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Anomaly detection in cloud computing is a critical component of guaranteeing the 

security and dependability of cloud-based services and infrastructures. It entails the 

detection of anomalous or unexpected behavior that deviates from the established patterns 

of typical operation inside a cloud environment. The analysis of massive volumes of data 

produced by multiple cloud components (such as virtual computers, networks, and storage 

resources) uses complex algorithms and machine-learning approaches. Even though, these 

works have shortfalls in establishing accurate baselines for normal behavior in a landscape 

where resources and workloads are constantly changing based on demand, and further the 

adaptability and learning capabilities necessary to recognize emerging threats. To overcome 

these challenges, a novel Density Estimated LSTM and Stochastic Krill Herd algorithm are 

implemented, in which Density Estimation LSTM is developed to evaluate the density 

distribution of cloud structures by analyzing the probability distribution from the output of 

LSTM, thereby capturing the changes and variations in cloud patterns. Further, for detecting 

the anomaly from the emerging threats, the Fractional Stochastic Krill Herd Algorithm 

(FSKHA) is implemented, which incorporates the behavior of krill swarms and incorporates 

stochastic elements, thereby recognizing both known and unknown anomalies that are 

emerging with the new data and trends. The experimental outcomes gained from the 

proposed model have effective performance in terms of low false alarm rate, higher detection 

rate, and accuracy.  
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1. INTRODUCTION  
 

The paradigm of cloud computing [1-2] has completely changed how organizations 

and people manage and access digital resources. Fundamentally, cloud computing entails 

the internet-based delivery of a range of computer services, including servers, storage, 

databases, networking, software, analytics, and intelligence. In contrast to conventional 

on-premises computing, which relies on locally installed hardware and software, cloud 

computing makes use of a massive network of remote servers housed in data centers across 

the world. Cloud service providers like Amazon Web Services (AWS), Microsoft Azure, 

and Google Cloud Platform are in charge of connecting and running these computers. 

Scalability is one of the main benefits of cloud computing. Depending on their current 

demands, users can simply modify their computing resources, such as processing power 

and storage. With this flexibility, organizations can effectively manage changing 
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workloads and make sure they only pay for the resources they utilize. Additionally, cloud 

computing [3-4] encourages cost-effectiveness because it does away with the requirement 

for sizable upfront investments in infrastructure and technology. Instead, consumers pay 

for a pay-as-you-go or subscription-based approach, which may be more cost-effective in 

the long term. 

Cloud computing's accessibility and capacity [5-6] for remote collaboration are 

important additional features. Users can access their data and applications from any 

location with an internet connection, making it possible for workers to be more mobile and 

connected on a global scale. This has become increasingly important recently as remote 

work has gained popularity as a method of operation. Cloud computing also provides 

improved data protection and security safeguards. To protect sensitive data, reputable 

cloud service providers utilize strong security mechanisms, such as encryption, firewalls, 

and multi-factor authentication. To make sure businesses follow industry norms and laws, 

they also make significant investments in compliance certifications and submit to regular 

audits. 

The flexibility and responsiveness of cloud computing [7-8] to shifting needs and 

circumstances in real-time are referred to as its dynamic nature. Cloud infrastructures are 

made to be more flexible and scalable, unlike conventional on-premises infrastructure, 

which necessitates manual modifications and actual hardware updates. To fulfill the 

particular requirements of an application or workload, resources like computing power, 

storage capacity, and networking capabilities can be readily added or decreased. This 

ability to adapt is especially important in the fast-paced and constantly changing digital 

environment of today, when organizations must act quickly in response to changes in 

consumer demand, seasonal spikes, or unanticipated traffic surges. Additionally, cloud 

service providers [9] regularly update and improve their offerings, incorporating new 

features and technologies, ensuring that consumers have access to the most recent 

advancements without the need for significant hardware upgrades. Because cloud 

computing is dynamic, it not only improves operational effectiveness but also gives 

businesses the tools they need to stay adaptable and competitive in a quickly evolving 

technology landscape.  

The dynamic nature of cloud formation [10-11] presents several key obstacles for 

prediction. The intrinsic complexity of cloud settings, which include a wide range of 

interrelated elements, from virtual machines to networking configurations, is one of the 

main problems. It is challenging to precisely predict how changes in one region can affect 

the system as a whole due to this complexity. Additionally, user needs and traffic patterns 

are prone to change in cloud systems. These elements can be influenced by a wide range 

of external factors, including seasonality, marketing initiatives, and unplanned events. It 

is difficult to predict resource requirements correctly because of this fluctuation. 

Additionally, new services or features offered by cloud providers as well as technical 

improvements may create additional uncertainty.  

Detecting anomalies [12-13] in dynamic cloud systems entails finding out-of-the-

ordinary or abnormal activity inside the complicated, constantly shifting cloud computing 

environment. The sheer size and complexity of cloud infrastructures, which can make it 

challenging to define baseline behavioral patterns, is one of the major issues in this context. 

It becomes difficult to define what constitutes a typical state because cloud resources are 

continually changing. Furthermore, advanced algorithms and procedures are needed to 
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discriminate between benign alterations and possibly hazardous anomalies. Additionally, 

creating a universal anomaly detection system can be difficult due to the wide variety of 

services and components found in a cloud context. The whole extent of a dynamic cloud 

may not always be covered by detection approaches that are labor-intensively tailored to 

certain services or configurations. Real-time detection [14-15] is also essential for swiftly 

mitigating any damage, but it might be hampered by the enormous amount of data that 

needs to be processed and examined. A significant problem in guaranteeing the security 

and stability of cloud-based systems is finding a balance among accuracy and performance 

in anomaly detection in dynamic cloud topologies. Hence, there is a need for improved 

techniques in this advanced world for detecting the anomalies in dynamic cloud structure 

is crucial. The main contribution of this work is as follows:  

• To capture and analyze the dynamic change in cloud structure, a novel 

Density Estimation LSTM is used, which in turn captures the normal 

behavior of cloud structure within the dynamic changing condition based on 

the relevant parameters. 

• To identify the anomalies in the dynamic cloud structure, an innovative 

FSKHA is introduced, which enhances the traditional SKH by introducing 

fractional decision variables and stochastic elements to improve the 

detection of both known and emerging anomalies. 

The paper content is developed as follows: section 2 offers the current works on 

literature, section 3 evaluates the process flow and unique characteristics of the proposed 

Density Estimated LSTM and Stochastic Krill Herd Algorithm, section 4 deliberates the 

result and comparison and finally, section 5 discusses the conclusion. 

 

2. LITERATURE SURVEY 
 

Qureshi et al. [16] suggested an edge computing-based system architecture for IoT 

networks called Software-Defined Network-based Anomaly Detection System (SDN-

ADS). Then, for SDN and edge computing networks, an anomaly detection system has 

been suggested to identify the behavior of the device. To guarantee the confidence of edge 

devices for data forwarding, a Trusted Authority for Edge Computing (TA-Edge) has been 

proposed. As a certificate authority for the designated trusted domain, the edge device was 

in operation. In the TA-Edge paradigm that has been proposed, the edge node only needs 

to verify the certificate once to establish trust, after which all communication can be done 

using local certificates. The proposed method will be tested in the future using more 

attacks, and hence make sure to cover more intricate networks and keep an eye out for 

criminal activity. 

El-Shamy et al. [17] introduced a support vector machine-based monitoring approach 

to find the distributed application's bottleneck in the cloud data center and discover 

performance anomalies. To train the SVM algorithm and create a baseline model of the 

typical behavior of the distributed application, it gathers data from network devices and 

produces performance metrics for the distributed application components. The SVM 

model uses the one-class support vector machine (OCSVM) and multi-class support vector 

machine (MCSVM) algorithms to detect performance abnormal behavior and pinpoint the 

source of bottlenecks. The suggested approach does not rely on static threshold settings 

for performance assessments or call for any prior information about the currently running 



JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 38, XXX-XXX (2022) 

DOI: 10.6688/JISE.20220X_38(X).00XX    
 

apps. Future research seeks to improve data center infrastructure metrics with a focus on 

end-host factors by including new machine-learning models. 

Xu et al. [18] presented a benchmark called StreamAD to help Site Reliability 

Engineers (SREs) choose appropriate anomaly detection techniques based on particular 

use cases. This benchmark provides three benefits: It includes eleven unsupervised 

algorithms with open-source code, abstracts several common operators for online anomaly 

detection to increase algorithm creation speed, and offers thorough comparisons of various 

algorithms using various evaluation techniques. Researchers efficiently evaluate novel 

algorithms in-depth with StreamAD, which helps to advance this field of study. The most 

recent research will be incorporated into StreamAD in the future, and benchmarks will also 

be assessed from more angles in order to assess how well different algorithms perform at 

detection and how easily they can be understood. 

Garg et al. [19] proposed an Ensemble Artificial Bee Colony Anomaly Detection 

Scheme (En-ABC) for multi-class datasets in a cloud context. To identify malicious node 

behavior, En-ABC has the following components: feature selection and optimization, data 

clustering, and identification of abnormal node behavior. Restricted Boltzmann Machine 

and Unscented Kalman Filter, respectively, were used to build the feature selection and 

optimization models in En-ABC. Additionally, the Mean Square Deviation and Dunn 

Index were employed to obtain an appropriate clustering based on the ABC-based Fuzzy 

C-means clustering technique. The results of the clustering have then been used to create 

a profile of normal and aberrant behavior for the detection of anomalies. Future evaluations 

of alternative evolutionary algorithms will compare the performance with the suggested 

method in the same hybridization situation. 

Wang et al. [20] implemented an adaptable architecture for stream processing so that 

IIoT applications detect anomalies online. The framework used a Docker-based distributed 

computing architecture to increase flexibility, adaptability, and customization. To 

coordinate data stream processing jobs operating on several docker nodes, the framework 

additionally made use of a central mediator. Additionally, a batch model training and data 

stream anomaly detection process-based prediction-based online anomaly detection model 

has been created. The model employs long short-term memory (LSTM) neural networks 

to forecast values in the data stream and a dynamic sliding window approach to simulate 

and identify prediction errors. Future research may look in the following 

directions: investigating various deep learning architectures and techniques; and 

incorporating domain expertise and contextual information in the anomaly detection 

process. 

Yang et al. [21] adopted a brand-new technique for detecting abnormal network 

traffic in a cloud computing setting. Six types of network traffic features were taken into 

consideration in this work, including the number of source IP addresses, number of source 

port counts, number of destination IP addresses, number of destination port counts, number 

of packet types, and number of network packets. The framework of the anomaly network 

traffic detection system was first illustrated. Second, by normalizing the values of network 

feature values and utilizing SVM to identify anomalous network behaviors, a novel hybrid 

information entropy, and SVM model has been presented to address the proposed problem. 

Other network functions will be added as part of this future work and further discussed 

about whether or not the suggested approach can be used in parallel. 

Mahdavi et al. [22] provided an anomaly-based DDoS attack detection methodology 
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for cloud environments by employing a third-party auditor (TPA). Next, a variety of 

fundamental presumptions and cloud environment setups for creating simulation tests were 

offered to assess the suggested framework. Then, the outcomes of simulation experiments 

were presented for evaluating the viability of this strategy. The experiment thus explained 

this identification of DDoS assaults in CSPs by efficiency, rapidity and precision. Future 

research is needed on the topic of analyzing the effects of various CSPs' deployment 

methods in detecting DDoS assaults using TPANG. 

Savaridassan et al. [23] evaluated an Integrated Deep Auto-Encoder and Q-learning-

based Deep Learning (IDEA-QLDL) Scheme to achieve the highest prediction accuracy 

while examining log data and identifying it as authentic or anomalous. Based on ongoing 

research into behavioral patterns that were highly suitable for classification, it starts the 

process of acceptance or denial. The proposed IDEA-QLDL Scheme's performance results 

confirmed that it outperformed the benchmarked schemes under consideration in terms of 

classification accuracy, precision, recall, and detection time. The architecture of ResNets 

and AlexNets will be used to create various anomaly detection techniques in the near 

future. 

Zhang et al. [24] proposed an automatic multi-view feature fusion and discriminative 

model optimization for increasing the accuracy. To increase detection effectiveness, this 

model makes use of extreme learning machines (ELM). ELM was a single hidden layer 

neural network that avoided the local optimal solution by converting the iterative solution 

of the output weights to the solution of linear equations. Additionally, the weights were 

applied for ranking anomalies with respect to the distance between samples and the 

classification boundary before retraining the classification model. This proposed approach 

effectively utilizes the complement information between subsystems, eliminates the 

influence of imbalance distribution, and addresses a variety of cloud computing platform 

issues. The future research is to overcome the overfitting problem and reduce the 

computational requirements. 

Nawrocki et al. [25] presented a novel hybrid anomaly detection system and a new 

method for automatic long-term cloud resource utilization planning. It examined the 

current solutions for anomaly detection, potential upgrades, and the effect on the precision 

of resource utilization planning. The proposed anomaly detection method was a crucial 

component of the research since it enables long-term accuracy improvements. The 

suggested method dynamically modifies reservation plans to lessen the needless demand 

for resources and avoid the cloud running out of them. Further study could potentially 

result in higher accuracy by dynamically estimating confidence based on the performance 

of each sub-algorithm. 

Rahumath et al. [26] offered resource scalability and security utilizing Entropy-based 

Adaptive Krill herd optimization for auto-scaling in cloud infrastructure. To do this, trust-

based anomaly detection was first established. The scheduler schedules the job in response 

to the anomaly detection. Following that, the scheduled jobs were scaled based on 

execution time predictions, and workload predictions were completed. Finally, the scaled 

data was optimized using the entropy-based krill herd technique. The Krill Herd algorithm 

has difficulty adapting to quickly changing environments or dynamic workloads. In cases 

where resource needs shift often, the algorithm struggles to successfully re-optimize 

resources 

Sivamohan et al. [26] presented TEA-EKHO-IDS, a unique intrusion detection 
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system that used enhanced krill herd optimization (EKHO) and reliable explainable 

artificial intelligence (XAI) to find cyber-physical systems breaches. By calculating the 

decision weighting factor, the suggested technique used XAI-EKHO for feature selection, 

which provided more robust global searching capabilities and quicker convergence time. 

By combining explainable AI, bi-directional LSTM, and Bayesian optimization (BO-Bi-

LSTM) for effective detection and classification, intrusion detection performance was 

maximized. However, the slower convergence speed of the KH method results in longer 

processing times, which is important in real-time applications that need quick responses, 

such as intrusion detection systems. This is especially true in complicated search spaces. 

The above discussion stated that [16] needs to be tested in the future using more 

attacks, and hence make sure to cover more intricate networks and keep an eye out for 

criminal activity. For [17], future research aims to enhance data center infrastructure 

metrics by incorporating new machine-learning models that focus on end-host factors. For 

[18], the most recent research will be incorporated into StreamAD in the future. For [19], 

in the same hybridization scenario, future studies of various evolutionary algorithms will 

compare their performance. For [20], further process the work by investigating various 

deep learning architectures and techniques and incorporating domain expertise and 

contextual information in the anomaly detection process. For [21], other network functions 

will be added as part of this future work and further discussed about whether or not the 

suggested approach can be used in parallel. For [22], more research on analyzing the 

effects of various CSPs' deployment methods in detecting DDoS assaults using TPANG. 

For [23], the architecture of ResNets and AlexNets will be used to create various anomaly 

detection techniques in the near future. For [24], future research is to overcome the 

overfitting problem and reduce the computational requirements. For [25], further research 

could enhance accuracy by dynamically estimating confidence based on the performance 

of each sub-algorithm. For [26] KH algorithm has difficulty adapting to quickly changing 

environments or dynamic workloads and in [27] slower convergence speed of the KH 

method results in longer processing times. 

 

3. ANOMALY DETECTION USING DENSITY ESTIMATED LSTM 

AND STOCHASTIC KRILL HERD ALGORITHM 
 

Anomaly detection is a crucial method in cloud-based services to ensure security and 

reliability. It uses advanced algorithms and machine learning techniques to analyze large 

volumes of data generated by various cloud components. These algorithms learn from 

historical data to establish a baseline of normal behavior and continuously monitor for 

deviations. Anomalies can include unusual network traffic, resource consumption, or 

access patterns. By identifying anomalies, network providers can take proactive measures 

to mitigate potential security breaches, performance issues, or system failures, ensuring 

the integrity, availability, and confidentiality of cloud services. To do this, an innovative 

concept is introduced named “Density Estimated LSTM and Stochastic Krill Herd”. 

Moreover, in anomaly detection, the dynamic nature of cloud environments presents a 

significant challenge, because it is difficult to establish accurate baselines for normal 

behavior in a landscape where resources and workloads are constantly changing based on 

demand. To overcome this issue of anomaly detection because of the changing cloud 

environment, a breathtaking novel change detection algorithm called Density Estimation 
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Long Short-Term Memory, which captures long-term dependencies and sequential 

patterns in time series data, by training an LSTM model on historical cloud data. The DE-

LSTM model estimates the density distribution of cloud structures by learning the 

underlying probability distribution from the training data. This enables the model to 

estimate the density of future data points by capturing the variations and changes in cloud 

patterns, such as the formation, dissipation, and movement of clouds in real-time. Further, 

the traditional methods lack the adaptability and learning capabilities necessary to 

recognize emerging threats, as they can't update themselves based on new data and trends, 

which become outdated earlier in the face of evolving attack strategies. For identifying 

emerging threats in the anomaly detection process, an exceptional concept is presented a 

novel Fractional Stochastic Krill Herd Algorithm, which incorporates the behavior of krill 

swarms and incorporates stochastic elements for improved performance. This algorithm 

extends the traditional SKH by introducing fractional decision variables, which enhance 

the algorithm's flexibility and performance in detecting both known and unknown 

anomalies.  FSKHA differs from existing SKH approaches by incorporating stochastic 

differential equations, which allow the algorithm to better adapt to emerging threats in 

real-time environments. This enhances the algorithm's ability to detect emerging threats 

that not be easily identified using traditional methods and is effective in cloud computing 

by capturing both known and unknown anomalies.  

The step-by-step procedure of the dynamic cloud nature and its anomaly detection in 

cloud computing is given in Fig. 1.  

 

 
Fig. 1. Architectural diagram of Anomaly Detection in Dynamic Cloud Environment 
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3.1. Data Collection  

Data collection is the initial step of the process, which is done by compiling data from 

various sources within the cloud environment that includes metrics, which provide 

quantifiable measurements of resource utilization and performance, events, which 

document notable incidences or changes, logs, which record various actions and events, 

and network traffic, which includes source and destination IP addresses, protocols, data 

volume, and ports. 

3.2. Data Preprocessing 

Data preprocessing involves steps like cleaning, filtering, aggregation, and 

transformation, where data discrepancies are fixed by cleaning out any incorrect or 

inconsistent entries. Filtering is used to obtain only the pertinent data by removing 

unnecessary or redundant records. Aggregation combines data elements to create more 

thorough summaries, which makes it easier to spot larger trends and patterns. Finally, 

transformation involves transforming data into a standardized format or normalizing it to 

a constant scale to facilitate precise and insightful analysis. This preprocess procedure is 

thus crucial for getting the data ready for the next phases and making sure it is trustworthy 

and properly formatted for anomaly identification in the dynamic cloud environment. 

3.3. Change Detection using Density Estimation LSTM 

The pre-processed data is then used for analyzing the dynamic changing behavior of 

the cloud environment, where a change detection algorithm named Density Estimation 

LSTM is deployed, LSTM is well known for capturing the long-term dependencies and 

sequential patterns in time series data, and then the density estimation is used to estimate 

the probability distribution of the predicted values. The Density Estimation LSTM 

structure is explained in Fig. 2.  

 

 
Fig. 2. Architectura  Diagram of Densit  Estimation LSTM 

 

The model uses time-series data as input to forecast future states based on previous 
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findings. The Density Estimation LSTM consists of a standard LSTM architecture with an 

additional output layer incorporating kernel density estimation to characterize the 

distribution of prediction errors. The LSTM architecture is made up of numerous layers, 

including an input, LSTM units, fully linked layers, and a density estimation layer. The 

LSTM model alternatively be seen as a function 𝑔(. ) that uses past values to forecast 

future ones. The following equation (1) 𝑦𝑡𝑖
` : illustrates how the model uses the previous 𝑚 

time-series data to estimate the value at the time 𝑡𝑖. 

𝑦𝑡𝑖
` = 𝑔(𝑦𝑡𝑖−1, 𝑦𝑡𝑖−2, … , 𝑦𝑡𝑖−𝑚)    (1) 

A given time series, 𝑦1, 𝑦2, … , 𝑦𝑚, must be segmented into discrete sub-sequences 

using a sliding window of length 𝑚 to train the LSTM model. Eq. (2) shows the resulting 

sub-sequences of observations, 𝑌, and labels, 𝑍, for training. Each time a training iteration 

is finished, a message queue is added with the newly created model. The message is then 

consumed by the change detection program, which uses it to get the most recent model for 

online anomaly detection. The training procedure takes place on a single machine, even 

when the model is disseminated over several machines. Message queues are used to deliver 

model parameters and data streams to various machines. 

𝑌 =

[
 
 
 
 

𝑦𝑡𝑖−𝑚 … 𝑦𝑡𝑖−2     𝑦𝑡𝑖−1

𝑦𝑡𝑖−𝑚+1 … 𝑦𝑡𝑖−1        𝑦𝑡𝑖.
..

𝑦𝑛−𝑚

.

..
…

.

..
𝑦𝑛−2

            

.

..
𝑦𝑛−1]

 
 
 
 

    (2) 

Finding the right time to update the model is crucial in the context of dynamic change 

detection.  Iterative update (IUpdate), regular update (RUpdate), and demand update 

(DUpdate) are the three most used approaches for updating models. The model is updated 

via an iterative process per the training cycle. In contrast, the regular technique updates 

the model every minute, hour, or day at predetermined intervals. Finally, the demand 

method changes the model in response to cues from the online algorithm, such as when 

the total prediction error exceeds a preset threshold value expressed in terms of root mean 

square error (RMSE) or mean square error (MSE). The LSTM model is trained to minimize 

the difference between predicted and actual values, usually using the MSE loss function. 

The MSE is computed as follows in equation (3): 

ℒ𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑡𝑖 − �̂�𝑡𝑖)

2𝑛
𝑖=𝑖                                          (3) 

Where 𝑦𝑡𝑖  is the actual value at time 𝑡𝑖, �̂�𝑡𝑖  is the predicted value at time 𝑡𝑖, and 𝑛 is 

the number of predictions. Minimizing this loss function helps the LSTM model improve 

its accuracy in predicting future cloud behaviours. 

Sub-sequences of length 𝑚 +  1 are fitted into the model to train the LSTM network, 

allowing us to make short-term predictions and retrieve the projected time series, 

�̂� = (�̂�1, �̂�2, … , �̂�𝑡𝑖). First, the point-wise difference (or error) 𝑒𝑟𝑟𝑡𝑖  =  𝑦𝑡𝑖 − �̂�𝑡𝑖 | between 

the ground truth and the anticipated value at each time step 𝑡𝑖 is calculated. However, 

concept drift may appear in data streams over time, presumably as a result of modifications 

to the contextual environment. For that, a so-called flexible sliding window approach is 

used for distribution modelling to boost adaptability. In this method, mistakes inside a 

sliding window of adjustable size are mode ed. The fo  owing equation (4) is a definition 

of a f exib e s iding window. 
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𝑓𝑙𝑒𝑥 = {
[𝑡𝑖𝑐ℎ , 𝑡𝑖],                     𝑡𝑖𝑐ℎ < 𝑡𝑖 − 𝑚𝑚𝑖𝑛

[𝑡𝑖 − 𝑚𝑚𝑖𝑛 , 𝑡𝑖],         𝑡𝑖𝑐ℎ ≥ 𝑡𝑖 − 𝑚𝑚𝑖𝑛
   (4) 

B  adjusting the window size based on context, the f exib e s iding window enab es the 

mode  to d namica    adapt to changes in the surrounding environment. This f exibi it  

makes ensures  ong-term trends and s ow changes in behavior are recorded without  osing 

track of significant events. 

Once the LSTM model has been trained and predictions have been made, Kernel 

Density Estimation is applied to the prediction residuals (errors) to estimate their 

probability density function. Here, as a novelty, kernel density estimation is used within 

the output layer of LSTM to characterize the errors and the distribution density function to 

generate a change detection score that represents the probability. As a result, a time series' 

points have each assigned a change detection score that indicates how much the features 

of the cloud have changed at that particular point. The dynamic metrics are defined as the 

points that have change detection scores that surpass a given threshold.  

Let 𝑢1, 𝑢2, … , 𝑢𝑛 be identically and independently distributed samples taken at any 

given point 𝑢 from a univariate distribution with an unknown density 𝑑. Its estimation of 

kernel density is given in Eq. (5). 

�̂�𝑏(𝑢) =
1

𝑗
∑ 𝐾𝑒𝑏

𝑗
𝑖−1 (𝑢 − 𝑢𝑖) =

1

𝑗𝑏
∑ 𝐾𝑒

𝑗
𝑖−1 (

𝑢−𝑢𝑖

𝑏
)   (5) 

Where, a non-negative function kernel is 𝐾𝑒 and the bandwidth is given as the 

smoothing parameter as 𝑏 > 0. Hence, this density estimation LSTM thus compares the 

density estimation results with the changing threshold, and the data points that fall below 

or exceed the threshold are identified as the changing pattern of the cloud structures, which 

is taken as the normal behavior. The patterns that do not match this change behavior are 

defined as anomalies in the changing cloud structure, which is explained in the next section 

as detail. 

3.4. Anomaly detection using Fractional Stochastic Krill Herd Algorithm  

To detect the emerging threats in dynamic cloud structure, because of the emerging 

of new data and trends, FSKHA has evolved that is a variant of the Krill Herd Algorithm 

(KHA) that is designed to handle optimization problems with continuous decision 

variables, where solutions can take fractional values. The SKH algorithm has an ability to 

efficiently explore the search space and local optima by incorporating stochastic elements. 

The reason behind selecting SKH is its distinct capacity for imitating the collective feeding 

habits of krill, hence facilitating efficient exploration and utilization of the search domain. 

In dynamic cloud systems, where adaptation is essential this feature is very helpful for 

anomaly detection. Furthermore, its fractional variations generalize smooth integration. 

FSKHA operates by modeling normal behaviour as the "optimal" state in the context of 

anomaly detection and recognizes deviations from this norm as potential anomalies.  

Motion tempted by other krill individuals: Individual krill retain a high density and 

migrate in a motion direction (𝛽𝑗 ) as a result of mutual effects assessed by local, target, 

and repulsive swarm densities stochastically and is given as per Eq. (6) 

𝑃𝑗
𝑁𝑒𝑤 = 𝑃𝑀𝑎𝑥𝛽𝑗 + 𝛿𝑛𝑃𝑗

𝑂𝑙𝑑   (6) 

Where 𝛽𝑗 is given in Eq. (7), where the novelty is added by using the stochastic 

differential equation. 

𝛽𝑗 = 𝜇(𝛽𝑗
𝐿𝑜𝑐) + 𝜎(𝛽𝑗

𝑇𝑎𝑟)    (7) 
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Where, 𝜇 = 0.1 and 𝜎 = 0.2 are the expectation and variance in stochastic 

differential equations, and are independent of the process’s past behavior. The extreme-

induced speed is 𝑃𝑀𝑎𝑥 , the motion’s inertia weight is 𝛿𝑛 tempted between [0,1], the last 

motion tempted is 𝑃𝑗
𝑂𝑙𝑑 , provided neighbor’s  oca  effect is 𝛽𝑗

𝐿𝑜𝑐 and the provided target 

direction effect by the best krill individual is 𝛽𝑗
𝑇𝑎𝑟.  

For a local search 𝛽𝑗
𝐿𝑜𝑐, the influence of the neighbours might be interpreted as an 

attractive/repulsive tendency between the individuals and is given in Eq. (8). According to 

this study's findings, a krill movement individual's neighbours have the following effects. 

𝛽𝑗
𝐿𝑜𝑐 = ∑ �̂�𝑗,𝑘

𝑁𝑁
𝑘=1 �̂�𝑗,𝑘    (8) 

Where �̂�𝑗,𝑘  and �̂�𝑗,𝑘is given in Eq. (9) and (10) 

�̂�𝑗,𝑘 =
𝑌𝑘−𝑌𝑗

‖𝑌𝑘−𝑌𝑗‖+𝜀
     (9) 

�̂�𝑗,𝑘 =
𝐿𝑗−𝐿𝑘

𝐿𝑤𝑜𝑟𝑠𝑡−𝐿𝑏𝑒𝑠𝑡    (10) 

Where, the best and the worst fitness values of the krill individuals is 𝐿𝑏𝑒𝑠𝑡 and 𝐿𝑤𝑜𝑟𝑠𝑡; 

fitness or the objective function value of the 𝑗th krill individual is 𝐿𝑗; the fitness of 𝑘th 

(𝑘 =  1,2, . . . , 𝑁𝑁) neighbor; the related position is Y; and the neighbor’s number is 𝑁𝑁. 

𝜀 is the small positive number added to avoid the singularities. In dynamic cloud 

environments, the current state of the system is often influenced by previous states. This 

is where fractional calculus becomes important. By introducing fractional derivatives, 

FSKHA model memory, and hereditary properties, the algorithm is more responsive to 

evolving cloud structures. The Caputo fractional derivative utilized in the FSKHA 

introduces a fractional component to the optimization process, allowing for more precise 

control of krill movement. This helps in detecting slowly evolving anomalies. The Caputo 

fractional derivative of a function 𝑔(𝑡) is defined as in equation (11): 

𝐷𝛼𝑔(𝑡) =
1

Γ(n−α)
∫

𝑔𝑛(𝑡−𝜏)

𝜏1−𝛼 𝑑𝜏
𝑡

0
                                                 (11) 

Where 𝛼 = 1 provided the optimal balance between capturing short-term fluctuations 

and long-term trends in the cloud data. By using fractional calculus, FSKHA captures both 

short-term and long-term dependencies in cloud behavior, improving its ability to detect 

anomalies that evolve slowly over time. This fractional component helps the algorithm 

achieve more precise control over krill movements, improving both the exploration and 

exploitation phases of the optimization process. 

Foraging motion: Two primary effective parameters are used to formulate the 

foraging motion. The first is the location of the food, and the second is prior knowledge of 

the location of the food. For the 𝑗th krill, this motion can be described as follows in Eq. 

(12) 

𝐷𝛼𝐻𝑗 = 𝐹𝑠𝛾𝑗 + 𝛿𝑠𝐻𝑗
𝑂𝑙𝑑    (12) 

Where 𝛾𝑗 is given in Eq. (13) 

𝛾𝑗  = 𝛿𝑗
𝐹𝑜𝑜𝑑 + 𝛿𝑗

𝐵𝑒𝑠𝑡    (13) 

Where the foraging speed is 𝐹𝑠, the inertia weight of the foraging motion between 

range [0,1] is 𝛿𝑠, the last foraging motion is 𝐻𝑗
𝑂𝑙𝑑, the food attractive is 𝛿𝑗

𝐹𝑜𝑜𝑑 and the effect 

of the best fitness of the 𝑗th krill is 𝛿𝑗
𝐵𝑒𝑠𝑡. This equation, now involving the fractional 

derivative 𝐷𝛼𝐻𝑗 , accounts for historical data in the search process, improving the accuracy 

of the search for optimal solutions. 

Physical diffusion: The distribution of the krill individuals physically is thought to be 

a random phenomenon. A maximum diffusion speed and a random directed vector can be 
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used to describe this motion and it is stated in Eq. (14). 

𝑅𝑗 = 𝑅𝑀𝑎𝑥𝛼    (14) 

Where the maximum diffusion speed is 𝑅𝑀𝑎𝑥  and the arbitrary directional vector and 

its arrays are the arbitrary values between -1 to 1. A diffusion speed of 0.3 is found to 

balance exploration and convergence time, enabling the algorithm to efficiently detect 

anomalies while avoiding local optima. With more time (iterations), the effects of the 

motion caused by other krill individuals and foraging motion gradually diminish. By Eq. 

(14), a random vector of the physical diffusion does not decrease continuously as the 

iteration number rises. As a result, Eq. (14) includes a new term and is given in Eq. (15), 

which is based on a geometrical annealing schedule and the random speed is linearly 

reduced with time, where 𝐽 is the identity matrix. 

𝑅𝑗 = 𝑅𝑀𝑎𝑥 (
𝐽

𝐽𝑀𝑎𝑥
)𝛼   (15) 

Genetic operator: Genetic reproduction processes are added to the algorithm to 

enhance performance. Crossover and mutation, are two new adaptive genetic reproduction 

methods that draw inspiration from the traditional DE algorithm. GA introduces the 

crossover operator as a powerful technique for overall optimization. The crossover is also 

employed in DE, which can be seen as an advancement above GA, in a vectorized form 

and the crossover is controlled by a crossover probability. In evolutionary algorithms like 

ES and DE, the mutation is crucial and a mutation probability governs the mutation. The 

Algorithm for FSKHA is explained in Algorithm 1.  

 

 

Algorithm 1: FS HA 

Initia ize the popu ation of kri   with random positions 

Eva uate the fitness of each kri   in the popu ation  

Motion ca cu ation 

 Motion tempted b  other kri   individua s using stochastic differentia  

equation 

 Foraging motion 

 Ph sica  diffusion 

Genetic operator imp ementation 

In the search space, update the individua  position of kri   

Repeat from step 2 up to the end of stopping criteria 

End  

 

The overall concept of this anomaly detection in the dynamic cloud environment is 

by applying the change detection algorithm to evaluate the changes in cloud structure over 

time by analysing the various parameters, which in turn provides the dynamic changes as 

normal behaviors. Further, the anomalies over the dynamic cloud structure are identified 

by using a novel anomaly detection algorithm, which detects the patterns that do not match 

with the normal behavior as an anomaly. The analysis of this work is explained in the next 

section. 

 

4. RESULT AND DISCUSSION 
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This section includes a thorough analysis of the performance of the proposed anomaly 

detection with proposed Density Estimated LSTM and Fractional Stochastic Krill Herd. 

The implementation results were simulated in the Python platform, and a comparison 

section to make sure the proposed framework successfully determines the anomalies in the 

changing cloud structure over time. 

4.1. Experimental Setup 

This work has been implemented in the working platform of Python with the 

following system specification and the simulation results are discussed below. 

Platform   : P thon 

  OS    : Windows 10 

  Processor   : 64-bit Inte  processor 

  RAM       : 8 GB RAM 

4.2 Dataset description  

In this research Network Traffic Dataset is used in cloud environments to capturing 

both normal and anomalous behaviors. The data shown here was gathered on a Kali 

Machine from the University of Cincinnati in Cincinnati, Ohio, by using Wireshark to 

record packets for one hour in the evening on October 9th, 2023.This dataset contains 

394137 occurrences that were collected and recorded in a CSV (Comma Separated Values) 

file. This network traffic dataset consists of 7 features. Each one provides information on 

the source and destination IP addresses. The bulk of the attributes are integer in nature, but 

there are also nominal and date types due to the timestamp. This big dataset is utilized for 

a variety of ML applications, such as network traffic categorization, network performance 

monitoring, network security management, network traffic management, intrusion 

detection, and anomaly detection. 

This dataset is available at: 

https://www.kagg e.com/datasets/ravikumargattu/network-traffic-dataset 

4.3. Performance metrics of proposed Density Estimated LSTM and Fractional 

Stochastic Krill Herd 

The performance of the proposed Density Estimated LSTM and Fractional Stochastic 

Krill Herd for anomaly detection in the dynamic cloud environment is evaluated in detail 

in this section.  

https://www.kaggle.com/datasets/ravikumargattu/network-traffic-dataset
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Fig. 3. Performance ana  sis of F-score of Imp emented technique 

 

Fig. 3. depicts the F-score performance of the implemented technique regarding the 

window size. The sliding time series' window size 𝑡𝑖 significantly affects the F-score. The 

findings show that the proposed FSKHA mode ’s abi it  to capture the pattern of the input 

data is reduced when the window size value is short. From Figure 3, the proposed model 

conceived the lowest F-score of 0.55, when the window size is at 300, and achieves a 

maximum of 0.72 when the window size is 1000. Larger window sizes provide more data 

points, allowing the model to capture long-term dependencies and patterns in the time 

series data. This improved context leads to better identification of normal behavior and 

more accurate anomaly detection. 

 

 
Fig. 4. Performance ana  sis of Fa se A arm Rate of Imp emented technique 

 

Fig. 4. depicts the false alarm rate performance of the proposed technique regarding 

the robustness factor. The optimum value of the robustness factor is 0.57 to gain a lower 

false alarm rate. From the graph, when the robustness factor is 2, the false alarm rate is 

highest at 1.6, and when the robustness factor is 14, the false alarm rate achieves its lowest 

at 0.2. The robustness factor is a term for a parameter that helps lower false positives by 

adjusting the anomaly detection algorithm's sensitivity to changes in data. The algorithm's 

capacity to distinguish between normal and abnormal data points is enhanced by a larger 

robustness factor, which reduces false alarms. By adding the robustness factor, the 

detection system's total flexibility is increased, providing its stability even in busy and 

dynamic cloud settings. The proposed FSKHA achieves better discrimination between 

normal and anomalous data points, leading to a reduction in false alarms. False alarm rate 

drops along with the increase in robustness factor. 
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Fig. 5. Performance ana  sis of Area Under Curve of Imp emented technique 

 

Fig. 5. analyses the area under curve metrics of the proposed technique regarding true 

positive rate and false positive rate. Area under the curve (AUC) is a performance metric 

that measures performance across all classification thresholds, which is a measure of how 

well a classifier performs when there is more area under the curve. In this, the proposed 

Density Estimation LSTM effectively chooses the threshold, thereby attaining a perfect 

accuracy when AUC equals 1. The graph thus shows that the proposed algorithm achieves 

the highest AUC in terms of true and false positive rates. 

 

 
Fig. 6. Performance ana  sis of RMSE of Imp emented technique 

 

Fig. 6. depicts the performance regarding the RMSE with the window size for the 

implemented technique. Here the analysis is done by varying the number of Density 

estimation LSTM units for calculating the RMSE. This analysis is done to optimally 

predict the sliding window of Density estimation LSTM. To get the RMSE findings, the 

window size is altered between 300 and 1000. The line of RMSE obtained the lowest value 

at window size 500, which is the optimal value of sliding window of Density estimation 

LSTM. 
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Fig. 7. Performance ana  sis of MAE of Imp emented technique 

 

Fig. 7. depicts the performance regarding the MAE with the window size for the 

implemented technique. Here the analysis is done by varying the number of Density 

estimation LSTM units for calculating the MAE. This analysis is done to optimally predict 

the sliding window of Density estimation LSTM. To get the MAE findings, the window 

size is altered between 300 and 1000. The line of MAE obtained the lowest value at 

window size 500, which is the optimal value of sliding window of Density estimation 

LSTM. 

4.4. Comparative Analysis of Proposed Density Estimated LSTM and Fractional 

Stochastic Krill Herd 

This section highlights the proposed Density Estimated LSTM and Fractional 

Stochastic Krill Herd with the traditional models and the achieved outcome was explained 

in detail in this section by comparing it with Fuzzy C Means (FCM), Support Vector 

Machine (SVM), Machine Learning Intrusion Detection System (ML-IDS), Multi-Step 

outlier-based Anomaly Detection Approach (MS-ADA) and Ensemble Artificial Bee 

Colony (En-ABC) [19], and showing their results based on various metrics. 

 

 
Fig. 8. Comparative ana  sis of the Detection Rate of Imp emented technique 

 

Fig. 8. depicts the comparison of detection rate metrics for the proposed model over 

the traditional models. In this, the existing techniques FCM, SVM, ML-IDS, MS-ADA, 

and En-ABC attains the detection rate of 83%, 85%, 95%, 93%, and 97%, respectively, 

whereas the proposed techniques attain the maximum detection rate of 98%, which shows 
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the effective detection rate of an anomaly in dynamic cloud environment. 

 

 
Fig. 9. Comparative ana  sis of Accurac  of Imp emented technique 

 

Fig. 9. explains the comparison of accuracy metrics for the proposed model over the 

traditional models like FCM, SVM, ML-IDS, MS-ADA, and En-ABC. In this, the existing 

techniques FCM, SVM, ML-IDS, MS-ADA, and En-ABC attain the detection rate of 86%, 

90%, 95%, 93%, and 97%, respectively, whereas the proposed model attains the maximum 

accuracy of 98.12%, which shows the effective accuracy on the overall system 

performance. 

 

 
Fig. 10. Comparative ana  sis of Precision of Imp emented technique 

 

Fig. 10. illustrates the comparison of precision metrics for the proposed model over 

the traditional models like FCM, SVM, ML-IDS, MS-ADA, and En-ABC. In this, the 

existing techniques FCM, SVM, ML-IDS, MS-ADA, and En-ABC attain the detection rate 

of 88.31%, 89.15%, 93.25%, 91.72%, and 95.68%, respectively, whereas the proposed 

technique gains the maximum precision of 96.79%, which shows the effective precision 

with better performance than existing techniques. 
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Fig. 11. Comparative ana  sis of Reca   of Imp emented technique 

 

Fig. 11. evaluates the comparison of recall metrics for the proposed model over the 

traditional models like FCM, SVM, ML-IDS, MS-ADA, and En-ABC. In this, the existing 

techniques FCM, SVM, ML-IDS, MS-ADA, and En-ABC attain the detection rate of 

86.12%, 88.34%, 87.68%, 88.97%, and 92.79%, respectively, whereas the proposed model 

achieves the maximum recall of 93.26%, which shows the effectiveness of the proposed 

technique in terms of recall over conventional concepts. 

 

 
Fig. 12. Comparative ana  sis of time comp exit  of Imp emented technique 

 

Fig. 12. demonstrates the time complexity comparison of the suggested model with 

the existing models. The existing models such as IR, SC, MICA, and RADSPSCA attain 

a time complexity value of 10s, 6s, 14s, and 14s respectively. In comparison, the proposed 

framework has a significantly reduced time complexity of only 3 seconds. This indicates 

the proposed approach's efficiency in processing and identifying anomalies in cloud 

settings, demonstrating its potential to outperform established approaches in terms of. 

speed and adaptability. 
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Fig. 13. Comparative ana  sis of Fa se A arm Rate of Imp emented technique 

 

Fig. 13. depicts the comparison of false alarm rate metrics for the proposed model 

over the traditional models like FCM, SVM, ML-IDS, MS-ADA, and En-ABC. In this, the 

existing techniques FCM, SVM, ML-IDS, MS-ADA, and En-ABC attain the false alarm 

rate of 6.71%, 4.94%, 1.87%, 1.31%, and 1.05%, respectively, whereas the proposed 

technique obtains the minimum false alarm rate of 0.99%, which shows minimized false 

alarm rate with better prediction of anomalies over other techniques. 

4.5 Ablation study 

The focus of the ablation study is to assess the performance of various parts and 

combinations of this anomaly detection system, with a specific focus on the FSKHA, the 

Density Estimated LSTM, and the proposed combined model that combines both 

techniques. The metrics assessed include Accuracy, Precision, Recall, and Detection Rate, 

which are critical for evaluating the effectiveness of anomaly detection methods. 

 

Table 1: Ablation study 

Model 

Configuration 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

Detection 

rate (%) 

Density Estimated 

LSTM  

95.27 91.39 90.37 96.38 

FSKHA 97.82 93.61 91.95 97.1 

Proposed (Density 

Estimated LSTM 

+ FSKHA) 

98.12 96.79 93.26 98 

 

The ablation study evaluates the performance of three anomaly detection models, 

which are shown in Table 1. The Density Estimated LSTM achieves an accuracy of 

95.27%, precision of 91.39%, recall of 90.37%, and a detection rate of 96.38%. FSKHA 

improves these metrics with an accuracy of 97.82%, precision of 93.61%, recall of 91.95%, 

and a detection rate of 97.1%. The proposed model, integrating Density Estimated LSTM 

with FSKHA, further enhances performance to an accuracy of 98.12%, precision of 

96.79%, recall of 93.26%, and a detection rate of 98%. By combining the best features of 

both approaches, this strategy captures long-term interdependence and responds to new 
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threats more accurately and effectively. The results demonstrate that integrating these 

techniques provides superior anomaly detection compared to using either method alone. 

Overall, the proposed Density Estimated LSTM and FSKHA outperform the 

traditional methods FCM, SVM, ML-IDS, MS-ADA, and En-ABC with a better detection 

rate of 98% and accuracy with a maximum value of 98.12% and a false alarm rate of 

minimized value 0.99%. Therefore, the density estimated LSTM thus effectively captures 

the dynamic changes of cloud structures with respect to the relevant parameters such as 

resources, memory, and network traffic. In contrast, FSKHA effectively identifies the 

normal behavior from the anomalies under the dynamic condition that are captured early 

by density estimated LSTM. 

5. CONCLUSION  

The novel Density Estimated LSTM and Stochastic Krill Herd algorithm was 

introduced to capture the changing behavior of cloud structure over time and to detect the 

anomalies in the dynamic cloud environment. By examining the probability distribution 

from the output of LSTM, Density Estimation LSTM is designed to assess the density 

distribution of cloud forms. Consequently, the alterations and differences in cloud patterns 

were captured. FSKHA takes into account the behavior of krill swarms and contains 

stochastic aspects, was also applied to detect anomalies from developing threats, which 

captures both known and unknown anomalies that emerge with the new trends and data. 

The proposed model thus attains a higher detection rate of 98% with a maximum accuracy 

of 98.12%, and a low false alarm rate of 0.99%, with maximum recall and precision of 

93.26% and 96.79%. Thus, the proposed model was utilized to provide a better 

performance and precisely detect the known and unknown anomalies from the emerging 

threats in dynamic cloud structures. The overall performance analysis shows the 

outperformance of this proposed Density Estimated LSTM and Stochastic Krill Herd 

approach. 
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