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Abstract: In the context of the rapid development of the Internet of Things, cloud-fog 

collaborative computing has become a key technology to solve the problem of insufficient 

computing resources and network latency in heterogeneous scenarios. A cloud-fog collaborative 

computing network model is proposed to address the issues of uneven allocation of computing 

resources, poor performance in pure cloud or fog computing in heterogeneous scenarios, and 

effective resource allocation is achieved through optimized genetic algorithms. Firstly, a cloud-fog 

collaborative computing network model is constructed, which improves computing performance 

and network latency through the model’s advantages. Subsequently, the control parameters of the 

population fitness standard deviation optimization genetic algorithm are introduced, and an 

improved genetic algorithm is designed to solve resource allocation problems. The results showed 

that the improved algorithm had an accuracy of 0.996, proving its high accuracy. The average 

calculation time of the improved algorithm was only 3 seconds, and the error range was controlled 

within 0% -1.3%, proving its high computational efficiency. In practical application scenarios, 

when the number of users increased from 5 to 40, the system cost only increased by 12.1%, 

indicating that the increase in computing resources did not have a significant impact on the system 

cost. The above results indicate that the proposed method has significant effectiveness in 

improving the performance of IoT systems, providing strong support for the development of 

cloud-fog collaborative computing networks. 

Keywords: Internet of Things, Cloud-fog collaborative computing, Standard deviation of fitness, 

Genetic algorithm, Resource allocation 

 

1. Introduction 

In today's digital era, the Internet of Things (IoT), as an innovative technological concept and 

application model, has received widespread attention and application. The IoT connects sensors, 

devices, physical objects, and virtual objects to achieve information interconnection have brought 

tremendous convenience and change to social production and life [1-2]. However, with the 

expansion of the application scale of the IoT and the increase in the amount of data, the problems 

of scalability, delay, and energy consumption faced by traditional network models such as cloud 

computing (CC) and edge computing are increasingly prominent [3]. The optimization and 

solution of network models in the IoT also face many challenges [4]. Due to the heterogeneity and 

dynamism of devices and sensors in the IoT, how to reasonably allocate computing tasks and 

resources to achieve task balance and system stability has become a key issue. Meanwhile, due to 

the large scale of data and complex and diverse computing tasks in the IoT, there is an urgent need 

for research and improvement on how to efficiently process and analyze data to meet user needs 

[5-6]. For this reason, some scholars have proposed fog computing (FC). Compared to CC, FC has 

better storage and communication capabilities, but its computing power is significantly lower than 

CC. However, in the IoT, due to the heterogeneity and dynamism of devices and sensors, the 

allocation of computing resources is often uneven, which may lead to imbalanced task allocation 
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and affect the stability of the entire system. Meanwhile, due to the large scale of data and complex 

and diverse computing tasks in the IoT, relying solely on CC or FC may make it difficult to 

efficiently process and analyze data to meet user needs. For example, in application scenarios such 

as intelligent transportation and smart cities, due to the differences in data generation and 

processing among different nodes, some nodes may have insufficient computing resources, while 

others may have excessive computing resources. In addition, if CC or FC is simply used, it may 

lead to delayed and inaccurate data processing due to network latency, data transmission, and 

other issues, thereby affecting the performance of the entire system. Therefore, to achieve 

optimization of the IoT in heterogeneous scenarios, a cloud-fog collaborative computing (CFCC) 

network model is proposed, and a multi-strategy improved genetic algorithm (IGA) is used to 

solve the model to improve the performance of the IoT. The contribution of the research lies in 

applying the IGA to solve the cloud-fog collaborative resource allocation problem in 

heterogeneous scenes. This method can ensure lower computational complexity and significantly 

reduce the average system cost. This study is divided into four parts. The first part discusses the 

current development status of CC and genetic algorithm (GA); the second part constructs a CFCC 

network model and proposes optimization solution strategies; the third part tests and analyzes the 

CFCC network model, and evaluates the optimization and solution effectiveness of the model; the 

final part summarizes the research results and explores the main directions for future research. 

2. Related works 

CC has strong computing power in processing and managing large amounts of user data, 

promoting social interaction, and building broader social networks. It has significant advantages in 

large-scale data processing and efficient computing tasks. Many researchers have conducted 

research on it. Osman et al. proposed a mixed integer linear programming model to solve network 

delay and resource consumption in cloud architecture and optimize the allocation of data positions 

generated by the fog layer in cloud architecture. It could also reduce the overall power 

consumption and data delay of the architecture, and a joint optimization model was established for 

cloud architecture power consumption and delay. The research findings indicated that the 

optimized model could save 92.3% of power consumption and greatly reduce data transmission 

delay [7]. Tripathy et al. proposed a load-balancing model of the IoT based on context awareness 

and CC for the smart city environment. Through the load balancer composed of the Internet, cloud, 

and two fog layers, the network traffic and server load in the Internet were dynamically distributed 

to reduce the comprehensive system load in the smart city IoT environment and improve the 

resource utilization and quality of service of the IoT [8]. Sharma and Park proposed a distributed 

CC network structure for the IoT environment of the intelligent transportation system. The 

integration of blockchain technology facilitated the registration and authentication processes for 

IoT devices deployed in intelligent transportation systems. Furthermore, it enabled the generation 

of user signatures in conjunction with the aggregation signature scheme and optimized the 

allocation of computational resources within internet systems by employing the use of intelligent 

deployment contracts, thus enhancing the overall security of the intelligent transportation system. 

The research outcomes denoted that CC networks can effectively reduce system latency, achieving 

81% low latency at local nodes [9]. Liu designed a coordinated control model for a multi-agent 

system utilizing CFCC technology. They then employed cloud edge computing to realize the 

overarching coordinated planning and control of a substantial multi-agent system. Furthermore, 

they improved the individual agent coordination of the system by implementing active 
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compensation for communication delay. Finally, they employed time domain learning prediction 

in order to obtain the potential output of the system agents. [10]. Li et al. proposed a refined 

4-layer IoT structure based on CC to improve the quality of service and response speed of the 

Internet and enhance the processing and transmission capacity of the IoT on-edge device. The 

cloud-fog IoT structure was based on adaptive load balancing of links, which reasonably planned 

and dynamically allocated computing resources in the IoT system, effectively reducing the 

comprehensive operating costs of the system. The experimental findings expressed that the 

cloud-fog IoT structure could effectively improve data transmission rates by 12.7% and 8% in 

medium and heavy-load environments [11]. 

GA simulates natural genetic evolution for optimal solution search, with excellent global 

search and parallel processing capabilities, and is widely used in multiple fields. Dharma et al. 

proposed an inflation prediction model based on GA and regression analysis to address the 

inflation problem in Indonesia. This model combined historical consumption data to predict the 

price levels of goods and services in Indonesia, thereby achieving comprehensive prediction and 

evaluation of the country's inflation situation. The research results indicated that the mean square 

error of the inflation prediction model was 0.1099, which had a high prediction accuracy [12]. 

Nikbakht et al. applied GA to the optimization and improvement of neural networks and utilized 

the optimization advantages of GA to solve the hyperparameters of the neural network. They used 

GA to optimize the hidden layers and the number of neurons in each layer of the neural network to 

improve the prediction accuracy of the neural network [13]. Pal team introduced GA into the 

optimization problem of wireless sensor networks and proposed an energy-saving clustering 

technology for wireless sensor networks based on GA. The GA was used to optimize the load and 

energy allocation of wireless sensors in heterogeneous environments, and from the perspectives of 

sensor compactness and separation, the energy efficiency and network scalability of sensors were 

improved [14]. Yakubu and Murali designed a meta-heuristic method based on improved 

Harris-Hawks optimization to reduce the transmission delay of CFCC resource allocation, which 

can allocate tasks and layer resources between cloud and fog layer. The results showed that this 

method was significantly superior to other algorithms in terms of maximum completion time, 

execution cost and energy consumption [15]. To reduce the delay and power consumption of cloud 

networks in heterogeneous environments, Ghosh and De designed a heterogeneous cloud-fog 

architecture based on the weighted majority cooperative game theory, in which different cloud-fog 

structures can cooperate to perform tasks. Experimental results showed that the delay and power 

consumption of this architecture were significantly reduced compared with other networks [16]. 

In summary, CC, as an emerging computing model, has strong capabilities in processing and 

managing a large amount of user data, promoting social interaction, and building a wider social 

network. However, currently, most studies still find it difficult to further improve their 

computational and solving abilities, which limits their performance in practical applications. In 

order to solve this problem, this study proposes a multi-strategy GA optimization solution strategy, 

which has the advantages of improving the computing power of CFCC network models in 

heterogeneous environments, better-utilizing resources, improving computing efficiency and 

service quality. Moreover, it can be widely applied in practical applications to provide technical 

support for the development of the IoT. 

3. CFCC network model and GA optimization algorithm design 

The IoT has promoted social development, and how to further improve the development 
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speed of the IoT is a problem that many research institutions need to consider. This study proposes 

a CFCC network model to address the high latency defects of CC in the IoT. Firstly, a CFCC 

network model is constructed in heterogeneous scenarios. Secondly, an optimization plan is 

proposed for resource management and allocation. Finally, an optimization solution strategy based 

on an IGA is constructed to further optimize the CFCC network model. 

3.1. Construction of CFCC network model 

In the IoT system, CC provides powerful computing power for devices connected to the 

network, enabling them to transfer computing tasks to the cloud for solving, greatly reducing the 

computational workload of devices and improving their operational efficiency. However, CC has a 

significant drawback, which is its high computing latency and transmission energy consumption, 

which cannot be applied in some special scenarios, such as smart transportation. FC is developed 

on the basis of CC and can effectively solve the high latency and privacy security issues of CC 

[17-18]. However, as an extension of CC, FC cannot completely replace CC because its data 

processing capabilities are still not ideal when facing a large number of IoT devices. From the 

current research status, using CC and FC alone cannot be applied to data processing in multiple 

scenarios [19-20]. Therefore, a CFCC network resource allocation model in heterogeneous 

scenarios is proposed to enable CC and FC to work together, compensate for each other's 

shortcomings, and improve the performance of IoT systems. Specifically, based on the CC and FC 

architecture of the IoT, this article constructs an optimization problem model that minimizes 

system costs by optimizing offloading decisions, computing resource allocation, and uplink 

transmission power allocation. Through comparative simulation, the superiority of CFCC is 

proved. The resource allocation model for the CFCC network constructed in heterogeneous 

scenarios is shown in Figure 1. 
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Figure 1. CFCC network resource allocation model 

 

In Figure 1, a collaborative computing model combining CC, FC, and the IoT is constructed. 

CC is mainly used for calculation, providing computing resources for FC, and in-depth analysis 

and planning of the results of FC is conducted. It utilizes fog nodes to reasonably allocate tasks to 

various devices. 

With the surge of multi-source heterogeneous data in the IoT, not only is data collection and 



 5 

uploading facing a huge load, but data processing and analysis systems also face great pressure. In 

traditional IoT systems, clouds are often important data processing and analysis centers. At present, 

the time required for cloud processing operations is increasing exponentially, and the current 

computing power is no longer able to support the calculation and analysis of large amounts of data 

in a short period of time. Therefore, there is an urgent need to optimize cloud capabilities [21-22]. 

In response to the above issues, research summarized three directions for optimization. Firstly, it is 

necessary to have better computing power than batch processing. Secondly, it is necessary to 

shorten data transmission time. Finally, it needs to ensure that it can be connected to the 

microcontroller and has an accurate and efficient information exchangeability. The optimized CC 

and FC for this study is shown in Figure 2. 
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Figure 2. Flow chart of CC and FC 

 

In Figure 2, the work of improving CC and FC mainly includes the platform construction of 

Hadoop and the data connection between Flink and Hadoop. Currently, the widely used data 

processing methods include Flink, Storm, and SparkStreaming. However, in the testing of the 

study, Flink and Storm have significantly higher processing speeds than SparkStreaming. 

Although the speed difference between Flink and Storm data processing is not significant, the 

latency of Storm data processing is much higher than Flink, so it often consumes more time when 

implementing operations outside of data processing. In addition, Flink has higher data throughput 

and a better fault tolerance mechanism. Therefore, Flink can ensure that the results after the 

operator operation are only stored once, without causing resource waste or a situation where 

incorrect results overwrite correct ones. Therefore, to meet the requirements of lower latency and 

data security, this study chose Flink as the computing method for CC. Flink processing requires 

building Hadoop as data storage. The Hadoop platform built in this study includes a Master node, 

a special sub node, two general sub nodes, and two Zookeeper nodes. Due to excessive code and 

similar basic configurations, there is no introduction to building Hadoop. 

3.2. Resource management and allocation design of CFCC network model 

The CFCC network resource allocation model constructed by the research is a three-layer 

architecture, mainly including CC, FC, and the IoT. In this model, IoT devices can transfer their 

own computing tasks to the cloud or fog through heterogeneous networks. In this heterogeneous 

CFCC network system, there are a total of n  users, which can be represented as a user set 

 1,2, ,n N  . In this user set, each user undertakes a computing task, as shown in Equation (1). 

   max, , , 1 ~n n n nW D C t n N                           (1) 

In Equation (1), nW  represents the calculation task; nD  denotes the input data size for the 
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task; 
nC  means the computing resources required after completing the task. In Figure 1, there is a 

macro base station (MBS) and M  small base station (SBS). Therefore, the base stations (BS) set 

can be represented as Equation (2). 

 1,2, ,MD M                                (2) 

In Equation (2), MD  represents the set of base stations, and M  represents the M -th base 

station. The channel bandwidth of each base station can be expressed as M , 

1 2 1M      . In this model, there are three calculation methods for any task of the user, 

namely, there are two ways for the user to migrate the calculation task. The first is to directly 

unload the task to MBS. The second method is to unload the task to SBS and then transfer it from 

SBS to MBS. The operating frequency bands of MBS and SBS are different. The spectrum is 

divided into K  subchannels, indicated as  1,2, ,K K  , and each subchannel can and can 

only be used by one user. It sets all BS channel bandwidth to local processing, offloading to cloud 

processing, and offloading to fog processing. The unloading decision of a task can be expressed as 

Equation (3). 

 1, , ,S M M M                                 (3) 

In Equation (3), S  represents the unloading decision of the character. By developing 

different offloading strategies for computing tasks for users, tasks can be offloaded to either a 

MBS or a SBS and then transferred to another base station for further processing. This strategy 

can minimize system costs while maintaining high performance. The user's offloading strategy can 

be expressed as Equation (4). 

 ,nA a i i S n N                                  (4) 

In Equation (4), when 0na  , it indicates that the user n  is processed locally. When 

,na m m M   occurs, it denotes that the user n  offloads the calculation task to SBS, transfers it 

to MBS, and then offloads it to the fog end for calculation. When ,na m m M   , it means that 

the user n  uninstalls the computing task to SBS, then transfers it to MBS, and then uninstalls it 

to the cloud for computing. When na M , it expresses that user n  directly unloads tasks to the 

fog end through MBS. When 1na M   , it refers to that user n  directly uninstalls tasks to the 

cloud through MBS. In local computing, the delay 0

nt  and energy consumption 0

nP  of task nW  

are calculated as shown in Equation (5). 

 
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                              (5) 

In Equation (5), 0

qf  denotes the computing power of the device q ; qC  means the resource 

required for device q  solving tasks;   expresses the cyclic energy consumption coefficient of 

the CPU. If the data qD  uploaded by the device q  is unloaded to the fog or cloud, the uplink 

transmission rate is calculated using Equation (6). 
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In Equation (6), 
0N  means the noise power. m

ng  refers to the channel gain between the 

device q  and the base station m . 
,

N N k m

n m nn n m m
p g



       stands for the interference caused by 

other base stations on the same subchannel to the user n  on the base station m . ,

k

n mp  indicates 

the data transmission power from the subchannel k  of the device q  to BS.  I x  expresses the 

Indicator function, wherein, when x  is true, it is equal to 1, otherwise it is equal to 0. mn  means 

the number of orthogonal subchannels of the device q . The FC delay is shown in Equation (7). 

   , ,1f f f

q n q m n q Mt I a M t I a M t                    (7) 

In Equation (7), ,

f

q mt  expresses the delay required for device q  to transfer tasks from SBS 

to MBS and then unload to the fog end. The energy consumption for FC is shown in Equation (8). 

   , ,1f f f

q n q m n q Me I a M e I a M e                    (8) 

In Equation (8), ,

f

q me  means the energy consumption required for the device q  to transfer 

tasks from SBS to MBS and then unload to the fog end. The total cost f

qP  in the FC model is 

indicated in Equation (9). 

f f f

q q q q qP e M                               (9) 

In Equation (9), q  means the influencing factor of energy consumption; q  denotes the 

influencing factor of monetary cost; f

qM  denotes the monetary cost for FC. Similar to the FC 

model, the total cost of the CC model can be expressed as Equation (10). 

f c c

q q q q qP e M                               (10) 

In Equation (10), c

qe  expresses the energy consumption of the CC model; c

qM  indicates the 

monetary cost of the CC model. Based on FC and CC models, a CFCC network resource 

allocation model can be obtained. Thus, the optimization of the resource allocation model for a 

heterogeneous CFCC network is completed, and the specific allocation process is shown in Figure 

3. 
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Figure 3. CFCC network resource allocation 

 

3.3. GA optimization algorithm design 

Firstly, a CFCC model is proposed, and an optimized allocation scheme for the model is 

proposed to optimize the resource allocation model of heterogeneous CFCC networks. In addition, 

GA is used as the core algorithm of the model to reduce the computation while maintaining the 

performance. GA is a macro biomimetic optimization algorithm that simulates biological 

evolution, which can retain superior individuals and evolve during the iteration, eliminate inferior 

individuals, and ultimately obtain the optimal solution [23-24]. In response to the problem that 

traditional GA cannot solve complex constraint functions, the study introduces a penalty function 

to reflect the degree of deviation from the constraint conditions, thereby eliminating infeasible 

solutions. At the same time, non-uniform mutation operators are used to improve the convergence 

speed of the algorithm. A parameter adaptive improvement method is proposed to address the 

issues of premature convergence and poor convergence performance of GAs, to improve the 

convergence performance of GAs. In view of this, further research is conducted to allocate 

offloading decisions, computing resource allocation, and uplink transmission power of devices in 

the model, to minimize the system cost of the model. The objective function of the optimization 

problem can be expressed as Equation (11). 
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In Equation (11), 1C  represents the non-negative local computing resources of IoT devices 

in the IoT system. max

qp  represents the maximum value of the transmission power. 2C  is the 

transmission power range of the uplink. 3C  means the non-negative nature of the computing 
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resources required by the device q  to transfer tasks to the cloud. 4C  stands for the 

non-negativity of the computing resources required for device q  to transfer tasks to the dance 

fog end. F  represents the maximum computing power at the fog end. 5C  constrains device q  

to only choose one path to solve tasks. 6C  constrains that any device in the IoT system must 

complete within the maximum latency. 0

qt  represents the maximum delay for the device q  to 

complete the calculation task locally. c

qt  represents the maximum delay for device q  to migrate 

computing tasks to the cloud. max

qt  represents the maximum delay for device q  to complete the 

calculation task. By solving Equation (11), it can minimize computational complexity while 

maintaining the performance of the IoT system. 

In solving Equation (11), it is essential to find the optimal solution for the three variables p , 

na , and f , so that the heterogeneous CFCC network resource allocation model can achieve high 

performance while minimizing system costs. First, it initializes the population, that is, randomly 

generates a set of solutions. All chromosome individuals in the population are a group of solutions 

of the objective function shown in Equation (11), and its structure is shown in Figure 4. 

 

Chromosome
OS(n) RA(n) FA(n)

1 N

1 N

1 N

1 -1 0.21 0.27 338 2275

 

Figure 4. Chromosome structure 

 

In Figure 4, OS (n), RA (n), and FA (n) are obtained by dividing chromosomes into three 

parts in the population, representing p , na , and f , respectively. The above three parts are all 

composed of N gene sequences, each corresponding to a user. Among them, OS (n) means the task 

offloading method of user n . When ( ) 0OS n  , it indicates that the user n 's strategy for 

processing computing tasks is local computing; when ( ) ,S n MO m m   is used, the strategy for 

user n  to handle computing tasks is: SBS transfers the tasks to MBS and then offloads them to 

the fog end for computation; when ( ) ,S n m MO m   , the strategy for processing computing 

tasks by user n  is: SBS transfers the tasks to MBS and then uninstalls them to the cloud for 

computing; when ( ) 1OS n M   is used, the strategy for user n  to handle computing tasks is to 

directly unload the task to the fog end through MBS for calculation; when in ( ) 1MOS n    , the 

strategy for user n  to process computing tasks is to directly offload the tasks to the cloud 

through MBS for computation. RA (n) and FA (n) respectively represent the uplink transmission 

power of the user and the computing resources allocated by the system, and their different values 

have similar meanings to OS (n). In GA, the criterion for determining whether an individual is 

retained until the next iteration is the fitness value. The study uses the objective function shown in 

Equation (11) as the fitness function, so the smaller the fitness value, the closer the chromosome 
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individual is to the optimal solution. For a certain chromosome g  in the population, its fitness 

function is shown in Equation (12). 

 
 

1

1

, 1

ob

N

ob

n

g

Fit g
penaly n g g



 





 
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


                        (12) 

In Equation (12), ob  denotes the objective function of the problem to be solved;   means 

a penalty factor mainly used to increase the fitness function value of infeasible solutions, thereby 

better removing infeasible solution individuals from the population; 1g   indicates that 

chromosome individuals are feasible solutions; 1g    expresses that chromosome individuals 

are infeasible solutions. Through cross-operation, genes from different chromosomes are 

exchanged to generate new chromosomes and expand population size. The cross-operation is 

shown in Figure 5. 

 

1 0 ... -1 0.21 0.19 ... 0.28 338 789 ... 2275Chromosome

OS(n) RA(n) FA(n)

0 -1 ... 1 0.28 0.30 ... 0.21 569 378 ... 654

1 -1 ... -1 0.21 0.30 ... 0.28 338 378 ... 2275

0 0 ... 1 0.28 0.19 ... 0.21 569 789 ... 654
 

Figure 5. Cross operation 

 

The rate of convergence of the GA is slow, and it is prone to premature, which leads to the 

unsatisfactory performance of the GA, and the solution result of the objective function may not be 

the optimal value. Therefore, the study proposes strategies to improve the GA. There are three 

main parameters that affect the performance of the GA, namely population size s , chromosome 

crossover probability Pc , and mutation probability Pm . The parameters of traditional GAs are 

determined manually and do not change during the iteration process. Therefore, they cannot adapt 

to the dynamic changes of the algorithm, making the performance of GAs unable to achieve 

optimal results. A parameter adaptive improvement strategy is proposed to dynamically change the 

parameters of the GA, thereby ensuring its performance. The adaptive parameter improvement 

strategy is shown in Equation (13). 

      

 

max min

max

ln i i average

i average

P P A f g B f g f
P

P f g f

    
 



                  (13) 

In Equation (13), f  expresses the fitness value; P  refers to the probability of crossover or 

mutation; A  and B  are two parameters that change with changes in population fitness values. 

In the GA, due to the limited population size, after multiple iterations, most excellent individuals 

are retained in the population, resulting in a too-single population and affecting the algorithm's 

optimization performance. In response to this deficiency, a mutation strategy based on the 
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standard deviation of individual fitness values is proposed, which enables individuals in the GA 

population to change their mutation probability based on the population fitness value, thereby 

increasing the diversity of the population. The standard deviation ( ) of individual fitness values 

is shown in Equation (14). 

   
2

1

1 N

i average

i

f g f g
N




                            (14) 

When   is less than the set threshold, it indicates that the population is relatively single. 

Therefore, increasing the mutation probability Pm  makes it 2 Pm , thereby improving 

population diversity and avoiding local optimization. Using the IGA algorithm to solve the 

problem of cloud-fog collaborative resource allocation in heterogeneous environments, when 

parameters change, adaptive changes in crossover probability and mutation probability can 

effectively retain excellent individuals, accelerate the elimination of inferior individuals, and thus 

optimize resource allocation. 

4. CFCC network model testing 

A CFCC network model for heterogeneous environments was proposed, and to improve the 

resource allocation ability of the computing network, an IGA was introduced to enhance the 

classification ability of the model. To verify the effectiveness and feasibility of the network model, 

this study first evaluated the relevant performance of the CFCC network model and then analyzed 

the application effect of the model in heterogeneous data processing. 

4.1. Performance evaluation of the CFCC network model 

The study was conducted on the Inter Core i7 7700 central processing unit, NVIDIA GeForce 

RTX 3080 Ti graphics card with 32GB of running memory. Simulation experiments were 

conducted using MATLAB 2022b in the Windows 10 system environment. The crossover 

probability of traditional GA was set to 0.8 and the mutation probability was set to 0.2. The 

crossover probability range of IGA was [0.25, 0.8], the mutation probability range was [0, 0.2], 

and the standard deviation range of individual fitness values in the population was [0, 1]. It 

assumed that there was a macro base station and a small base station in the system, and the service 

area of the small base station was covered by the service area of the macro station, and there were 

multiple IoT devices randomly deployed in the area. The initial population size of IGA was set to s, 

the number of IoT devices was set to N, the number of iterations was set to I, and the length of a 

chromosome was set to 3×N. The simulation parameters of the CFCC model are shown in Table 

1. Meanwhile, parameters with fixed values in the CFCC model are shown in Table 1. 

 

Table 1 Simulation parameters of cloud-fog collaborative computing model 

Simulation parameters Value 

Node computing power (GHz) 4000 

Delay in transmission time of unit data (s/KB) 0.0015 

Maximum processing latency 5 

Input data size (KB) CN: (1000, 50) 

The computing resources required for the task 

(KB) 
CN: (1000, 50) 

The computing power of the device (KB) CN: (1000, 50) 

Noise CN: (5, 1) 
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This study introduced Schaffer, Sphere, Griewangk, Rastigrin, and Ackerly functions to 

evaluate the performance of the IGA. The mobile edge computing system consisted of M  base 

stations and n  users. All nodes had only one antenna. The distance between adjacent base 

stations was 200 m. Each base station served a circular area with a radius of 150 m. Firstly, the 

change in loss value was analyzed. The results are shown in Figure 6. 
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Figure 6. Algorithm loss value change 

 

From Figure 6, the traditional GA had fewer iterations than the IGA in the Sphere, 

Griewangk, Rastigrin, and Ackerly functions tests, but its convergence accuracy was significantly 

lower than the IGA. Figures 6(b) and 6(c) show the iteration diagrams of the algorithm on the 

Sphere and Griewangk functions, respectively. From these two figures, after the objective function 

stabilized, neither algorithm converged to the optimal value and was in the exploratory stage. 

Figures 6(a), 6(d), and 6(e) show the iteration diagrams of the algorithm on the Schaffer, Rastigrin, 

and Ackerly functions, respectively. In these three figures, the traditional GA did not obtain the 

optimal solution after the iteration, while the IGA found the optimal solution. The IGA had higher 

convergence accuracy and better optimization effects compared to simple GAs. Overall, IGA 

showed better performance in the testing of these functions, with higher convergence accuracy and 

optimization effects. Secondly, using heterogeneous data as the test object, it evaluated the 
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complexity results of traditional and improved algorithms, as shown in Figure 7. 
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Figure 7. Algorithm complexity of two algorithms 

 

From Figure 7, as the amount of small base stations continued to increase, the complexity of 

traditional GAs continued to increase, ultimately breaking through 5.0 × 104, while the complexity 

of the IGA remained stable for a long time and continued to remain stable at 3.7 × 104 around. 

Therefore, compared to traditional GAs, the IGA had a higher degree of complexity in the 

calculation and had higher computational efficiency. This means that when dealing with 

large-scale problems, IGA can perform calculations more efficiently and provide better 

computational results while maintaining stable complexity. Secondly, the study compared and 

analyzed the average levels of traditional GAs, IGAs, and current CFCC models, as shown in 

Figure 8. 
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Figure 8. Loss and accuracy results of different models 

 

Figure 8(a) shows the loss results of different models. The IGA model could reach the target 

loss value after 22 iterations, while the GA model needed 38 iterations to begin convergence. 

Figure 8(b) shows the comparison of accuracy results between different models. Accuracy is an 

indicator used to evaluate classification models, which is the proportion of the total number of 

correct predictions made by the model. The IGA model had the highest classification accuracy of 
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0.996, while the GA model had a stable accuracy value of 0.991, and it only began to stabilize 

after 80 iterations. At the same time, from the above research results, the IGA loss value and 

accuracy proposed in the study were significantly higher than the average level of the current 

CFCC model. These results indicated that the IGA model achieved the target loss value with fewer 

iterations and had higher classification accuracy. Therefore, the IGA model had higher efficiency 

and accuracy in solving problems and could be widely applied to improve and optimize the CFCC 

model. In addition, to further validate the performance of the algorithm proposed in the study, 

multiple algorithm comparison experiments were conducted to evaluate the performance of the 

IGA by comparing it with other algorithms. Firstly, the calculation time and error rate of each 

algorithm were analyzed. The results are shown in Figure 9. 
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Figure 9. Comparison of calculation time and error rate of different algorithm models 

 

Figures 9(a) and 9(b) show the comparison results of the calculation time and the recognition 

error rates of each algorithm, respectively. The IGA took less computational time compared to 

other algorithms and could stay within 3 seconds for a long time, while the maximum 

computational time of the other algorithms reached 8.1 seconds. In the comparison of error rates 

among various algorithms, it was found that the proposed IGA had a minimum error rate of 0% 

and a maximum value of only 1.3%, which was significantly lower than other algorithms. In 

summary, the IGA has a shorter computational time and a lower error rate in a shorter period of 

time. 

4.2. Application effect of CFCC network model 

After completing the performance analysis of the CFCC network model, it was necessary to 

conduct application testing on the network model to verify the feasibility of this study. The 

experiment calculated the network model and the improved network model architectures in this 

study, and the time required to complete 200 data processing was from reading the data to 

completing the data processing. The experimental results are indicated in Figure 10. 
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Figure 10. Comparison of the time required for data processing 

 

From Figure 10, there was a significant difference in the time required for processing data 

between the traditional and the improved network models in this study. Under the two sets of 

network model architectures, the system response time showed a gradual upward trend as the 

number of executions increased. However, the traditional network model architecture had a 

greater increase in system response time, while the network model architecture proposed in this 

study had a smaller increase in system response time. When the number of executions was 20, the 

system response time of the traditional network model architecture was 141 seconds. The 

improved network model architecture in this study had a system response time of 92 seconds, 

which reduced 34.75%; when the number of executions reached 200, the system response time of 

the traditional network model architecture was 5874 seconds, while the system response time of 

the improved network model architecture in this study was 1634 seconds, reducing by 72.18%. It 

can be observed that the system response time of the improved IoT architecture was significantly 

lower than that of the traditional IoT architecture, indicating that its operating speed was faster. 

Meanwhile, as the amount of data processing increased, the processing time gradually slowed 

down, which may be due to the large amount of data occupying too much system memory, thereby 

reducing processing speed. However, the proposed improved IoT architecture was less affected, 

further proving its good performance. It calculated the system response time for two sets of 

architectures with different execution times, as shown in Table 2. 

 

Table 2. System response times of different number of executions for two sets of 

architectures 

The number of 

execution 

System response time 

Traditional IoT architecture 

(s) 

Improved IoT architecture 

(s) 

D-value 

(s) 

20 141 92 49 

40 561 123 438 

60 924 242 682 

80 1217 462 755 

100 1721 512 1209 

120 2012 721 1291 

140 2484 877 1607 
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160 2912 1023 1889 

180 4011 1348 2663 

200 5874 1634 4240 

 

As shown in Table 2, the system response time of the network model proposed by the 

research was lower than that of the traditional network model architecture between 20 and 200 

executions, which verified the effectiveness of this study. Secondly, it evaluated the difference in 

calculation standard deviation between two collaborative computing network models in different 

heterogeneous environments, as shown in Figure 11. 
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Figure 11. Analysis of model application in different heterogeneous environments 

 

From Figure 11, for different heterogeneous environments, the standard deviation of the 

network model proposed by the research was significantly lower than that of traditional network 

models. In multiple heterogeneous environments, the minimum standard deviation of the research 

model could be reduced to 0, and the maximum standard deviation was only 4.4. To avoid the 

shortcomings of high latency and transmission energy consumption in CC, as well as relatively 

weak computing and data storage capabilities in FC, a heterogeneous CFCC network resource 

allocation model was studied and constructed, enabling CC and FC to work together and 

compensate for each other's shortcomings, to improve the performance of the IoT system. To 

verify the application effect of the model, the study first set up a system with one MBS and one 

SBS, as well as multiple IoT devices deployed according to random principles, and compared the 

system costs of CC, FC and the proposed heterogeneous CFCC network resource allocation 

models. Simultaneously, it calculated the computational resources required for completing tasks 

using CC, FC, the designed CFCC network resource allocation model, reference [4] model, and 

reference [6] model, as shown in Figure 12. 
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Figure 12. System cost of heterogeneous CFCC network resource allocation 

 

In Figure 12(a), the higher the number of users in the IoT system, the higher the system cost 

required to complete computing tasks. However, the system cost improvement of the 

heterogeneous CFCC network resource allocation model proposed in the study was smaller. When 

the number of users was 5, the system cost of the heterogeneous CFCC network resource 

allocation model was 3.3; the system costs of the FC model and the CC model were 4.6 and 3.8, 

respectively, which were 1.3 and 0.2 higher than those of the heterogeneous CFCC network 

resource allocation model. When the number of users in the IoT system reached 40, the system 

cost of the heterogeneous CFCC network resource allocation model was 3.7; the system cost of 

the FC model was 5.3, which was 1.6 higher than the heterogeneous CFCC network resource 

allocation model; the system cost of the CC model was 4.2, which was 0.5 higher than the 

heterogeneous CFCC network resource allocation model. In Figure 12(b), the more computing 

resources required to complete computing tasks in the IoT system, the higher the system cost. 

However, the curve of the resource allocation model for heterogeneous CFCC networks was very 

flat, indicating that the increase in computing resources required for computing tasks had a 

relatively small impact on their system to verify the effectiveness of IGA in improving the 

performance of IoT systems. The superiority of IGA was validated using the average system cost 

as the fitness value. Different population sizes were taken and compared with traditional GA 

algorithms. The results are shown in Figure 13. 

 
Figure 13. Convergence performance of IGA and GA 
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From Figure 13, when the population size was 200, the system cost corresponding to the 

stabilization of IGA was about 3.5, and the system cost corresponding to the stabilization of GA 

was about 3.7. When the population size was 250, the system cost when the convergence curves of 

IGA and GA reach stability was consistent with that when the population size was 200. It can be 

observed that as the population size increased, both GA and IGA had more opportunities to find 

excellent solutions, so their convergence speed accelerated and system costs correspondingly 

decreased. In addition, when the population size reached a certain value, the impact of further 

increasing the population size on convergence speed and system cost gradually decreased. 

Therefore, in practical applications, selecting an appropriate population size was the key to 

reducing system costs and improving algorithm efficiency. Meanwhile, the convergence speed of 

IGA was significantly lower than that of GA, indicating its feasibility in improving the 

performance of IoT systems. 

5. Discussion 

With the explosive growth of information generated by IoT devices, CC has always been 

favored in processing massive amounts of data due to its powerful computing power and 

on-demand charging characteristics. However, the high latency brought by CC and the inability to 

provide real-time and mobile support are not desirable for networks in mobile scenarios such as 

smart transportation. Therefore, FC was introduced into computationally intensive applications at 

the edge of the network. Therefore, a solution method for heterogeneous network cloud-fog 

collaborative resource allocation problem based on IGA was proposed in the study. The 

experimental results showed that the designed CFCC model only increased the system cost by 

12.1% when the number of users increased from 5 to 40, indicating that the resource allocation 

strategy designed in the study has high cost-effectiveness and scalability. Compared with the 

research results of J Li et al. [11], the results of this article are significantly better . This is due to J 

Li's cloud-fog IoT architecture only improved data transmission speed, without addressing the cost 

impact of expansion. Meanwhile, the accuracy of the design method in this article reached 0.996, 

with an average calculation time of only 3 seconds, proving its high computational efficiency and 

accuracy. N I. Osman et al. obtained similar results [12]. This may be because this article is related 

to N I. Osman et al. have optimized GA, thereby improving the accuracy and computational speed 

of the algorithm. In summary, the proposed method has significantly improved the performance of 

IoT systems and provided strong support for the development of CFCC networks. 

6. Conclusion 

In the current information age, traditional CC and FC can no longer meet the rapidly growing 

data processing needs and faces problems such as high latency, bandwidth bottlenecks, and data 

security. To solve the problem of resource allocation and its solution in the IoT, a CFCC network 

resource allocation model for heterogeneous environments was studied and constructed, and a 

parameter adaptive improvement strategy was introduced to optimize the traditional GA. The IGA 

was used to solve the resource allocation problem. The results showed that in the calculation of 

time and error, the minimum error of IGA was 0%, the maximum error was 1.3%, and the average 

calculation time of IGA was about 3 seconds, which was significantly lower than other algorithms, 

indicating an increase in its accuracy and calculation speed. In the calculation of system response 

time, when the execution volume was 20 times, the response time of the traditional model was 141 

seconds, while the designed model response time was 92 seconds, reducing 34.75%. When the 
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execution volume was 200 times, the response time of the traditional model was 5874 seconds, 

and the designed model response time was 1634 seconds, reducing 72.18% compared to the 

traditional model, indicating that its running speed was relatively high. In the standard deviation 

calculation, the minimum standard deviation of the designed model was 0, and the maximum was 

only 4.4, proving that the designed model had high accuracy. The above results demonstrate that 

the designed CFCC network model has good performance and lower system costs for resource 

allocation. However, the research did not test the actual IoT environment in the application 

analysis. Therefore, in future research, the experimental environment will be expanded to provide 

theoretical support for the implementation and use of the proposed network model. 
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