 

time-series data, and use a decoder to reconstruct the normal data. Then, the reconstruc-

tion errors are used to detect anomalies. In addition, due to the temporal nature of ICS 

data, most existing studies design the encoders and decoders based on RNN (Recurrent 

Neural Networks) [10, 12]. 

However, the generative “RNN + encoder-decoder” based ICS anomaly detection 

methods still have limitations. First, “RNN + encoder-decoder” cannot effectively learn 

the complex correlations between different dimensions, since it has not explicitly mod-

eled the relationships between different monitoring devices and sensors. Second, it is 

difficult for “RNN + encoder-decoder” to make a balance between single metric anoma-

lies and pattern deviation anomalies. The “RNN + encoder-decoder” usually computes 

the cumulative reconstruction errors by reconstructing a window spanning a period of 

time, and thus the sudden change of a metric in a single point of time could be ignored. If 

we reduce the size of the window to fit the single metric anomalies, it might easily miss 

the pattern deviation anomalies that span a longer duration. 

To address these limitations, we propose AD-FGP, a novel framework for industrial 
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multivariate time-series anomaly detection via the fusion of both generative and predic-

tive models. AD-FGP uses the following approaches to overcome the above mentioned 

two limitations. First, AD-FGP uses graphs to explicitly model the correlations between 

different monitoring devices and sensors, and applies GNNs (Graph Neural Networks) to 

learn the correlation strengths to integrate into the anomaly detection models. Second, 

AD-FGP fuses a generative model and a predictive model to make a balance between 

single metric anomalies and pattern deviation anomalies. Specifically, the generative 

model is used to detect pattern deviation anomalies based on the encoder-decoder archi-

tecture. The predictive model is used to detect single metric anomalies by evaluating the 

prediction error of each single point of time. 

In summary, the contributions of this paper are as follows. 

First, we propose a hybrid industrial multivariate time-series anomaly detection 

framework by fusing generative model and predictive model, to effectively detect both 

pattern deviation anomalies and single metric anomalies. 

Second, we design the generative model and the predictive model by using a GNN 

to explicitly learn the complex correlations between different monitoring devices and 

sensors, and integrate the correlations into the generative and predictive models. 

Third, we conducted extensive experiments on both real-world production line da-

tasets and public datasets. The results show that AD-FGP increases the F1-score of de-

tecting anomalies by approximately 5% to 40% as compared to the existing methods. 

2. RELATED WORK 

ICS data are typical multivariate time-series data, which have the characteristics of 

large volume, high dimensions, and strong dynamics, and thus the traditional univariate 

anomaly detection methods [5, 6, 7, 8] could not work effectively. 

In order to adapt to the complex multivariate time-series data, most existing studies 

utilize learning based techniques (including machine learning and deep learning), which 

can be roughly divided into two categories, i.e., supervised learning techniques and un-

supervised learning techniques. In terms of supervised learning techniques, Griffin et al. 

[13] proposed an anomaly detection method based on neural networks and decision trees 

to detect anomalies in multiple processing processes. Nanduri et al. [12] proposed the use 

of recurrent neural networks to detect anomalous events that may reduce flight safety 

factors. Janssens et al. [14] proposed a CNN-based feature learning system for detecting 

fault states of rotating machinery. 

Although supervised learning techniques can better distinguish anomalies by explic-

itly learning the latent patterns from anomaly samples, it is difficult to implement in 

practice due to the extremely lack of labeled anomaly training data. Since normal ICS 

data can be easily obtained in a massive scale, unsupervised learning techniques are 

mostly applied for the industrial multivariate time-series anomaly detection task. In early 

stage, traditional unsupervised machine learning such as clustering, One-Class SVM, and 

iForest are applied. For example, Amruthnath and Gupta [15] applied multiple clustering 

algorithms for anomaly detection (e.g., K-Means, fuzzy C-Means). The anomaly detec-

tion of these algorithms can be defined as the process of identifying behaviors that devi-

ate from the standard behavior. Diez-Olivan et al. [16] proposed an anomaly detection 
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method based on One-Class SVM to detect anomalies in sensor data by obtaining anom-

aly scores based on the distance between samples and the separating hyperplane. Joshi et 

al. [17] conducted anomaly detection based on HMM, which builds classifier by extract-

ing features and calculating the anomaly probability in the state sequence generated by 

the model. Li et al. [18] proposed an anomaly detection method based on One-Class 

SVM to detect anomalies in image by building a generative one-class classifier on 

self-supervised deep representations. 

However, the performance of traditional machine learning techniques heavily relies 

on feature engineering, while it is difficult to design effective features for the ICS data 

due to the high dimensionality and high dynamicity. In response to this problem, deep 

learning techniques have been extensively exploited for ICS anomaly detection in recent 

years, where the generative encoder-decoder deep neural networks are the mostly ex-

ploited strategy. For example, Kingma et al. [19] applied a VAE (Variational AutoEn-

coder) to detect anomalies by reconstructing the data and analyzing the residuals of the 

reconstructed data and the source data. Lu et al. [20] detected anomalies in rotating me-

chanical components by using a stacked autoencoder. Zhang et al. [21] proposed 

MSCRED, which uses ConvLSTM autoencoder to learn the multiple levels of system 

operation patterns characterized by multi-scale signature matrices in different time steps. 

Yin et al. [22] integrated the CNN and recurrent autoencoder for detecting anomalies in 

IoT systems. Specifically, they used a two-stage sliding window strategy to design the 

encoder for better feature extraction. Muneer et al. [23] proposed a hybrid model based 

on Deep Autoencoder Neural Network (DANN) with 5 layers for detecting anomalies in 

a real-world gas turbine dataset. Although the generative encoder-decoder deep neural 

networks have achieved promised results for ICS anomaly detection, there is still room 

for improvement if we can explicitly learn the relationships between different dimensions 

of time-series and appropriately making a balance between pattern deviation anomalies 

and single metric anomalies. 

3. METHODOLOGY 

3.1 Preliminaries 

In this section, we firstly define the concepts and problem, and then present the ar-

chitecture of AD-FGP. 

Definition 1 (Industrial Multivariate Time-Series): The industrial multivariate 

time-series data are sampled from multiple sensors over time, denoted as 
N TX R  , 

where N is the number of sensors and T is the length of sampling time. Note that a real 

sensor might generate multiple readings at each time slot, e.g., an accelerometer gener-

ates three readings at each time slot. In this paper, we treat each univariate time-series in 

X as sampled from an individual virtual sensor, for convenience of presentation. 

Definition 2 (ICS Sample): We use a sliding window of length W to segment X into 

a large number of ICS samples. Then, the ICS sample of time slot t is N W

tX R  , which 

is a subsequence of X during the time period of (t-W, t]. Before inputting to the anomaly 

detection model, the ICS samples are preprocessed based on min-max normalization and 

linear interpolation. 
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Problem Definition: The anomaly detection problem in this paper is defined as 

learning from a large number of normal ICS samples to obtain a function f, which takes 

Xt as input and produces an output value {0,1}ty  , denotes whether the ICS sample St 

is an anomaly. 

Architecture of AD-FGP: Fig. 1 shows the architecture of AD-FGP, which utilizes 

two models (i.e., a generative model and a predictive model) to jointly detect anomalies. 

The generative model is trained to reconstruct the input Xt (we denote the reconstruction 

result as 
tX ). It is a deep neural network based on the encoder-decoder framework, 

which consists of three layers, i.e., the GAT (Graph Attention Network) layer, the en-

coder layer, and the decoder layer. The predictive model is trained to predict the sensor 

reading vector at time slot t given Xt[t-W+1:t-1], i.e., the subsequence of Xt during the 

time period of (t-W, t-1] (we denote the prediction result as 
tx ). It is a deep spatiotem-

poral neural network that consists of three layers, i.e., the graph learning layer, the con-

volution layer, and the recurrent layer. Here, the GAT layer, the graph learning layer, and 

the convolution layer are used to learn the correlations between different sensors by us-

ing graph model. The encoder layer and the recurrent layer are used to learn the temporal 

patterns of the ICS samples. After training the two models, the anomaly score is calcu-

lated by jointly considering the reconstruction error of the generative model (i.e., the er-

ror between Xt and 
tX ) and the prediction error of the predictive model (i.e., the error 

between xt and 
tx ). 

 
Fig. 1. The architecture of AD-FGP. 

 

3.2 The Generative Model 

The generative model is composed of three layers, i.e., the GAT layer, the encoder 

layer, and the decoder layer. 

3.2.1 The GAT Layer 

The industrial time-series data are usually collected from a large number of sensors, 

resulting in high-dimensional characteristics. First, these dimensions that represent dif-

ferent sensors have potential correlations and cross-effect. For example, the detection of 

some anomalies requires the consideration of the data from multiple sensors simultane-

ously. Second, the data from different sensors might have different levels of impact on 

the anomaly detection tasks. For example, pressure data in a hydraulic system are usually 

more important for anomaly detection than the data from other sensors. Aiming at these 
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issues, the GAT layer uses a graph to capture the correlations between different dimen-

sions of the industrial time-series data (Step 1), and then the correlation strengths are 

learnt using a GAT subnetwork (Step 2). 

Step 1 (Sensor graph construction): A sensor graph is represented as G = (V, E, F), 

where each node Vvi  represents a dimension of the industrial time-series data (corre-

sponding to a sensor), each edge Eeij   represents a correlation between sensor vi and 

vj, and F represents the set of features with each element fi represents the original feature 

of node vi (i.e., the univariate time-series data collected from sensor vi). To construct the 

sensor graph, whether two sensors have correlation can be decided based on domain 

knowledge. However, since domain knowledge is usually difficult to obtain, we design G 

as a fully connected graph if the domain knowledge is unavailable. 

Step 2 (Correlation strength learning): We apply GAT to learn the correlation 

strength between each pair of node in G. As shown in Figure 2, for each edge eij in G, it 

correlation strength wij is calculated based on Equation 1, where q is a learnable parame-

ter vector, σ(…) is a nonlinear activation function,  is the concatenation operation, and 

L is the number of nodes in the 1
st
-order neighbors of node vi (including vi itself). Then, 

the embedding vector of each node vi (denoted as gi) is updated according to Equation 3, 

where fk is the original feature of node vk. 
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Fig. 2. The correlation strength learning based on GAT. 
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In this paper, the encoder-decoder subnetwork is essentially an autoencoder, which 

maps the original ICS samples into a lower-dimensional latent feature space using an 

encoder and then reconstructs the latent features into the original sample space using a 

decoder. The autoencoder is trained by gradually reducing the errors between original 

samples and reconstructed samples through backpropagation. 

Since the latent features have lower dimension that that of the original samples, the 

latent features can be considered as the extracted main patterns of the original samples. 

For the anomaly detection task, the autoencoder is trained based on normal samples (or 

mostly normal samples), so the latent features of the trained autoencoder can represent 

the main patterns of normal samples. If a reconstructed sample greatly deviates from the 

original sample, it means that the original sample does not conform to the main patterns 

of normal samples, indicating an anomaly. 

Considering the temporal characteristics of the ICS samples, we use a LSTM as the 

encoder. As shown in Figure 3, given a ICS sample Xt = [xt-W, xt-W+1, …, xt] (
1N

tx R   is 

the sensor readings at time slot t), we firstly input Xt into the GAT layer and obtain the 

updated feature matrix Yt = [yt-W, yt-W+1, …, yt]. Then, we input Yt into a LSTM subnet-

work and obtain W hidden state vectors 
1, ,...,e e e

t W t W th h h  
 based on Equation 4. We take 

the final hidden state vector e

th  as the output of the encoder layer. 

 

1LSTM( , )e e

t t th h y  (4) 

  

 

Fig. 3. The architecture of the LSTM autoencoder. 

3.2.3 The Decoder Layer 

As shown in Figure 3, the decoder takes e
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 based on Equation 5. After 

that, a fully connected subnetwork is used to reconstruct 
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1LSTM( , )d d e

t t th h h  (5) 

To train the three-layered generative model, we define the loss function as the error 

between the original input sample Xt and the reconstructed sample 
tX , as Equation 6. 

 

2

0 0
( [ , ] [ , ])

N W

t ti j

g

X i j X i j
Loss

NW

 



   (6) 

3.3 The Predictive Model 

The key capability requirement for the predictive model is to capture the spatial and 

temporal correlations in the multivariate time-series data. The spatial correlation indi-

cates that the future data evolvement of a dimension could be affected by the data of oth-

er dimensions. The temporal correlation means that the future data evolvement could be 

affected by recent or periodic historical signals. Taking this requirement into account, the 

predictive model is designed to be composed of three layers, i.e., the graph learning layer, 

the graph convolution layer, and the recurrent layer. The graph learning layer and the 

graph convolution layer are used to capture the spatial correlation, and the recurrent layer 

is used to capture the temporal correlation. 

3.3.1 The Graph Learning Layer 

We also use a graph to represent the correlations between different dimensions of 

the industrial time-series data for the predictive model. The graph learning layer is de-

signed to automatically learn the correlation strengths, i.e., the graph adjacency matrix. 

Most existing distance metrics for computing correlation strengths are symmetric. How-

ever, in the multivariate time series prediction task, we expect that the correlation 

strengths are asymmetric, i.e., the influence of node vi on node vj might be different from 

that of node vj on node vi. Therefore, we try to learn the graph adjacency matrix A based 

on Equation 8, where E1 and E2 are two randomly initialized node embedding matrices, 

1  and 2  are learnable parameter matrices, α is a hyper-parameter to control the 

saturation rate of the activation function. In Equation 8, the subtractive term and the 

ReLU activation function regularize A in such a way that if A[i, j] has a positive value, 

A[j, i] will be zero, so as to force A to be asymmetric. 

 

1 1 1 2 2 2tanh( ), tanh( )M E M E      (7) 

T T

1 2 2 1ReLU(tanh( ( )))A M M M M   (8) 

The graph adjacency matrix A computed based on Equation 8 represents a fully 

connected graph, which could result in high computation complexity. Aiming at this 

problem, we prune the graph by removing the edges whose correlation strength is lower 

than a threshold. 

 

3.3.2 The Graph Convolution Layer 
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The graph convolution layer is used to update the features of each node by fusing its 

neighbors’ information based on the graph adjacency matrix A. Then, the prediction for 

each targeted sensor can take into account other sensors that have strong influence on the 

targeted sensor. We apply a GCN (Graph Convolutional Network) to achieve this goal. 

Specifically, given the ICS sample Xt and the corresponding graph adjacency matrix A, 

the GCN updates the node feature matrix based on Equation 9, where A A I   repre-

sents the graph adjacent matrix with self-connections added, I is an identity matrix, D  

is a diagonal matrix such that  j
jiAiiD ],[

~
],[

~
, and W

(l)
 is the trainable weight ma-

trix of the l-th layer. We can stack more GCN layers to model higher order interactions 

of neighbors. The input to the graph convolution layer is H
(0)

 = Xt[t-W+1:t-1], and the 

output is Zt = H
(L)

, where L is the number of the GCN layers. 

 
1 1

( 1) ( ) ( )2 2ReLU( )l l lH D AD H W
 

   (9) 

3.3.3 The Recurrent Layer 

The recurrent layer is utilized to capture the temporal correlation in the output of the 

graph convolution layer. We also use LSTM to implement the recurrent layer. Given a 

ICS sample Xt = [xt-W, xt-W+1, …, xt], we firstly input Xt[t-W+1:t-1] into the graph learning 

layer and the graph convolution layer, and obtain the output Zt = [zt-W, zt-W+1, …, zt-1]. 

Then, zt-W, zt-W+1, …, zt-1 are chronologically fed into a LSTM subnetwork, and W hidden 

state vectors are generated, i.e., ht-W, ht-W+1, …, ht-1. 

 

1LSTM( , )t t th h z  (10) 

After that, we stack a fully connected layer upon ht-1 to map it into the prediction 

result vector 
tx . The predictive model is trained to minimize the loss function in Equa-

tion 11. 

 

2

0
( [ ] [ ])

N

t ti
p

x i x i
Loss

N





  (11) 

3.4 Model fusion 

The advantage of generative model is that it can accurately reconstruct the whole 

ICS sample by capturing the overall patterns of the multivariate time-series data. Thus, 

the generative model is capable of discovering the pattern deviation anomalies. On the 

other hand, the advantage of predictive model is that it can precisely predict the signals 

of a single time slot by capturing the evolving trend of the multivariate time-series data. 

Hence, the predictive model is capable of discovering the single metric anomalies. The 

fusion model combines the advantages of both predictive and generative models. Specif-

ically, in the training phase, these two models are trained jointly by combining their loss 

functions as in Equation 12. 
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g pLoss Loss Loss   (11) 

In the detection phase, given a ICS sample N W

tX R  , we calculate its anomaly 

score by using the fusion model based on Equation 12, where the left term is the anomaly 

score from the generative model, the right term is the anomaly score from the predictive 

model, and λ is a weight parameter to adjust the importance of the two models. Here, we 

use the summation operation for the generative model in order to detect anomalies with 

no sudden deviation at a single time slot, and we use the maximum operation for the pre-

dictive model in order to detect anomalies with significant deviation at a single time slot. 

Finally, we determine Xt as an anomaly ICS sample, if score(Xt) > δ, a pre-defined 

threshold. 

0 0

[1, ]

( [ , ] [ , ])
( ) (1 ) max{( [ ] [ ])}

N W

t ti j

t t t
i N

X i j X i j
score X x i x i

NW
 

 




   
 

 (12) 

4. EXPERIMENT 

4.1 Experiment Setup 

4.1.1 Datasets 

We evaluate our method based on the following three ICS datasets. 

ZJT datasets: It was collected from the production line of China Tobacco Zhejiang 

Industrial Company. The data was sampled every two seconds for a week from 162 sen-

sors deployed on a variety of production devices (e.g., paper cutting wheel, power supply, 

etc.). Since ZJT is a dataset from real-world production line, it does not contain serious 

anomalies from accidents or attacks. Thus, we treat the states of transforming between 

different producing modes as anomalies. The ratio of normal states to abnormal states is 

4:1. 

HAI dataset
1
: It was collected from a realistic ICS testbed augmented with a HIL 

(Hardware-In-the-Loop) simulator that emulates steam-turbine power generation and 

pumped-storage hydropower generation. The dataset collection spans 11 days. It contains 

data collected every second from 84 sensors and actuators. The anomalies are generated 

from 50 cyber-attacks. The training set and the testing set are explicitly separated in HAI, 

where the training set is collected without anomalies and the testing set contains 1/40 

abnormal samples. 

PS datasets
2
: It was collected by Mississippi State University and Oak Ridge Na-

tional Laboratory. It involves five types of anomalies, including short-circuit fault, line 

maintenance, remote tripping command injection, relay setting change, and data injection. 

The PS dataset was collected from 128 sensors. The ratio of normal states to abnormal 

states is 6:4.  

4.1.2 Evaluation strategies 

                                                 
1 https://github.com/icsdataset/hai. 
2 http://www.ece.uah.edu/~thm0009/icsdatasets/binaryAllNaturalPlusNormalVsAttacks.7z 

https://github.com/icsdataset/hai
http://www.ece.uah.edu/~thm0009/icsdatasets/binaryAllNaturalPlusNormalVsAttacks.7z
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Due to the extremely low frequency of abnormal events, the datasets are seriously 

unbalanced. Only considering accuracy makes no sense, since the model can have a high 

accuracy even when it cannot detect abnormal events. Hence, in addition to Accuracy, we 

use another two evaluation metrics, i.e., Precision, Recall, and F1-Score specifically for 

anomaly detection, as shown in Equation 13 and 14, where TP is the number of abnormal 

samples that are accurately detected, FP is the number of normal samples that are mis-

takenly identified as abnormal, and FN is the number of abnormal samples that are mis-

takenly identified as normal. 

 

TP
Precision

TP FP



 (13) 

TP
Recall

TP FN



 (14) 

2
1

Precition Recall
F

Precision Recall

 



 (15) 

For the training and testing set construction, the HAI dataset has explicitly provided 

training set and testing set, and we split the datasets in a ratio of 4:1 to construct training 

set and testing set for the ZJT and PS datasets. 

4.2 Experiment 1: Parameter Tuning Experiment 

The most important parameter of AD-FGP is δ, the threshold of the anomaly score. 

We increase δ from 0.1 to 1.5, and the experiment results for the three datasets are shown 

in Figure 4. It can be found that Precision and Recall have opposite evolving patterns. By 

increasing δ, the model would become stricter for anomaly detection, and thus there 

would be less anomalies being detected. As a result, the Precision shows a stable in-

creasing phase and the Recall shows a stable decreasing phase. In the three datasets, the 

best overall performance can be achieved by setting δ in a narrow range of (0.1, 0.3). 

Consider that the model is trained in an unsupervised way, we cannot tune a specific 

value of δ for each dataset in practice, and thus we set δ = 0.2 for all the three datasets. 

4.3 Experiment 2: Comparison Experiment 

To evaluate the competitive performance of AD-FGP, we compare it with the fol-

lowing six baseline methods. All the methods work in the unsupervised learning style 

without abnormal samples, and they have been optimized to output their best perfor-

mance. 

Threshold: It firstly calculates the value range for each dimension in the normal 

samples (i.e., the maximum value and minimum value). Then, given a real-time ICS 

sample, if the value of any of its dimension exceeds the corresponding normal value 

range, it would be identified as abnormal. 

OC-SVM: It refers to the One-Class SVM anomaly detection model [8]. Specifi-

cally, it firstly learns a boundary that encapsulates the normal samples in a 

high-dimensional feature space, and then detects abnormal samples that fall outside this 

boundary. We directly use the original sensor readings in the ICS samples as features. 
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iForest: It refers to the iForest anomaly detection model by leveraging an ensemble 

of trees [9]. Specifically, it firstly splits the samples according to the features using mul-

tiple decision trees, and then considers samples with lower average path lengths as 

anomalies. We also directly use the original sensor readings in the ICS samples as fea-

tures. 

LSTM-AE: It refers to the generative anomaly detection model that uses LSTM as 

encoder and decoder [24]. Specifically, the encoder projects the input multivariate 

time-series data into a latent space, and then the decoder reconstructs the input from the 

latent representation. The anomalies are identified based on the reconstruction errors. We 

utilize a stacked architecture with two LSTM layers. 

GAT-AE: It refers to the generative anomaly detection model that uses GAT as en-

coder and LSTM as decoder [25]. Specifically, it firstly uses GAT to learn the correla-

tions between different dimensions, and then works like LSTM-AE. 

MTGNN-AD: It refers to a predictive anomaly detection model that applies the 

MTGNN model proposed in [26]. Specifically, it firstly trains a multivariate time-series 

prediction model based on MTGNN, and then detects anomalies by comparing the pre-

dicted values and the true values. 

The comparison results are shown in Table 1, and the following tendencies could be 

discerned from the results.  

First, although Threshold is the mostly applied strategy in engineering practice, it 

has very low performance on detecting anomalies in the three datasets, especially the 

pattern deviation anomalies that do not have sudden changes in sensor signals. Based on 

the analysis on the experiment results, we find that Threshold can detect simple anoma-

lies such as equipment shutdown, continuous low/high temperature readings or control 

system failure. However, most anomalies in the three datasets are caused by complex 

events (e.g., producing mode switches, cyber-attacks). For example, producing mode 

switches would usually result in a signal pattern change instead of significant increase or 

decrease to the sensor signal readings. Cyber-attacks are stealthy events, which would 

also try not to significantly change the sensor signal readings. 

Second, deep learning based methods (i.e., LSTM-AE, GAT-AE, MTGNN-AD, and 

AD-FGP) have a much better performance than traditional machine learning based 

methods (i.e., OC-SVM and iForest). This is because these deep learning based methods 

can capture the spatial temporal correlations of the multivariate ICS data, while the tradi-

tional machine learning based methods only extract very superficial features. 

Third, GAT-AE outperforms LSTM-AE. It shows that graphs can capture the spatial 

correlations between different dimensions in the multivariate time-series data, which are 

effective in the anomaly detection tasks. 

Fourth, GAT-AE generally has better performance than MTGNN-AD, except for 

the PS dataset. Since GAT-AE is a generative model and MTGNN-AD is a predictive 

model, it indicates that there are more pattern deviation anomalies than single metric 

anomalies in these datasets. It also shows that the complex events and stealthy attacks 

tend to generate pattern deviation anomalies, which cannot be effectively detected based 

on simple sensor signal changes. 

Fifth, the Accuracy is insensitive to the methods, because these datasets are label 

imbalance, i.e., the majority of samples are benign. AD-FGP has the best overall perfor-

mance on detecting anomalies. It increases the F1-score by approximately 5% to 40% as 



AD-FGP: INDUSTRIAL MULTIVARIATE TIME-SERIES ANOMALY DETECTION VIA FUSION OF GENERA-

TIVE AND PREDICTIVE MODELS 

13 

compared to the best baseline method. It shows that it could achieve a better performance 

by fusing generative model and predictive model. 

 

 

Fig. 4. The effect of parameter δ. 

Table 1. The comparison experiment results. 

 Accuracy Precision Recall F1 

ZJT-PD dataset:     

Threshold 0.563 0.135 0.097 0.113 

OC-SVM 0.426 0.973 0.180 0.303 

iForest 0.505 0.313 0.400 0.351 

LSTM-AE 0.645 0.984 0.426 0.595 

GAT-AE 0.750 0.648 0.782 0.709 

MTGNN-AD 0.528 0.428 0.914 0.582 

AD-FGP 0.753 0.643 0.912 0.754 

HAI dataset:     
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Threshold Learning 0.985 0.000 0.000 0.000 

OC-SVM 0.951 0.084 0.091 0.087 

iForest 0.824 0.117 0.089 0.101 

LSTM-AE 0.947 0.172 0.698 0.276 

GAT-AE 0.992 0.267 0.840 0.405 

MTGNN-AD 0.932 0.166 0.682 0.267 

AD-FGP 0.931 0.454 0.836 0.589 

PS dataset:     

Threshold Learning 0.584 0.664 0.117 0.199 

OC-SVM 0.546 0.652 0.153 0.248 

iForest 0.608 0.775 0.173 0.283 

LSTM-AE 0.572 0.720 0.299 0.422 

GAT-AE 0.587 0.665 0.618 0.641 

MTGNN-AD 0.745 0.644 0.685 0.664 

AD-FGP 0.746 0.747 0.696 0.721 

4.3 Experiment 3: Case Study 

In this section, we use two cases to demonstrate the effectiveness of AD-FGP. In the 

first case, we extract a two-minutes data segment from the ZJT dataset, as shown in Fig-

ure 5(a). The data segment encompasses five different monitoring devices, i.e., paper 

cutter, industrial fan, F.R.L (air source unit), air distribution box, and soldering iron. The 

anomaly event occurs during the 40-seconds interval from 7:02:56 to 7:03:36. Based on 

the experiment results, the threshold-based method and the predictive model fail to detect 

this anomaly event, since the deviation of the time-series data is not sudden and signifi-

cant but smooth and persistent. The generative model and AD-FGP successfully identify 

this anomaly event. 

In the second case, we extract another 104-seconds data segment from the ZJT da-

taset, as shown in Figure 5(b). the data segment exhibits a sudden and significant devia-

tion at 8:20:48. Based on the experiment results, the generative model fails to detect this 

anomaly event, while the threshold-based method, the predictive model, and AD-FGP 

successfully identify this anomaly event. 

The two cases demonstrate that AD-FGP is capable of simultaneously capturing 

pattern deviation anomalies and single-metric anomalies, thereby enabling more accurate 

anomaly detection. 
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Fig. 5. A case study of AD-FGP. 

5. CONCLUSIONS 

In this paper, we investigate the anomaly detection in industrial control systems. We 

propose AD-FGP, a novel deep learning model that is trained in an unsupervised way to 

identify anomalies from the multivariate time-series data in industrial control systems. 

By combining the strengths of generative and predictive models and learning the sen-

sor-wide correlations and temporal relations of multivariate time-series data, AD-FGP 

outperforms other state-of-the-art models on three datasets consistently. Specially, 

AD-FGP is effective at detecting both pattern deviation anomalies and single metric 

anomalies. 

Future works could come from two aspects. First, AD-FGP can only detect anomaly 

events without knowing what types of anomaly events they are. Hence, enhancing 

AD-FGP with the ability of anomaly classification can benefit the response to these 

anomaly events. Second, how to diagnose the detected anomaly events and trace the 

sources are also worth studying. 
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