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Cloud-based computing framework resolves the dilemma of users’ computational capa-
bilities mismatching the demand for high-quality models. However, the explosive growth
of data due to the massive popularity of terminal devices not only imposes higher require-
ments on the performance of the cloud but also increases the risk of private data leakage
in the cloud. In this paper, we focus on cloud-based secure aggregation with private data
on cloud devices, where the cloud can only handle fixed bit lengths. First, we propose a
truncate-mapping scheme for private data to alleviate the resource limitations of the cloud
by encoding big data into different shares for parallel computing. Second, we define the
calculations on the encoded data, involving the secure addition and secure comparison, to
achieve secure aggregation on private data. It is worth noting that not only the results of
the computations on the encoded data are the same as on the raw private data, but also the
proposed scheme can make full use of the power of the computing devices. That is the
more devices concerning the computation, the more precise results can be obtained instead
of steadfastly enhancing the computing power of the cloud. Finally, the theoretical anal-
ysis and experiments show that the proposed scheme is secure, effective and suitable for
practical applications.
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1. INTRODUCTION

With the rapid development of computing devices and next-generation communica-
tion technologies, intelligent control can be achieved by deploying millions of devices in
the real world to provide real-time data and feedback[1]. As the most basic and core, ag-
gregation requires timely processing of real-time data generated by end devices to achieve
the evaluation and optimisation of the system and is widely used in the fields of finance[2],
control[3], and insurance[4]. While aggregation promotes the sharing and utilisation of
data and brings great convenience to the development of the industry, the concentration
of privacy issues, which is essentially caused by the decentralisation of privacy, is becom-
ing more and more serious. For example, in a control system (control system[5]), sensor
nodes upload the collected data to regulate the system to be always in a secure and stable
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state. If the processing of real-time data and the state privacy of the system are compro-
mised, an adversary can launch an attack on the system, leading to loss of control of the
control system or even system paralysis.

In particular, the most generalised problem in aggregation is weighted sum aggre-
gation, where the aggregator collects data from agents and gets the aggregation result
based on their corresponding contributions. This not only solves the data island well but
also lays the foundation for obtaining high-quality data services. In particular, scenar-
ios such as a) federated learning[6, 7], b) decentralised and collaborative linear control
systems[8, 9, 10], c) smart grid scheduling services[11, 12, 13], etc. require weighted ag-
gregation. Among them, a) can be regarded as a secure aggregation scheme for weighted
information is public, i.e., only the privacy of the input data and result needs to be pro-
tected. In b), the weight information can only be held by the aggregator for economic and
other considerations. In c), the weight information corresponding to the input data is also
sensitive, and it is desired to achieve secure aggregation by the aggregator under the con-
dition of non-disclosure, which can be modelled as the private weighted sum aggregation,
which is the focus of this paper due to its stringent requirements on privacy.

Further, to implement the secure aggregation, researchers have proposed secure com-
putation protocols based on cryptographic primitives, such as Secure Multi-Party Com-
puting (SMPC)[14], Homomorphic Encryption (HE)[15], and Differential Privacy[16].
The agent providing the data performs privacy-preserving secure computations by inter-
fering with private input, which is then outsourced to the cloud to provide computational
services for revenue or computational results. Among them, protocols based on SMPC
suffer from excessive communication overhead, while differential privacy-based schemes
require a trade-off between privacy and the accuracy of results. HE as a cryptographic of
secure computation is widely used in weighted aggregation, a common form of data shar-
ing, but suffers from the disadvantage of high computational overhead. To address this,
partially homomorphic-based privacy aggregation schemes have been proposed in[17].

However, the above scheme has two significant drawbacks constraining application.
One is that it does not support secure comparison operations of ciphertexts, which is
particularly significant when computing on real-time data (e.g., updating the ciphertexts
variable to determine whether the iterations continue or stop). The second is that even if
more devices can handle li(li ∈ Z) bits are involved in the computation. The only way
to get more accurate results is to enhance the computational power of the devices instead
of increasing the number of devices, which would result in more expensive expenses.
Therefore, summarising the contributions of this paper is as follows:

• We propose a truncate-mapping scheme, which can map the real number with l-bits

into β shares with li bits, such that
β

∑
i=1

li = l, allowing devices that can only process

li bits to collaboratively compute a result with higher accuracy than one.

• We construct a secure comparison protocol for secure updating of ciphertexts,
which can be implemented by resorting the random numbers and encryption in
only two rounds of communication regardless of the bits of the data.

• Based on the agent-cloud-target interaction framework, we simulate a realistic se-
cure aggregation scenario with the Raspberry Pi and desktop to demonstrate the
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computational overhead and communication overhead of the proposed protocol,
which shows the efficiency of our proposal as well as security in private weighted
sum aggregation.

The remainder of this paper is organized as follows. We show the related work in
Section 2. In Section 3, we briefly present the problem statement. We describe the pro-
posed scheme in section 4. In Section 5, we show the private weighted sum aggregation
scheme. In section 6, we give to analyze the security and complexity. Finally, Section 7
experiments and concludes this paper in 8.

2. Related Work

2.1 Secure aggregation

To preserve data privacy in aggregation, the straightforward way is to resort to cryp-
tography tools. Homomorphic encryptions(HE)[18], which can support the computation
over ciphertext without decryption, have been adopted to secure aggregationl[19]. Simi-
larly, Regueiro et al.[20] designed a privacy-enhanced distributed secure data aggregation
protocol based on blockchain and HE, which uses blockchain as a distributed ledger and
facilitates efficient data aggregation through smart contracts. Although secure aggregation
protocols constructed based on homomorphic encryption (HE) guarantee confidentiality
not only for computation but also for transmission and storage processes. However, due
to the ciphertext refresh operation, it results in too high computational overhead to be
applied in reality.

To enhance the efficiency of the protocols, secure aggregation schemes based on
differential privacy have received much attention[21]. Additionally, Wu et al.[22] pro-
posed a federated learning method that combines an adaptive gradient descent strategy
and differential privacy to ensure that the federated learning scheme can be efficiently
trained with limited communication costs. Further, to make the differential privacy-based
secure aggregation scheme further more accurate, Wang et al.[23] formulate and derive
the optimal dummy variable sizes for both non-adaptive and adaptive dummy variables
to adjust the amount of noise that needs to be added. Compared with homomorphic
encryption-based aggregation schemes, differential privacy gains a great improvement in
computational efficiency, but requires a trade-off between data quality and privacy, and
does not yield more accurate results in certain scenarios with stringent requirements on
data accuracy.

Partially homomorphic encryptions(PHE)[24] to be designed for secure computation
protocols to improve the efficiency of the protocols. Merad-Boudia et al.[25] designed
an efficient and secure multidimensional data aggregation protocol based on the paillier
encryption scheme, which aims to reduce the multidimensional data cipher aggregation
overhead, and also employs batch validation techniques to ensure the correctness of the
results. Further, Tjell et al.[26] reduce the communication and computational overhead of
private aggregation protocols by performing the aggregation computation in the prepro-
cessing phase, and their scheme achieves efficient privacy aggregation without the need to
introduce any trusted third party. Similarly, Park et al.[27] proposed a privacy-preserving
federated learning algorithm that enables centralized servers to aggregate encrypted lo-
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cal model participation without decryption, and the proposed algorithm allows each node
to use different private keys in the same FL-based system. It should be deserved that
the above scheme achieves a satisfactory performance in terms of efficiency, however,
the privacy analysis is not comprehensive especially when the weight is unknown to the
data provider and aggregator. Up to now, the most thorough analysis of privacy-weighted
aggregation is presented in [17], which analyses in detail the challenges of secure ag-
gregation under different privacy requirements and designs a secure protocol based on
the paillier encryption scheme. Meanwhile, it is the scheme that we mainly focus on for
comparison.

It is worth noting that secure aggregation protocols based on additive homomorphic
encryption schemes do not support the operations concerning plaintexts that are real num-
bers, the straightforward solution is to preset the number of valid bits of data to satisfy
the requirement of the computation result precision, which will sacrifice the accuracy of
the result in some special scenarios. Further, most schemes do not support non-linear
operations such as secure comparisons. Meanwhile, most existing schemes have not yet
fully utilized the computational power of devices in distributed computing scenarios.

2.2 Secure aggregation in federated learning

As a research hotspot in recent years, federated learning is becoming more and more
popular in contemporary practices due to its ability to allow decentralized data to jointly
train a high-quality model [29]. Its core is secure aggregation, and commonly used means
are secret sharing [30], DP [31] and homomorphic computation [32], in which, in the se-
cret sharing-based approach, zero-sum masking of private values is used to realize model
training and ensure the security of private data. However, it requires additional interac-
tions and is sensitive to client dropout, which is unrealistic for which in reality is always
facing challenges of client dropout, network latency and software blocking [33]. Mean-
while, the DP-based federated learning is limited in the promotion scenario because it
faces the need to trade-off between model quality and data security. As a post-quantum
era security solution, full homomorphic encryption has been progressively introduced into
federated learning scenarios [34]. Unfortunately, the scalability of cryptographic compu-
tation and communication becomes a bottleneck, severely limiting the feasibility in the
real world [35]. To reduce the overhead of the training process and make it more practical,
Jin et al.[36] and others selectively encrypt sensitive data to provide customized privacy
protection. Subsequently, Fang et al.[37] used the improved Paillier to implement a multi-
party privacy federated learning framework, and their experimental results demonstrated
that the homomorphic scheme based on the homomorphic scheme is basically the same
as the non-homomorphic scheme in terms of model accuracy. Subsequently, in order
to reduce computational and communication overheads, Zhang et al.[38] improved the
Paillier scheme based on the Chinese Residual Theorem to speed up the computation.
Subsequently, Zhang et al.[35] utilized batch quantization and gradient encryption to re-
duce the number of model parameters that need to be encrypted. However, it is not the
best solution in terms of reducing the communication overhead, to solve this problem,
Jiang et al.[39] proposed FLASHE, which involves only modular addition operations on
random numbers to optimize the computational efficiency in order to improve the per-
formance of the scheme. Meanwhile, another limitation against homomorphic schemes
in federated learning is thatwhich cannot resist attacks from curious internal clients as
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well as collusion attacks between clients and the server due to the fact that all the clients
use the same key pairfor encryption and decryption. To overcome these drawbacks, Du
et al.[40] proposed a threshold multi-key homomorphic scheme, tMK-CKKS, which not
only allows clients to join or exit during the training process, but also achieves the goal
of reducing the communication overhead while resisting collusion attacks from no more
than t (threshold) internal clients by packing multiple messages into a single ciphertext.
Subsequently, a large number of federated learning based on multi-key homomorphisms
have been proposed to cope with this type of collusion attacks to enhance the robustness
of the system[41, 42, 43]. Further, Wang et al.[44] solves the data overload problem
by analyzing users’ functional preferences for wireless mobile network device types, and
constructs a formal application function model based on homomorphic encryption to pre-
vent privacy leakage of model parameters. Unfortunately, its scheme has not yet taken
into account the computational capacity constraints of devices when offloading tasks, and
its scheme is difficult to be applied to devices with limited computational resources in
reality.

In a word, all the above schemes focus on reducing the computation overhead by
designing appropriate encrypted data and reducing the communication overhead by ci-
phertext packing. However, they are ineffective in the face of the increasing number of
complicated computation tasks faced by a large number of devices with limited computa-
tional resources. Meanwhile, how to judge the range of ciphertext without decrypting it
without disclosing the key and private data is of great interest in practical control. Guided
by the above secure aggregation scheme, under the requirements of data privacy, the ef-
ficiency of the computation, quality of results, and especially the full use of the compu-
tational power of distributed devices, this paper develops a privacy computation scheme
that can be applied to support multi-device collaborative secure aggregation using par-
tially homomorphic encryption.

3. Problem Statement

3.1 Problem Setup

The private weighted sum aggregation is illustrated in Fig. 1. We consider a system
with n agents, including one aggregator with β devices that are capable of handling l bits,
a target that accesses the result and a system administrator. Each agent i ∈ [n], having
private data xi(t) ∈ Rni at time t and the aggregator having a mass of computing devices
wants to calculate a sum of private data in the system x(t) ∈ Rni , where Wi ∈ Rni×ni is the
corresponding weights of the local data of agent i and the system administrator is a trusted
party responsible for generating the required system parameters, the data aggregation can
be described as,

x(t) =
n

∑
i=1

Wixi(t) (1)

Each agent i ∈ [n] collects or performs calculations locally. At time t, the agent has access
to its local data xi(t)(e.g., location, energy consumption, or gradient of the FL) and the ag-
gregator holding numbers of computing devices, provides higher precision computations
for the sake of interests.
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3.2 Security Model

Inspired by [17], our proposed scheme can support the privacy requirement for pri-
vate weighted sum aggregation. According to E.q.(1), we can categorize the private
weighted aggregation into three types based on the knowledge possessed by agents and
aggregators, i.e., the agents’ private data, the weight, the intermediate results and the
aggregation result.

Privacy-preserving Weighted Sum Aggregation with unknown
weights(pWSAh):

a) Agent i: can not infer other agents’ private data x j(t), j ∈ [n]\{i} and the aggre-
gation result x(t) and the weights Wi, i ∈ [n], especially the result of Wixi(t).

b) The aggregator knew neither the agent’s private data xi(t) nor the weight Wi, i ∈
[n], including the intermediate result Wixi(t) except that compute x(t).

Privacy-preserving Sum Aggregation: In this case, we substitute from: a) Agent
i knows its corresponding weight Wi and can’t infer anything about the other agents’
private data x j(t), j ∈ [n]\i, especially the partial information Wixi(t) and the aggregation
result x(t).

Private Weighted Sum Aggregation with centralized weights: In this case, we
modify b) slightly to the following: The aggregator knows the corresponding weight Wi
of the agent and cannot infer anything else about the private data of the agent xi(t), i ∈ [n],
including Wixi(t).

In this paper, we mainly focus on the problem of pWSAh, due to its privacy re-
quirement of being the most stringent of the three cases. Furthermore, we consider a
semi-honest adversary A and define that A cannot corrupt all agents at the same time.
The honest agents’ private data input and the intermediate results of pWSAh are prevented
from the aggregator where the sum of secure aggregation results is revealed only to the
target. It should be noted that the privacy requirements should even hold under the case
where A corrupts the aggregator and up to n−2 agents.

Fig. 1. Architecture of the three parties.
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4. Proposed Scheme

In order to obtain a high-precision computation result under the devices with limited
power. We will first design a privacy data mapping scheme for the real number that satis-
fies the ciphertext computation scalability, concerning a mapping and truncating scheme.
Then, we present the basic privacy-preserving real number calculation protocols as the
basis of constructing secure aggregation, involving secure addition and secure compari-
son protocols. The detail is as follows, [[·]] denotes the ciphertext of paillier. In particular,
we give an example based on our proposed protocol throughout each section to aid under-
standing.

4.1 Mapping

In application, sensor nodes in the Industrial Internet of Things, financial data, or
real-time data in power systems generally are rational numbers. For the sake of computa-
tion, while preserving the privacy of the agent’s input, we first convert rational numbers
to non-negative integers based on [29].

We first define the binary format of floating-point numbers in this paper as follows.
Specifically, we specify p denote the number of bits of the real number, where the q bit is
used for indicating the fractional.

bpbp−1 · · ·bq+1.bqbq−1 · · ·b1 (2)

for given integers p,q ∈ N and p > q, bi ∈ {0,1} ∀ i ∈ {1,2, · · · , p}. The set of all
such numbers is said to be:

Q(p,q) := {x ∈ Q|x =−2p−q−1bp +
p−1

∑
i=1

2i−q−1bi}. (3)

Therefore, the set Q(p,q) describes all the rational numbers that can be expressed by
the E.q.(2), i.e., from −2p−q−1 to 2p−q−1 −2−q. According to E.q.(2), negative numbers
are represented in complement form, which means that the subtraction can be regarded as
the addition.

Instance: Given 5.25 and -1.125 for aggregation, the (2) of the private data corre-
sponding is 0101.0100 and 1110.1110 for p = 4 and q = 4. After Mapping, the private
data mapped is 01010100 and 11101110.

4.2 Truncating

As the main contribution of this paper, we propose the truncating algorithm based
on significant bit splitting for integers by sending the block data that truncated data to
different computing devices for a higher accuracy result. Different from the common pre-
formation of converting large data into small data for computation (e.g., China’s Residual
Theorem, CRT), truncated data can not only support comparative operations without re-
covering the original data but also enable numerous devices with limited computing that
can only process data with fewer significant bit to collaborate to compute a result with
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a more significant bit, with the greater the number of devices the higher the precision.
It stems from the fact that the performance of the device is preset when it is produced,
but the number and complexity of tasks are becoming increasingly intense. Therefore,
how to fully utilize the limited power but number of devices to obtain a high-precision
calculation result is the focus of this paper.

Given the bits of the result required accuracy, l. Firstly, we truncate the non-negative
integers with more bits into β block data, denoted by ∆i, for boosting the devices with
limited computing power to perform efficient calculations. For a plaintext data x, we have:

∆i = [x mod 2
i
∑

i=1
li
− x mod 2

i−1
∑

j=1
l j
] ·2

−
i−1
∑

j=1
l j
,

β

∑
i=1

li = l,(i ∈ {1,2, ...,β})
(4)

Where, li denotes the number of bits of the block data ∆i(l j means too) i.e, the binary
form of the decimal number 23 is 10111, which can be truncated into 1︸︷︷︸

∆3

|| 01︸︷︷︸
∆2

|| 11︸︷︷︸
∆1

.

It is means that l = l3 + l2 + l1 = 1+ 2+ 2 = 5. Then, the corresponding block data as
follows: Data = (23)10 = (10111)2 = (∆3||∆2||∆1) = (1||1||3).

Based on E.q.(5), it is possible to combine β devices that can only handle the data

with only li bits to compute a result with l bits, wherein
i=β

∑
i=1

li = l.

Instance: In this section, we assume that the data is truncated into tree blocks and
the bit length of each is 2, 3, 3. That is (01010100)2 = (∆3||∆2||∆1) = (010||101||00) =
(2||5||0) and (11101110)2 = (∆3||∆2||∆1) = (111||011||10) = (7||3||2)

4.3 Secure comparison protocol Cmp

As a fundamental step in many data analysis algorithms, it is important to design
secure and efficient privacy data comparison protocols. We give the design details of the
secure comparison protocol in Algorithm 1.

The core of the secure comparison protocol is based on the fact that given two en-
crypted data under Paillier ’s scheme [[a]] and [[b]], the algorithm 1 is to extract the en-
crypted bit [[t]] that is the most significant bit of [[a−b]] such that (t = 1)⇔ (a ≤ b). In
Cmp, after mapping in section 4.1, we get the non-negative numbers and the block data
∆β contain the bit that indicates the sign of raw data, lβ -th bit in ∆β . When lβ = 1, the
block data corresponding raw data is negative and vice versa. Therefore, when ∆β ≥ 0,
∆β ∈ [0,2lβ −1] and ∆β < 0, ∆β ∈ [−1,1−2lβ ].

Instance: In this case, we denote that a = 5.25 and b = 1.125, the block data con-
taining the significant bit of the result of private data addition is 2 < 2l3 −1 = 23 −1 = 7
hold(Why the result is 2 will be given in the next section). Therefore, the compare result
between 5.25 and -1.125 is 5.25 being larger.

4.4 Secure addition protocols for block data(SABD)

To realize the scalability of ciphertext computation that can compute high-precision
aggregations cooperatively across multiple devices. In this section, we propose the secure
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Algorithm 1 Secure comparison protocol Cmp

Input: [[(∆)data]], [[(∆)DATA]], pk
Output: Encrypted bit [[t]]: t = 1 ⇔ (data ≤ DATA)
1: Aggregator: Choose rβ ∈ Z2p−1 , {r′

β
∈ Z2p−1\i′ · 2li−1; i = 1, · · · ,β , i′ ∈ Z+} get [[∆β ]] = [[(∆)data

β
−

(∆)DATA
β

]], choose a random bit RandomCoin and set Coin0 = 0

2: Aggregator: Compute: R′ = r′β //2lβ −1 and get [[R′]]−1

3: Aggregator: Compute: R = r′β mod2lβ −1 and get [[R]]−1

4: Aggregator: Send [[∆β ′ ]] = [[r′β ]] · [[∆β ]] · [[2β ]]−1 · [[Coini−1]] to Target
5: Target: Decrypt: [[∆β ′ ]]

6: Target: Compute: γ = ∆β ′ mod 2lβ −1 = (∆β + r′β ) mod 2lβ −1

7: Target: Compute: γ ′ = ∆β ′//2lβ −1 = (∆β + r′β )//2lβ −1

8: Target: Send [[Coinβ−1]], [[γ]], [[γ ′]] to Cloud
9: Aggregator:

10: if RandomCoin = 1 then
11: Set [[AAA]] = [[R]]
12: Set [[BBB]] = [[γ]]

13: else
14: Set [[AAA]] = [[γ]]

15: Set [[BBB]] = [[R]]
16: end if
17: Aggregator: Send: [[AB]] = [[AAA]] · [[BBB]]−rβ to Target
18: Target: Decrypt: [[AB]],
19: if AB > 0 then
20: Set RE =−1
21: else
22: Set RE = 0
23: end if
24: Target: Send [[RE]] to Cloud
25: Aggregator:
26: if RandomCoin = 1 then
27: Set [[RE]] = [[RE]]
28: else
29: Set RE = [[RE]]−1 · [[1]]
30: end if
31: Aggregator: Compute: [[t]] = [[γ ′]] · [[R′]]−1 · [[RE]]
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addition protocol SABD for block data in Algorithm 2, which defines the addition of the
truncated data to achieve secure aggregation.

Algorithm 2 Secure addition protocols for block data(SABD)
Input: [[(∆)data]], [[(∆)DATA]]

Output: The result of [[data+DATA]]
1: Aggregator: Choose r := {r|ri ∈ Z2p−1 , i = 1, · · · ,β}, r′ := {r′|r′i ∈ Z2p−1\i′ ·2li−1; i = 1, · · · ,β , i′ ∈ Z+}

get [[∆i] = [(∆)data
i ] · [(∆)DATA

i ]], choose a random bit RandomCoin and set ti−1 = 0
2: for For i = 1 to β do
3: Aggregator: Compute: R′ = r′i//2li and get [[R′]]−1

4: Aggregator: Compute: R = r′imod2li and get [[R]]−1

5: Aggregator, Target: Running Algorithm 1, the cloud gets [[ti−1]]

6: Aggregator: Compute: [[∆i]] = [[∆data+DATA
i ]] · (2li [[Coini−1]]

−1)

7: end for

8: Aggregator: Computate the aggregation
β

∑
i=1

[[∆i]]

The main idea of the algorithm 2 is that given two block data ciphertexts [[(∆)data]]
and [[(∆)DATA]] with the unencrypted data are li bits, the block data of the corresponding
positions of the sum between data and DATA can be computed. More generally, consid-
ering the case where (Z1 × [[(∆)data]]) · (Z2 × [[(∆)DATA]]), in which Z1,2 ∈ Z+, we only
need to replace 2li with Z1Z22li in SABD, leaving the rest steps unvaried.

Instance: Carrying on from the example in the previous section, we compare the
a= 5.25 and b= 1.125, i.e., we compute a−b, which can be given abbreviated as follows.
In which, the result of the block data ∆2 is not less than 2l2 = 23 = 8, the forward one bit
produces the carrying. Thus, the block data containing the most significant bit results is
2 = (2+7+1)mod2l3 = 10mod8 = 2.

2||5||0
+ 7||3||2

2||0||2
(5)

4.5 Recovery

In this section, we will recover the computation of mapped and truncated private
data. It can be recovered by recursively weighting the sum of block data and dividing by
2−q as shown in E.q.(6). Moreover, after the aggregator computes the block data of the
data sum to be solved, the secure aggregation result X(t) can be recovered by line (8) in
algorithm SABD.

[[data+DATA]] = 2−q · [[data(p,q)]][[DATA(p,q)]]

= 2−q ·
β

∑
i=1

2li−1 · [[∆i]],(2l0 = 1, i = 1, · · · ,β ) (6)

Instance: we recover the aggregation results as follows, 2−q · (2||0||2) = 2−4 ·
(010||000||10) = 2−4 · (01000010) = 0100.0010 = 4.125.
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5. Private Weighted Sum Aggregation

In this section, we will show how to apply the privacy-preserving scheme proposed
in Section 4 to solve the pWSAh problem mentioned in Section 3.2 to achieve private
weighted sum aggregation.

• Setup(1κ , T , wi∈{1,...,β}, (l, l1, ..lβ ), pk, sk):

System Administrator: Input the security parameter κ , the period T , the precision
l bits required for the aggregation, and the number of devices β owned by the ag-
gregator. Output the public key pk and the number of bits for which the aggregation

device should perform the computation that satisfies
i=β

∑
i=1

li = l for broadcast, secret

key sk for target and the ciphertext [[wi]] for agent i.

• Enc(pk,xi(t), [[wi]]):

Agents: take as input the public parameters, agent i′s private data xi(t) in time
step t which is the private data that performs the Mapping mentioned in Section
4.1 to convert a floating-point real number to a non-negative integer. Then, the
mapped non-negative integer is truncated to block data ∆i(i = 1, · · · ,β ) based on
Truncating in Section 4.2. Finally, the agent i computates the block data ciphertext
[[wi]]

∆i(i = 1, · · · ,β ) and send it to the cloud offline.

• Computing(x(t)):
Aggregator, Target: running the algorithm SABD in Section 4.4 to get the private
weighted sum aggregation result x(t). Furthermore, after ϕ iteration, running the
algorithm Cmp in Section 4.3 to compare the ciphertext result with the ϑ , which is
the maximum data that can be processed by the aggregator that consisting of mul-
tiple computing devices, to determine whether to continue with the computation.

• Recover(x(t)):

Target: perform the Recovery in Section 4.5 to get the aggregation x(t).

In the above algorithmic steps for solving the problem pWSAh, we focus on how
to apply the scheme proposed in Section 4 for secure aggregation. It is worth noting
that the proposed scheme can work for other application scenarios due to its ciphertext
computational scalability that supports multi-device co-computation

6. Theoretical Analysis

6.1 Security Analysis

According to different privacy requirements in 3.2, A can corrupt different parties.
We assume that the M , which is a probabilistic polynomial time(PPT) simulator, can gen-
erate the computationally distinguished between the real view and ideal view for A (e.g.,
the coalition of the cloud and some of the agents), then the transcript obtained by run-
ning our proposed scheme in private weighted sum aggregation is uniformly distributed
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random number. It is worth noting that the security of privacy weighted sum aggrega-
tion procedure has been proved in detail in [17], and we will focus on the security of the
secure aggregation concerning the schemes proposed in this paper, in particular, the se-
cure addition protocol SABD, as well as the secure comparison protocol Cmp is the core
component. Further, the security proof relies on the following.

Lemma 1. All the sub-protocols that consist of a protocol can be simulated perfectly,
and then the protocol is perfectly simulatable.

Lemma 2. If a random element a is uniformly distributed on Zp and independent
from any variable b ∈ Zp, then a±b is also uniformly random and independent from b.

Theorem 1. Cmp protocol is secure in semi-honest model.
Proo f . The real view Viewreal of cloud is {[[rβ ]], [[rβ

′]], R, R′, RandomCoin, [[∆i]],
[[∆β ′ ]], [[Coinβ−1]], [[γ]], [[γ ′]], [[RE]], [[t]]}, where rβ , rβ

′ and RandomCoin are randomly
select from Zp. Since ∆β ∈ Zp, ∆β ′ is random according to Lemma 2. Further, the
simulator M can output the view for A by selecting the random data necessary to encrypt
the inputs. Hence, A that does not have the decryption key cannot infer information
about the [∆β ] by simply computing between [γ], [γ ′] and ∆β ′ . For cloud corrupted with
A , A cannot infer to [[γ]] and [[γ ′]] for which the ciphertexts are refreshed after the
target computed. Since RandomCoin, [[Coinβ−1]]pk and [[RE]], the output [[t]] of cloud is
random. M can generate the simulatable view Viewsim for A , which is computationally
indistinguish between Viewreal and Viewsim. Meanwhile, A cannot distinguish Viewreal
and Viewsim that corrupted the target. Therefore, Cmp protocol is secure in the semi-honest
model.

Theorem 2. SABD protocol is secure in our proposed scheme.
Proo f . Being the essential compoent of the Algorithm SABD, Cmp has been shown

to be secure in Theorem 1 and the output is uniformly random, and for all [[∆i]](i =
1, · · · ,β ), it is a variable in [0,2li−1], M can simulate the real view Viewreal by choosing
random numbers for encryption. The Viewreal of SCBD protocol and Viewsim generated
by M are computationally indistinguish for A . Therefore, the SCBD protocol is secure
in our proposed scheme.

Theorem 3. The private weighted sum aggregation used Our proposed scheme is
secure in semi-honest.

Proo f : Consider an iteration in private aggregation. Firstly, the Paillier cryptosys-
tem is semantically secure, therefore, A with not the secret key can not learn any private
information from any two ciphertexts. Secondly, a secret share of zero and the different
random data that uniformly sampled from Zp for each time step ensure the intermediate
values had been blinded which is computationally indistinguishable for A corrupted with
the cloud or the cloud, some of the agents or the target. Thirdly, based on Lemma 1 and
Lemma 2, the simulator M can generate the view on the real inputs are computationally
indistinguishable. Hence, after many rounds of iterative computation or large-scale com-
putation, we can prove the security of the privacy weight sum aggregation scheme in the
semi-honest model after using the proposed scheme.

6.2 Complexity Analysis

In this section, we compare the computational and communication complexity of our
proposal with that of [15] in TABLE 1, where β is the number of blocks that are truncated
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for mapping, and l denotes the number of bits that the device can process. Compared to
[15], the computational and communication overhead of the proposed scheme increases
linearly with the blocks while the bits that can be processed also increase, the increase
is tolerable, and it also demonstrates that we can get results with higher accuracy by
concentrating numbers of computationally weak devices for collaborative computation.

Table 1. Comparison of computational and communication complexity
Protocol Computational Communication Range Comparison

[15] O(1) O(1) O(l) No

Cmp O(3) O(4) O(lβ ) Yes

SCBD O(6β −1) O(8β −1) O(lβ ) Yes

6.3 Functional Analysis
In particular, to better demonstrate the functional differences between the proposed

protocol and schemes with similar functionality, especially homomorphism-based feder-
ated learning schemes, we give TABLE 2 as follows.

Table 2. Comparison of the function
Protocol Ciphertext Comparison Distributed aggregation Parallel computation for multiple devices

[15] % % %

[33] % % %

[35] % % %

Ours ! ! !

As shown in Table 2 above, compared to schemes such as homomorphic-based fed-
erated learning that focus on secure aggregation, the proposed protocol supports the joint
execution of secure aggregation tasks on multiple devices, which is consistent with our
aim of jointly utilising a large number of low-performance devices to accomplish complex
aggregations that require complex aggregations. Meanwhile, to ensure that the scope of
computation during the aggregation process does not exceed the capacity limit of the de-
vices, we propose a homomorphic-based secure comparison operation, which is not only
beneficial to extend the homomorphic ciphertexts to perform nonlinear computation tasks,
but also helps to achieve the problem of limiting the number of computations of homo-
morphic ciphertexts. Next, we are going to show the practical overhead of the proposed
protocol concerning the related comparison schemes in the next section.

6.3 Correctness Analysis

In this section, we will show the correctness of our proposed protocol. According

to our proposed protocol, we aim to prove that 2q ·wi ·
i=n
∑

i=1
xi = wi ·

i=n
∑

i=1

j=β

∑
j=1

∆i j, that is 2q ·
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i=n
∑

i=1
xi =

i=n
∑

i=1

j=β

∑
j=1

∆i j.

2q ·
i=n
∑

i=1
xi =

i=n
∑

i=1

j=β

∑
j=1

∆i j

=
i=n
∑

i=1

l−1
∑

k=0
2k ·bik

=
i=n
∑

i=1

j=β

∑
j=1

k=l j−1

∑
k=0

bi jk ·2
k+

u=l j
∑

u=l0
u

=
i=n
∑

i=1

j=β

∑
j=1

(
k=l j−1

∑
k=0

2k ·bi jk) ·2l j−1 · t j−1

=
i=n
∑

i=1
(−2p−1bip +

p−1
∑
j=1

2 j−1bi j)

(7)

Wherein, bik(bi j) denotes the k-th( j-th) bit of the binary bit string of the Mapped private
data of the i-th client and bi jk represents the k-th bit in the binary of the j-th block for client
i. As shown in (7), the second equals indicate the binary form of raw private data, the third
equals indicate the principle of addition between blocks of private data, while the fourth
equals the aggregation under realistic distributed computing when carrying between block
data is considered. These demonstrate the correctness of the proposed protocol.

7. Experimental Results

We mainly analyze the performance of the proposed scheme in private weighted
sum aggregation from efficiency and accuracy. More specifically, we use a Raspberry
Pi, which is a processor with CPU 1.5GHz, 4 GB RAM, and 500MHz GPU as compu-
tationally resource-constrained terminal equipment. Meanwhile, a laptop with Intel Core
i7-7500 U, 8 GB RAM and a desktop with AMD Ryzen 7 processor and 16 GB RAM
for experiment. In the simulation, the security parameter of length is 80 bits and the Pail-
lier cryptosystem parameter, N, is set to 2048 bits. Furthermore, we specify the message
representation to be on l = 32 bits, with 16 bits for integers and 16 bits for decimals and
show the simulation for solving private sum aggregation as follows.

To better demonstrate the characteristics of the proposed protocols, we conducted
comparative experiments in [15], [35], [33] and directly based on the encryption scheme
Paillier cryptosystem. Among them, [35] and [33] are homomorphism-based federated
learning aggregation schemes. As shown in Fig. 2., we do not count the training overhead
in the homomorphism-based federated learning scheme for fairness judgement and focus
on the overhead used for aggregation in the different schemes. It is worth noting that the
running overhead of our proposed protocol is the parallel computation time of the devices,
i.e., block = 2 means that the original private data is truncated into two chunks of data and
computed by two different devices at the same time under the same power, which is dif-
ferent from the centralised computation on a single server in [15], [35], [33]. To ensure
the correctness of the proposed protocol, our proposed protocol needs to perform carry-
ing between block data, which leads to an increase in its computational overhead as the
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number of blocks increases. Meanwhile, we note that the schemes other than the original
Paillier-based scheme have optimised the encryption scheme to varying degrees, which
leads to a significant improvement in the efficiency of ciphertext aggregation compared
to the original Paillier system scheme. However, in this paper, we do not focus on accel-
erating the efficiency of the encryption system, so we can conclude that the running time
of the aggregation is not much different in the case of the selected encryption scheme.
Additionally, the difference in computing device capabilities has a greater impact on the
efficiency of the secure aggregation scheme, as shown in Fig. 2(b). However, the increase
in the overhead of the proposed protocol in terms of runtime is not significant compared
to other schemes, the only increase is only the increase in the carry perforation between
blocks of data, i.e., the addition between blocks of data however this is negligible.

(a) Running time on desktop (b) Running time on raspberry pi

Fig. 2. Running time on different device

(a) Receive and transmit on desktop (b) Receive and transmit on raspberry pi

Fig. 3. Communication overhead on different device

Furthermore, we analyse the communication overhead of the proposed scheme and
[15], [35], [33] and the directly based encryption scheme Paillier cryptosystem in Fig. 3.
From Fig. 3(a) and (b), it can be seen that schemes other than our proposed scheme only
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(a) Running Time of the Comparison Protocol (b) The bits can be processed

(c) The bits can be processed (d) The bits can be processed

Fig. 4. Running time on different Scheme

need to encrypt the data and then fully delegate it to the server, which is different from
our proposed scheme, which requires the necessary communication between computing
devices. Therefore, we have the highest communication overhead. Meanwhile, due to
the packing and batch computation of ciphertexts used in [15], [35], [33], this has a more
obvious advantage in terms of communication compared to schemes based directly on the
Paillier cryptosystem. From the experimental data, it can be obtained that as the number
of blocks in the proposed protocol increases, this means that more computing devices are
needed to complete the task, and therefore the communication time is the longest, i.e.,
the communication cost of ‘block = 5’. Meanwhile, in conjunction with Fig. 3(b), it
can be seen that the more data processing power of the computing devices, the lower the
communication overhead. It is worth noting that the communication overhead of the pro-
posed protocol can be greatly reduced when implementing joint multi-device centralised
execution of computing tasks. Meanwhile, the increased communication overhead of the
proposed protocol is acceptable.

To fully evaluate the efficiency of the proposed scheme, we simulated the secure
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comparison protocol on a desktop computer with a different number of agents as shown
in Fig. 4(a). Unlike computational and communication protocols, in the safe comparison
protocol, we only need to perform operations on ∆β containing sign bits based on the fact
that the comparison result satisfies ∆β < 2lβ−1. The efficiency of the secure comparison
protocol is demonstrated by the fact that it requires only 41us compared to a computa-
tional protocol that runs for about 0.2 milliseconds per round. Further, to analyse the
performance of the proposed protocol with different aggregators and different numbers
of clients, we simulate the proposed protocol with different numbers of gradients at 2,5
and 10 aggregators and clients respectively as shown in Fig. 4(b). There is no significant
difference in the overhead due to distributed parallel computation and the biggest differ-
ence is in the overhead added by the rounding operation between the block data in the
last step. Meanwhile, we show in Fig. 4(c)(d) the range of data that can be processed
by the computing device, which is still limited even with more devices compared to the
scalable computation of protocols other than the proposed protocol, which does not take
into account the ciphertext. In contrast, as the number of devices increases, the range of
data that can be processed based on the proposed protocol increases. In other words, as
the number of computing devices increases, the computable range increases linearly.

As discussed above, we can see that the private weighted sum aggregation based
on our proposed scheme, despite a trivial increase in computational and communication
overheads, expands the range of data that can be processed significantly, which is consis-
tent with our original intention i.e., to obtain more accurate results by integrating existing
computational resources.

8. Conclusion

In this paper, we proposed a private weighted sum aggregation approach aiming to
fully exploit the computational resources of existing devices to obtain more accurate com-
putational results. Next, we will extend our proposed scheme to support more complex
computations to be applied in more domains.
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