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Current frameworks for human motion recognition rely on the identification of crucial 
points in the human skeleton, taking into account the spatio-temporal variation between 
consecutive images. However, existing frameworks are not capable of effectively training 
models to identify varying levels of a single motion. This paper introduces a novel 
approach to improving the accuracy of human movement recognition by utilising the 
average movement rate of the backbone as a deep learning spatio-temporal feature. 
Keypoint information captured using OpenPose human skeleton recognition technology is 
used to calculate the average backbone movement rate for adjacent keypoints. The Spatial 
Temporal Graph Convolutional Networks (ST-GCN) framework for human movement 
recognition is employed to train models to identify basic types of movement, and the Long 
Short-Term Memory (LSTM) framework is used to train models to identify advanced 
movement levels using the average movement rate features of the backbone. The ST-GCN 
and LSTM models are integrated to obtain the overall human motion and recognition 
results at the motion level. The method proposed in this paper is compared with human 
movement recognition models in the related literature and a performance analysis is carried 
out. In terms of accuracy, our approach outperforms the ST-GCN and LSTM models by at 
least 4% on a human squatting motion dataset, and outperforms the LSTM and Spatial 
Temporal Variation Graph Convolutional Networks (STV-GCN) models by at least 8% on 
a dataset of humans walking with different emotions. 
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Activity Recognition; 
 

1. INTRODUCTION 
With the rapid advancements in deep learning, artificial intelligence and image processing 
and analysis technologies, image recognition applications have progressed from the 
recognition of single face images to continuous images of human movement. Human 
movement recognition applications involving the analysis and evaluation of specific 
movements and emotional gestures have been the focus of recent developments. Human 
movement recognition can be utilised to assess whether an individual's body conforms to 
the demands of specific sports movements, or can be used to provide advice and 
suggestions to help athletes improve their skills and abilities, and to prevent sports-related 
injuries [1-2]. An additional application of human movement recognition technology 
involves assessing whether an individual is in a negative emotional state by detecting his 
or her body movements, amplitudes of oscillation and speed of movement. This enables 
managers to provide appropriate assistance and guidance to prevent unfortunate events, or 
to maintain the safety of the community [3-7]. A human motion recognition framework 
utilises deep learning techniques to learn the features of the spatio-temporal variation in 
the key points of the human skeleton between successive images. For example, the point-
movement rate of a keypoint is used to learn and analyse deep learning features with a 
focus on the changes in human posture under specific types of motion or emotional 
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situations [8-13]. The related literature [14] contains an open dataset which has been used 
as a basis for the classification of human deep squatting movements; the authors used a 3D 
keypoint detection technique to obtain the keypoint information of the human skeleton, 
and calculated the Euclidean distance between all the key points. In this way, they obtained 
a symmetric distance matrix, which was flattened into a vector matrix information, and 
then used a one-dimensional convolutional CNN for classification. However, this approach 
cannot efficiently a train model to identify different levels of the same squatting movement 
of the human body. In another study, an open dataset of human walking emotion gestures 
was designed and built, and a complete classification was provided. A Long Short-Term 
Memory (LSTM) human movement recognition framework was used to train a model to 
identify the emotions associated with walking movements [15]. However, this model was 
unable to efficiently recognise different levels of motions in humans undergoing the same 
walking movement. 

The Spatial Temporal Variation Graph Convolutional Networks (STV-GCN) [16] 
human movement recognition framework was proposed to solve this problem. It was used 
to train a basic model of movement types, and the KNN machine learning classification 
algorithm was used for training and identification of the movement level based on the 
keypoint displacement motion rate of the human skeleton. The Spatial Temporal Graph 
Convolutional Networks (ST-GCN) human motion recognition and KNN motion level 
classification models were integrated to obtain recognition results for both the motion itself 
and the level of activity. However, this scheme does not provide efficient model training 
and recognition for the temporality of motion-level features. In this paper, we use the 
average motion rate of the backbone as a feature to enhance the learning of spatio-temporal 
features and improve the accuracy of human motion recognition. To achieve this, 
OpenPose[17] human skeleton keypoint recognition technology is employed to capture 
and compute the average movement rate of the backbone between adjacent frames. Next, 
the ST-GCN human movement recognition framework is applied to train a basic model of 
movement types. The LSTM human movement recognition framework is supplemented 
with the average movement rate of the backbone as a feature for the training of advanced 
movement level models. Finally, the ST-GCN and LSTM models are integrated and the 
model stacking technique [18]-[20] is applied to enhance the accuracy of human motion 
recognition. This research paper is structured as follows: we present a review of the 
relevant literature in Section 2; a description of the proposed backbone spatio-temporal 
features for deep learning of human action recognition is given in Section 3; our 
experimental methodology and performance analysis are introduced in Section 4; and our 
conclusions and suggestions for future work are presented in Section 5. 
 

2. RELATED WORK 
The Spatial Temporal Graph Convolutional Networks (ST-GCN) [21] human motion 
recognition framework was proposed for the training and identification of time series data 
on the keypoints of the human skeleton from continuous images. It learns the correlations 
between the keypoints of the skeleton over time and space from continuous images, 
allowing for training and identification by a motion recognition model. The ST-GCN 
framework uses attention models to learn the critical features of the human skeleton. In the 
training process, feature extraction is performed using graph convolution and time 
convolution network layers. The trained model is formed from a combination of nine ST-
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GCN units, each of which applies the attention-increasing mechanism of ResNet. The 
overall ST-GCN human action recognition framework takes human skeleton keypoint 
information as input to the standardisation layer, and the standardised keypoint information 
is then passed to the nine ST-GCN feature training modules. A dropout function is applied 
to avoid overfitting problems, and SoftMax is used for final classification through the 
pooling layer. The above classification model uses a stochastic gradient descent method 
for feature learning, in which the learning rate is reduced at a specific time. 

The ST-GCN human action recognition framework has been found to be proficient 
in terms of learning image features and effectively classifying various human actions; 
however, it focuses on learning image features, and cannot efficiently train models to 
recognise different levels of the same human action. A combination of the LSTM and 
random forest algorithms has been proposed for the training of human motion recognition 
models. A public dataset of humans walking while expressing different emotions was 
designed for use in training models to identify four types of human emotions: happy, angry, 
sad and neutral. In this study, RGB videos of emotional walking movements were extracted 
in the form of 3D poses for use as features. The LSTM technique was used to learn the 
deep features of human walking and emotional movements, and information about joint 
angles, areas and distances was combined for classification of these features using a 
random forest algorithm. However, this recognition framework based on the LSTM and 
random forest algorithms could not recognise different levels of the same human motion. 

Another study presented an STV-GCN human action recognition framework that 
integrated the ST-GCN and KNN algorithms to create a model that could recognise 
different levels of the same human motion. This framework used PoseNet [22] technology 
to acquire human skeleton keypoint information and calculated the change in the keypoint 
displacements between consecutive image frames, using the skeleton keypoint information 
to create a speed level classification model. This model used the maximum variation in the 
displacement of the keypoints of the human skeleton as a feature for training of the model. 
In another approach, an STV-GCN motion recognition framework used a ST-GCN model 
to classify human walking speeds and emotions into four categories: happy, angry, sad and 
fearful. The KNN algorithm was used to classify the speed of motion into three categories: 
fast, medium and slow. However, whether this involves the classification of different 
human motion categories or hierarchical classification within the same category, the issue 
of action timing sequential changes must be taken into consideration, as the KNN 
algorithm cannot effectively learn the correlation features between timing sequential data 
in classification. 
 

3. LONG SHORT-TERM MEMORY NETWORK BASED ON SPATIO-
TEMPORAL FEATURES FOR HUMAN ACTIVITY RECOGNITION 

3.1 System Overview 
The present study focuses on improving the accuracy of human motion recognition for 
different degrees of the same human motion. To this end, we utilise the average rate-of-
motion feature of the plural backbone to enhance the learning capability of the model in 
terms of spatio-temporal features. The architecture of our system is shown in Figure 1. We 
use OpenPose skeleton keypoint recognition technology to capture keypoint information 
and the ST-GCN human motion recognition framework to train a model to identify basic 
categories of motion. Since the ST-GCN human motion recognition framework cannot 
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identify small differences between the same type of motion, we use the average movement 
rate of the plural backbone as a deep spatio-temporal feature, which allows the LSTM 
recognition framework to train and identify models at the advanced motion level. Finally, 
we integrate the results of the ST-GCN and LSTM recognition models using Support 
Vector Machine (SVM) with model stacking to enable the network to recognise both the 
type and the level of human movement. 

 
Fig. 1: System architecture 

 

 
Fig. 2: Human skeleton keypoints used by OpenPose to capture information 

 
In this study, continuous motion videos were cut and processed to obtain separate 

frames, and OpenPose human skeleton keypoint recognition technology was used to 
identify location information on 19 keypoints. As shown in Figure 2, these were the right 
and left eyes, right and left ears, nose, neck, right and left shoulders, right and left elbows, 
right and left wrists, right and left hips, pelvis, right and left knees, and right and left ankles. 
These key points of the human skeleton were uniquely numbered for subsequent use in 
training and identification of human movements. A total of 18 points after removing the 
pelvis keypoint were used for training as features of a basic motion category model using 
an ST-GCN human movement recognition framework. We calculate the average backbone 
movement rate between adjacent frames for keypoints 0 to 14. The complex backbone 
average motion rate calculated from the above keypoints is used as a feature, and is passed 
to the LSTM recognition framework for advanced model training and recognition. In this 
paper, we use SVM to perform stacking to achieve integration of the ST-GCN and LSTM 
models. For classification categories that involve different levels of movement, the ST-
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GCN framework is used to classify the actions, whereas for classification categories that 
involve similar levels of movement, the LSTM framework is used for action classification. 
This method is used to obtain a human motion recognition system that includes both basic 
categories of motion and the levels of activity. 
 
3.2 Deep Learning Using Spatio-temporal Features 
In this study, we use the average movement rate of the plural backbone as a deep learning 
spatio-temporal feature to improve the recognition accuracy of the overall human motion 
and level of movement. Pseudocode for the algorithm used to calculate the average 
movement rate of the plural backbone is shown in Figure 3. The required keypoint-related 
functions are shown in Figures 4 to 6. When the keypoint information is obtained by 
Openpose, it is important to avoid misjudgement of the keypoints of the human skeleton 
in certain continuous images, which could result in training and identification errors by the 
human motion recognition model. Hence, when keypoints in continuous images exceed a 
reasonable offset range (outliers), we calculate the average of these keypoints in the 
previous and next frames as a replacement, to reduce misjudgements that can affect model 
training and recognition. 

Deep learning algorithm for plural backbone average movement rate 

1  Input: video 
2  Output: final_classification 
3  Requires: function calculate_neck_keypoint() 
4  Requires: function calculate_pelvis_keypoint() 
5  Requires: function calculate_other_keypoints_keypoint() 
6  Requires: Human skeleton key point extraction technology openpose 
7  Requires: ST-GCN model 
8  Requires: LSTM model 
9  Requires: SVM model 
10 begin: 
11     keypoints = openpose(video) 
12     if the value is missing or incorrect: 
13         correct_keypoints = Correct using the previous and next frame data 
14     if the current key is a neck key: 
15         A = calculate_neck_keypoint(correct_keypoints) 
16     if the current key is a pelvis key: 
17         B = calculate_pelvis_keypoint(correct_keypoints) 
18     if the current key is other key: 
19         C = calculate_other_keypoints_keypoint(correct_keypoints) 
20     bone_data = combined_data(A, B, C) 
21     ST_GCN_score = ST-GCN(keypoints) 
22     LSTM_score = LSTM(keypoints) 
23     stacked_data = stack_data(LSTM_score, ST_GCN_score) 
24     final_classification = SVM(stacked_data) 
25 return final_classification 

Fig. 3: Deep learning algorithm for plural backbone average movement rate 
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The skeleton keypoint information from the continuous images described above was 
used for training of our ST-GCN human movement recognition model, and the spatio-
temporal features of the average movement rate of the skeleton between the adjacent 
keypoints were calculated to train the LSTM recognition model. Finally, using model 
stacking technology, the outputs of the ST-GCN and LSTM are stacked, and are used as 
the input to the SVM model for final classification. Different models may give varying 
results in different situations, and model stacking technology can help to combine the 
advantages of several models. By combining the outputs of ST-GCN and LSTM through 
SVM, the best classification results can be obtained. The average spatial and temporal 
characteristics of the backbone movement rate were calculated based on the critical points 
of the skeleton adjacent to the neck, as shown in Figure 4. The average rate of backbone 
movement based on these key points (neck and left shoulder, neck and right shoulder, and 
neck and pelvis) were calculated anteriorly and posteriorly, respectively. These distances 
were then used to find the rate of movement of these four keypoints between frames. The 
spatial and temporal characteristics of the average movement rate of the backbone between 
the keypoints of the neck and left shoulder were obtained by averaging the movement rates 
of consecutive images of the neck and left shoulder. The same process was performed for 
the neck and right shoulder and the neck and pelvis, to give the spatio-temporal 
characteristics of the average movement rates of these keypoints. 

Calculation of the spatio-temporal characteristics of the average movement rate of 
the backbone based on the keypoints adjacent to the neck 

1 Input: keypoints 
2 Output: Backbone speed 
3 Requires: Left shoulder keypoint LS 
4 Requires: Right shoulder keypoint RS 
5 Requires: Neck keypoint N 
6 Requires: pelvis keypoint P 
7 def defcalculate_neck_keypoint(): 
8     if the current key is a neck key: 
9        LS_bone = [(LSi+1 - LSi) + (Ni+1 - Ni)]/2 
10       RS_bone = [(RSi+1 - RSi) + (Ni+1 - Ni)]/2 
11       P_bone = [(Pi+1 - Pi) + (Ni+1 - Ni)]/2 
12 return LS_bone, RS_bone, P_bone 

Fig. 4: Calculation of the spatio-temporal characteristics of the average movement rate of 
the backbone based on the keypoints adjacent to the neck 

 
The average spatial and temporal characteristics of the backbone movement rate 

between the key points of the human skeleton adjacent to the hips are calculated as shown 
in Figure 5. The average rate of backbone movement based on the key points of the human 
skeleton, hip and left hip and hip and right hip, was calculated anteriorly and posteriorly 
respectively. We then calculated the Euclidean distance between consecutive frames for 
three key points: the pelvis and the left and right hips. These distance values were used to 
find the movement rates of these three key points between consecutive frames, and the 
movement rates of the pelvis and left hip between consecutive frames were averaged to 
obtain the average spatial and temporal characteristics of the rate of movement of the 
backbone between these key points. The same process was applied to the pelvis and the 
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right hip to obtain the spatio-temporal characteristics of the average rate of movement of 
the backbone based on these keypoints. 

Calculation of the spatio-temporal characteristics of the average movement rate of 
the backbone based on the key points adjacent to the pelvis 
1 Input: keypoints 
2 Output: Backbone speed 
3 Requires: Left hip keypoint LH 
4 Requires: Right hip keypoint RH 
5 Requires: pelvis keypoint P 
6 def defcalculate_pelvis_keypoint(): 
7     if the current key is a pelvis key: 
8        LH_bone = [(LHi+1 - LHi) + (Pi+1 - Pi)]/2 
9        RH_bone = [(RHi+1 - RHi) + (Pi+1 - Pi)]/2 
10 return LH_bone, RH_bone 

Fig. 5: Calculation of the spatio-temporal characteristics of the average movement rate of 
the backbone based on the key points adjacent to the pelvis 

 

Calculation of the spatial and temporal characteristics of the average backbone 
movement rate based on other adjacent key points 

1 Input: keypoints 
2 Output: Backbone speed 
3 def defcalculate_other_keypoints_keypoint(): 
4     if the current key is other key: 
5         num_bone = {[(ki+1 - ki) + [(k+1)i+1 - (k+1)i]}/2 
6 return num_bone 

Fig. 6: Calculation of the spatial and temporal characteristics of the average backbone 
movement rate based on other adjacent key points 

 
The spatio-temporal characteristics of the average backbone movement rate between 

other adjacent keypoints are shown in Figure 6. The Euclidean distance was calculated 
between consecutive frames for the non-neck and hip keypoints and the higher numbered 
keypoints. These distance values were used to represent the rate of movement of the 
keypoints between three consecutive frames. The inter-frame movement rates of 
consecutive images for these above two skeleton keypoints were averaged to obtain the 
spatial and temporal characteristics of the average backbone movement rates between the 
two keypoints. Since the four keypoints of the human skeleton, including the right wrist, 
left wrist, right ankle and left ankle, and the next number keypoints of the human skeleton 
are not backbones, the above processing action is excluded. In summary, a total of 14 
average rates of motion of the backbone were obtained in this way and used to enhance the 
learning of spatio-temporal features. 
 
3.3 Human Activity Recognition 
In this study, we use the average movement rate of the plural backbone network as a spatio-
temporal feature for deep learning to train the LSTM human motion recognition model, as 
shown in Figure 7. The LSTM model can learn and remember the correlations between 
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time series data. Through the use of LSTM, the network can effectively learn time 
correlations and yield good accuracy. Since our ST-GCN recognition framework can 
effectively recognise different motion poses, supplemented by using the backbone average 
motion rate proposed in this paper as features used to train the LSTM human motion 
recognition model, i.e., different levels of motion can be effectively recognised. We use 
OpenPose recognition technology to capture the skeleton keypoint information from N 
consecutive frames K_ij, where i is the image frame and j is the keypoint number. The 
Euclidean distance of each skeleton keypoint between consecutive frames is calculated as 
shown in Equation 1. The rate of movement of the human skeleton keypoints between 
consecutive image frames is then obtained. As shown in Equation 2, a total of (N−1) frames 
multiplied by the average movement rates of 14 backbones can be obtained, and this 
information is used as spatio-temporal features for deep learning. This enhances the 
learning of spatio-temporal features during training of the LSTM human movement 
recognition model. The method proposed in this paper enhances the learning of spatio-
temporal features, allowing the model to learn the degree of temporal variation of the 
human backbone between successive image frames, as shown in Figure 8. After stacking 
the prediction results output by the ST-GCN network and the prediction results output by 
the LSTM network, we will use the stacked output results as the input data of SVM, and 
extract ST-GCN and LSTM through SVM classification. Their respective advantages are 
combined to obtain better recognition results. 

D௜௝ =  K(௜ିଵ)௝ − 𝐾௜௝                   (1) 

 

S୧୨ =  D୧୨ − D௔ௗ௝௔௖௘௡௧௞௘௬௣௢௜௡௧                   (2) 
 

 
Fig.7: Deep learning from spatio-temporal characteristics 

 

 
Fig. 8: Temporal changes in the human keypoints between consecutive image frames 
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4. EXPERIMENTAL RESULTS 
In this paper, two datasets are used to evaluate the classification accuracy of our model, in 
terms of both the motion itself and the level of activity. The first of these datasets contains 
videos of humans carrying out a squatting motion, which is used to train and identify one 
correct and four incorrect squat motion recognition models. The second dataset is used 
with the human emotion motion dataset to train and identify four emotion and three speed 
motion recognition models. Finally, the accuracy of our system is compared with that of 
ST-GCN, LSTM and STV-GCN. The system tested here was built on a CPU i9 10900, a 
GPU of RTX 3070, with the Windows 10 operating system. For the ST-GCN human action 
recognition framework, we set the number of epochs to 300, the batch size to 32, the test 
batch size to 32, and the base learning rate to 0.1, and the stochastic gradient descent 
algorithm was used as an optimiser. During training, the learning rate of the framework 
was multiplied by 0.1 after every 30 epochs, and the learning rate was decreased up to five 
times. For the LSTM human action recognition framework, we set the number of epochs 
to 300, the batch size to 64, and the base learning rate to 0.001, and the Adam algorithm 
was used as a framework optimiser. For the stacked model, we use the SVM from the 
scikit-learn suite. Its core uses poly and the value of C is set to one. 

 
Fig. 9: Proportion of sample labels for the human squatting dataset 

 

 
Fig. 10: Confusion matrix for recognition of squatting movements 

 
The first experiment involved the human squat dataset, which was used to identify 

human actions consisting of the same movement but at different levels. The proportion of 
samples in each category is shown in Figure 9. This dataset contained 3,856 video files, 
each 10 s in length, and each video showed a human target performing between one and 
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five squats. Our system used OpenPose to extract continuous human skeleton keypoint 
information from each video for 30 frames multiplied by 10 s. In this dataset, the items 
were divided into a total of five categories, which were labelled ‘Good’ for perfectly 
correct squats, ‘Bad shallow’ for insufficient squat depth, ‘Bad inner thigh’ for inner thigh 
swing during the squat, and ‘Bad back warp’ and ‘Bad back round’ for incorrect states of 
back flexion. In this paper, for the human deep squatting motion dataset, the plural average 
backbone motion rate was used as a feature for learning and recognition, and deep learning 
was performed for human motion recognition of the same motion but different motion 
levels. The confusion matrix of the experimental results is shown in Figure 10. The results 
were sufficient to verify that the proposed method could effectively improve the 
recognition accuracy for different levels of the same movement. For the perfectly correct 
deep squat, squat, inner thigh swing and two incorrect backbends, the accuracy rate 
exceeded 80% for all five categories, with an average accuracy of 90.81%. As shown in 
Figure 11, we compared the proposed method with ST-GCN and LSTM in terms of 
recognition accuracy, and the results were 90.81%, 86.5% and 82.0% for the same 
movements at different levels of activity, respectively. Our experimental results also show 
that using the average motion rate of the plural backbone as a feature for deep learning can 
effectively improve the accuracy of human action recognition by at least 4%. 

 
Fig. 11: Comparison of performance on the squatting database 

 

 
Fig. 12: Proportion of labelled samples in the human emotion activity dataset 

 
The second experiment in this paper used a human emotional action dataset to 

identify different levels of the same action. The dataset was divided into four emotions and 
three action speeds, giving a total of 12 labels indicating each emotion and action speed. 
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The proportion of samples in each category is shown in Figure 12. There were 360 video 
files in the dataset, each of which was 1 s long and showed one human target walking a 
fixed distance with a specific emotion. Using OpenPose's capture technique, continuous 
human skeleton keypoint information was extracted from each video, and a total of 29 
frames of human skeleton keypoint information for 1 s were obtained. In this experiment, 
plural skeleton average motion rate features were used to enhance the learning from a 
human emotional action dataset. At the same time, we use 10 videos for each small label 
as samples for testing. A confusion matrix of the results from our system in terms of 
recognition of human actions at different levels is shown in Figure 13. From these results, 
it can be seen that the proposed method can effectively improve the recognition accuracy 
of different levels of the same action, with an average accuracy of 83.33%. The recognition 
accuracy of our proposed method was compared with that of LSTM and STV-GCN, and 
the results are shown in Figure 14. The recognition accuracies for the same action but 
different levels of activity were 83.33%, 70.0% and 75.0%, respectively. From these 
results, it can be observed that using the plural backbone average motion rate as a feature 
for deep learning improves the accuracy of human motion recognition by at least 8%. 

 
Fig. 13: Confusion Matrix for Human Emotional Action Recognition 

 

 
Fig. 14: Comparison of performance for human emotional action recognition 

 
5. CONCLUSIONS 

To solve the problem in which current human motion recognition frameworks cannot 
efficiently train models to identify different levels of the same motion, the average 
movement rate of the backbone was implemented as a deep learning spatio-temporal 
feature to improve the overall accuracy of human motion recognition. Our network was 
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trained to identify basic types of movement and advanced movement levels using ST-GCN 
and LSTM human movement recognition frameworks. The results from these two models 
were integrated and stacked to obtain predictions for the final category of motion and the 
level of activity. A performance analysis of the proposed method with ST-GCN, LSTM 
and STV-GCN human motion recognition models showed that on a dataset of videos of 
squatting motions, our scheme outperformed the ST-GCN and LSTM models in terms of 
accuracy by at least 4%, and on a dataset containing videos of emotional walking, it 
outperformed LSTM and STV-GCN by at least 8%. 
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