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Recently, the explosive increase in the amount of text data and the rapid spread of 

text generative models has caused automatic text classification for information (e.g., social 

data, review data, and fake news) to become increasingly important. This paper proposes 

a multimodal deep learning architecture that effectively combines contextual word embed-

ding and the Transformer model under the tensor space representation model to achieve 

more reliable text classification. The tensor space representation model represents a single 

document as a term-by-concept matrix that contains the semantic information of words; 

however, it does not accommodate the polysemy problem or word sequence information. 

To achieve near-perfect text classification, we propose a two-channel deep learning archi-

tecture that can learn both word context information and word sequence information under 

a tensor space model. In our approach, the Transformer model is utilized to learn word 

sequence information; as a result, our proposed architecture produces a multimodal learn-

ing model for text classification. Using six textual datasets, we demonstrate the perfor-

mance improvement of our proposed multimodal text classification architecture. 
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1. INTRODUCTION 
 

The development of the Internet and the spread of smartphones have led to sharp in-

creases in the use of social networking services, rapidly creating large amounts of textual 

data that are useful for understanding customers’ information and needs. There has also 

been an increase in the availability of false information, such as fake news, due to the 

recent proliferation of artificial intelligence. In this era of textual big data, the ability to 

identify automatically reliable and unreliable information for text classification of infor-

mation such as social data, review data, and fake news has become particularly important 

[1–7]. Neural network-based embedding techniques that generate embedding vectors with 

word semantic information have helped to greatly enhance text classification performance. 

However, early embedding techniques were not able to accommodate cases where one 

word had multiple meanings or slightly different meanings, depending on the context 

within a particular document. The latest embedding techniques, such as Embedding from 

Language Model (ELMo) [8] and Bidirectional Encoder Representations from Transform-

ers (BERT) [9], have been better able to reflect the different meanings of individual words, 

depending on the context in the embedding vector. 
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In our previous study, we improved text classification performance by converting the 

documents to be classified into a tensor space representation model that used Wikipedia 

pages for a concept space [10]. However, in the process of selecting words that help clas-

sifications to form within the term axis of the tensor space model, the sequence information 

of the words is lost. To overcome this problem, we propose a 2-channel deep learning 

architecture that can effectively learn semantic and context information, as well as se-

quence information, under the tensor space model. This approach uses contextual embed-

dings, such as ELMo or BERT vectors, to construct the concept axis of the tensor space 

model and adds sequence channels constructed based on the Transformer model [11], al-

lowing both sequence information and context information to be processed. To validate 

the performance of the proposed technique, we conducted various text classification ex-

periments with six English textual datasets, including fake news and reviews; we present 

optimal hyperparameters that can be used to form the proposed deep learning architecture. 

The rest of the paper is organized as follows. In Section 2, we introduce the back-

ground and related work of our proposed deep learning architecture for text classification. 

In Section 3, we describe the details of the proposed architecture. The results of the com-

parative experiments with existing machine learning models and the optimization process 

of our classification model are presented in Section 4. Finally, our conclusions and direc-

tions for future work are discussed in Section 5. 

2. BACKGROUND AND RELATED WORK 

2.1 Background 

2.1.1 Contextual Embeddings: ELMo and BERT 

Embedding is a technology that represents unstructured data (e.g., words, sentences) 

into vectors that allow computers to understand the data. The embedding model is trained 

with a neural network, in which the embedding vectors of similar words are trained to be 

arranged closer to each other, whereas the embedding vectors of dissimilar words are 

trained to be arranged farther apart. Techniques such as Word2Vec [12] and Global Vec-

tors for Word Representation (GloVe) [13] pretrain models with a large corpus to embed 

words. Context-based embedding techniques, such as ELMo and BERT, have also been 

developed with the ability to accommodate polysemy and context. 

ELMo enables context-sensitive embedding by pretraining a bidirectional long short-

term memory (LSTM) model that is capable of bidirectional information extraction on a 

large corpus. BERT works with contextual information by pretraining a model built using 

stacked Transformer blocks. Both models accept a sentence as input, and then output a 

word-level embedding vector that reflects the context. 

2.1.2 Tensor Space Model 

The initial text representation model, bag of words (BoW) [14], utilizes the frequency 

of words in a document to represent it as a two-dimensional document-by-term matrix 

(DTM); that is, a single document represented as a vector. Subsequently, term frequency-
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inverse document frequency (TF-IDF) [14] emerged as a model that considers the potential 

for the same word to have varying levels of importance in different documents. This 

method more accurately reflects word importance by assigning weights to the DTM ac-

cording to the importance of words in the document. However, this method also has a 

significant drawback; although TF-IDF is a more effective representation model which 

solely utilizes frequency counts, it does not fully capture word meanings.  

In contrast to the traditional model, we previously developed a semantic tensor space 

model that represents a document corpus as a three-dimensional tensor comprising con-

cepts, terms, and documents (see Figure 1) [10]. This model enriches word meanings by 

adding a ‘concept’ axis to the document-by-term matrix. In other words, the tensor space 

model represents each document as not a term vector, but as a concept-by-term matrix that 

captures the relationship between term features and concept features. These matrices are 

then aggregated into a concept-by-term-by-document tensor. The initial tensor space model 

utilized informative Wikipedia pages to define individual semantic concepts for the con-

cept axis. Subsequently, the advent of context-based word embedding techniques allowed 

the concept vector of the concept axis to be represented as a pretrained contextual embed-

ding vector. As a result, this enhanced tensor space model, which integrates both semantic 

and contextual information, can improve text classification performance. 

2.1.3 Attention Mechanism 

Before explaining the attention mechanism, it is important to clarify the seq2seq [15] 

model. This model exhibits an encoder–decoder structure and is mainly used for machine 

language translation tasks. A limitation of this model is its basis on a recurrent neural net-

work (RNN); when the length of the input sequence becomes long, gradient loss occurs 

and all information is compressed into a single context vector, resulting in information loss. 

The attention mechanism [16] is a method that emerged to resolve the above limitation of 

the seq2seq model. When predicting a decoder’s output word, at each point in time, a query, 

key, and value structure are used to reference words in the encoder’s input sequence that 

Fig. 1 Differences between BoW model and tensor space model: in the BoW model, wij denotes the 

weight value of term tj document di. In the tensor space model, wkj
(i) denotes the weight value of each 

element corresponding concept ck of term tj in document di. 
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are more related to the predicted word. The decoder’s prediction performance is improved 

by focusing on important words that assist with prediction. The attention mechanism is 

used in natural language processing (NLP) tasks, such as translation, as well as various 

fields that utilize artificial neural networks, such as text classification and computer vision 

[17, 18]. 

2.1.4 Transformer 

Similar to the seq2seq model, the Transformer model consists of an encoder–decoder 

structure. The difference is that the encoder and decoder are not RNN-based; they are com-

posed of sublayers such as position embedding, multi-head self-attention, and a position-

wise feed-forward neural network. In the layered encoder and decoder stages, operations 

at each time step are performed in parallel, resulting in faster speeds and improved perfor-

mance compared with RNN-based models. The Transformer model is used in machine 

language translation tasks, as well as text classification tasks and various NLP tasks [19–

22]. 

2.2 Related work 

As word embedding techniques have evolved, extensive research has been conducted 

regarding their uses in text classification. The TextCNN model proposed in [23] can effec-

tively extract features of words using a convolutional neural network (CNN) applied to the 

word embedding matrix. In [1], the authors established an improved TextCNN method that 

adds a parts-of-speech (POS) tag channel containing POS information to the word embed-

ding matrix and shows better performance on SemiEval-2014, 2015, and 2016 datasets. [5] 

proposed a more stable model for classification by constructing a multi-channel with var-

ious pretrained embedding vectors and utilizing a CNN and attention mechanisms to im-

prove sentiment analysis performance. [2] argued that the importances of specific words 

vary among classes and proposed a multi-channel TextCNN model that applies a TF-IDF-

based term weighting system to the TextCNN structure, thereby enhancing text classifica-

tion performance. 

There has also been research to improve text classification performance using Graph 

Convolutional Networks (GCN). In [24], TextGCN was proposed to improve text classifi-

cation performance, and it represents the complex structure of text data in the form of a 

graph by representing documents and words as graph nodes and their relationships as edges. 

Following this, BertGCN was proposed as an enhanced model of TextGCN, integrating 

BERT with GCN [25]. It utilizes pre-trained BERT to represent documents as nodes and 

has achieved significantly high performance on several datasets through GCN training. As 

an alternative approach to utilizing pre-trained BERT, RoBERTa introduced a method for 

enhancing BERT by optimizing its pretraining process through the use of larger training 

datasets, extended training time, and fine-tuning of hyperparameters, which leads to im-

proved text classification performance [26]. Subsequently, DeBERTa further improved 

RoBERTa by employing a disentangled attention mechanism and an enhanced mask de-

coder [27]. 

In addition, the emergence of Large Language Models (LLMs) [28] has recently stim-

ulated research efforts aimed at enhancing text classification using a prompt-based 
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approach called In-Context Learning (ICL); ICL is a prompt engineering technique that 

boosts the performance of specific tasks by incorporating requirements and examples di-

rectly into the prompts. While ICL shares similarities with fine-tuning techniques in that it 

utilizes a pre-trained model, it differs in that it does not update the weights of the model 

during the learning process. The authors of [29] introduced ‘Clue And Reasoning Prompt-

ing’ (CARP) as an effective method for implementing ICL. They argued that a strong rea-

soning ability, grounded in complex language phenomena, is crucial for improving text 

classification performance. To achieve this, they demonstrated that extracting clues and 

reasoning from the document being classified can enhance classification results. 

3. PROPOSED METHOD 

3.1 Overview 

As mentioned earlier, we proposed a three-dimensional tensor space model to achieve 

a more reliable text classifier in our previous study (see Section 2.1.2.). In the process of 

representing a document as term-by-concept matrix using the tensor space model, sequence 

information is lost. Thus, if the tensor space model was trained with a simple TextCNN 

structure, text classification was performed with semantic and context information. In this 

study, we have developed a 2-channel deep learning architecture that can effectively train 

semantic, context, and sequence information by adding a new channel that contains se-

quence information when classifying a contextual embedding-based tensor space model. 

Before explaining the proposed method in detail, the paragraph below explains the notation 

used in this paper. 

A model that configures the concept axis of a tensor space model with a contextual 

embedding vector and classifies it into a simple TextCNN structure is referred to as a 1-

channel tensor space model. The new 2-channel deep learning architecture that trains a 

channel consisting of contextual embedding vectors and a channel containing order infor-

mation is referred to as a 2-channel tensor space model (see Figure 2). The 2-channel tensor 

space model includes a channel consisting of a context-based embedding matrix and a 

channel consisting of a Transformer-based positional embedding matrix that contains se-

quence information. The channel composed of the context-based embedding matrix uti-

lizes the ELMo or BERT embedding vector, referred to as the ELMo channel or the BERT 

channel, respectively, depending on the embedding used. Another channel composed of a 

positional embedding matrix is the sequence channel. If the context channel and sequence 

channel are used in a 2-channel tensor space model, then the model is referred to as ‘2-

Channel Tensor (ELMo + Sequence)’; if the BERT channel is used instead of the ELMo 

channel, it is denoted as ‘2-Channel Tensor (BERT + Sequence)’. Similarly, the 1-channel 

tensor space model is written as ‘1-Channel Tensor (ELMo)’ or ‘1-Channel Tensor 

(BERT)’, depending on the embedding used. 

In Sections 3.2–3.4, we describe in detail how the 2-channel tensor space model is 

constructed and trained. 
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Fig. 2. Overview of 2-channel tensor space model 

3.2 Conversion to the context channel 

To construct the context channel, it is necessary to first pretrain context-based em-

beddings ELMo (or BERT). In the case of ELMo, pretraining is performed using the da-

taset to be classified, and the embedding vector output is set to 256 dimensions to reduce 

computational costs. For BERT, the pretrained model within the Transformer package pro-

vided by Hugging Face is used and its size of embedding vector is set to 768. 

The documents in the dataset are embedded using the trained embedding model. 

When embedding with ELMo, embedding vectors for each word appearing in the docu-

ment can be obtained. For example, suppose the input document is ‘This is a multimodal 

deep learning architecture’. If this document is input into pretrained ELMo embedding, it 

would be represented by seven 256-dimensional vectors corresponding to ‘This’, ‘is’, ‘a’, 

‘multimodal’, ‘deep’, ‘learning’ and ‘architecture’. Embedding the documents of the da-

taset to be classified allows for the creation of a word embedding matrix that consists of 

the embedding vectors for words within the document. 

In the case of embedding documents with BERT, the difference is that BERT outputs 

embedding vectors for subtokens, rather than for each word included in the document. 

Because the concept axis of the tensor space model requires word-level embedding vectors, 

the average value of the subtoken embedding vectors for a word is defined as the word 

embedding vector. For example, if the word ‘embeddings’ exists within a document, it 

would be split into four subtokens: ‘em’, ‘##bed’, ‘##ding’, and ‘##s’, producing four 768-

dimensional embedding vectors. A single 768-dimensional vector, obtained by averaging 

these four vectors, becomes the embedding vector for the word ‘embeddings’. In this man-

ner, a word embedding matrix for the words within the document can also be obtained with 

BERT embeddings. The following explanation proceeds with trained ELMo as an example, 

but the same process is applied in the case of BERT. 
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Fig. 3. The process of converting a document into a context channel 

 

The next step involves identifying the significant words that will constitute the term 

axis of the context channel. For each dataset to be classified, stop words are removed, and 

k words that aid in text classification based on 2 statistic are selected. Among the docu-

ments in the dataset to be classified, the document containing the highest number of se-

lected words is identified, and the number of selected words in that document is defined as 

the maximum number of features (denoted as m). For each document, a matrix is created 

to become the initial context channel, where the column length equals the maximum num-

ber of term features, the row length equals the size of the embedding vector (e.g., 256), 

and all values are set to zero (see Figure 3). If a document contains any of the selected 

words, the contextual embedding vector for the selected word from the previously obtained 

word embedding matrix is found and sequentially mapped from the first row in the initial 

context channel matrix. This constructed context channel contains contextual and semantic 

information about the words selected based on the 2 statistic. 

3.3 Conversion to the sequence channel 

The structure of the sequence channel is identical to the position embedding matrix 

of the Transformer encoder. The sequence of words that appears in each document under-

goes integer encoding twice, and the maximum length of the sequence of words is set by 

the user to determine the input size. In the first integer encoding, indices are assigned based 

on the frequency of occurrence in the word set, and zero padding is applied according to 

the predetermined maximum length. The second integer encoding assigns indices in order 

from 0 to the maximum length, based on word position. The integer-encoded words are 

then transformed into two embedding vectors per word through an embedding layer. These 

embedding vectors are referred to as the token embedding vector, which reflects the mean-

ing of the word, and the position embedding vector, which contains positional information. 

Both the token embedding vector and position embedding vector are updated during the 

training process, allowing the model to learn the semantic information of words and their 

sequence information. The sum of these two embedding vectors becomes one embedding 
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vector that corresponds to a single word. The embedding vectors representing each word 

within the sequence of words are gathered to form an embedding matrix, which constitutes 

the sequence channel (see Figure 4). This constructed sequence channel contains both the 

sequential and semantic information of the sequence of words. 

 

3.4 Tensor space model-based 2-channel deep learning architecture 

When the documents to be classified are transformed into the context and sequence 

channels, the 2-channel tensor space model is trained to effectively process the information 

contained in each channel. The context channel is trained with a TextCNN structure, 

whereas the sequence channel is trained with a Transformer structure. The feature maps 

trained from both structures pass through a self-attention layer, where important elements 

are assigned weighted to improve text classification performance. Feature maps that pass 

and do not pass through the self-attention layer are concatenated into one feature map and 

finally classified into a fully-connected layer. However, in certain datasets (Word Embed-

ding over Linguistic Features for Fake News Detection (WELFake), 20Newsgroups, and 

R8), the application of self-attention to the trained features does not improve classification 

performance; thus, its application is selectively determined based on the dataset. 

Fig. 4. The process of converting a document into a sequence channel 
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Fig. 5. Overall text classification architecture with a 2-channel tensor space model: it consists of 

three parts: context extraction, sequence extraction, and classification. The context channel and se-

quence channel are each trained with a TextCNN structure and a Transformer structure to form ab-

stracted feature maps, then combined through a self-attention layer. The combined feature maps are 

finally fed into a fully-connected layer. For convenience, we use wjk instead of wjk
(i) to denote the 

weight value of the element corresponding to concept ck of term tj in document di. 

 

Figures 5, 6, and 7 show the 2-channel tensor space model in detail, using the IMDB 

dataset (one of the datasets utilized to measure model performance in Section 4) as an 

example. As shown in the figures, the proposed text classification architecture with the 2-

channel tensor space model is composed of three parts: ‘context extraction’, ‘sequence 

extraction’, and ‘classification’. In the Self-Attention block of Figure 5, matrix multiplica-

tion is first performed between inputs Q and K, and in the scaling step, normalization is 

carried out by considering the length of the concept dimension (or the embedding size). 

After passing through the Softmax function, the result is multiplied by input V to produce 

the final output. As seen in Figure 5, the intermediate feature map (vector) is simultane-

ously fed into Q, K, and V, ultimately transforming it into a new feature map (vector) that 

weighs the values of elements aiding in text classification. 

First, the context extraction part shows the details of the process where the context 

channel is trained using a TextCNN structure. A convolution operation is performed once 

with the context channel as input. The shape of each filter used in the convolution operation 

is (1, 256), and the number of filters is 1024. The 1024 feature maps produced by the 

convolution layer are represented as a 1024-dimensional vector through global max-
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pooling. This 1024-dimensional vector is passed through a fully-connected layer, where 

the contextual and semantic information are included in a 256-dimensional abstracted fea-

ture. 

 
Fig. 6. The context extraction part: the context channel is trained with the TextCNN structure, and 

feature map vectors containing semantic information and context information are extracted. 

The sequence extraction part shows the details of the process where the sequence 

channel is trained using a Transformer encoder structure. The sequence channel, as an 

input, passes through the Transformer block (see Figure 7). When the embedding vector 

of each time step is input to the Transformer block, it passes through a multi-head attention 

layer. Because the number of heads is set to 1, the process is identical to passing through 

the self-attention layer. Similar to the original Transformer model, a residual connection 

that sums input and output values is utilized to reduce information loss during training, and 

layer normalization is conducted to improve generalization performance. The embedding 

vector, which has passed through the self-attention layer, undergoes dimensionality reduc-

tion, and is then restored to its original dimensions. During this process, it passes through 

the fully-connected layer twice. Residual connection and layer normalization are also per-

formed in this process. The output of the Transformer block is flattened through a global 

average-pooling layer to form the same number of nodes as the number of embedding 

dimensions (denoted as 𝑠′). These nodes pass through a fully-connected layer again and 

become 256-dimensional abstracted features that include sequence information and se-

mantic information. 
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Both feature maps trained from different models become weighted feature maps as 

they pass through the self-attention layer. Feature maps that have and have not passed 

through the self-attention layer are all concatenated to form a single 1024-dimensional 

vector. This is classified as the class with the highest probability through a fully-connected 

layer and softmax function. 

4. EXPERIMENTS 

4.1 Experimental datasets 

Table 1. Datasets: to proceed smoothly with the experiment, duplicates and missing values were 

removed from the original samples of the dataset and sampled to suit the memory environment. 

Dataset #Sample (original) #Class (original) Training data Test data #Class (experiment) 

IMDB 50,000 2 16,000 4,000 2 

WELFake 72,134 2 16,000 4,000 2 

20Newsgroups 18,828 20 15,062 3,766 20 

R8 7,673 8 5,484 2,189 8 

News Category 209,527 42 8,000 2,000 10 

AG News 127,600 4 16,000 4,000 4 

 

To assess the performance of the proposed model, we utilized the sentiment analysis 

benchmark Internet Movie Database (IMDB) dataset and the WELFake dataset for evalu-

ating fake news detection efficiency. Additionally, we measured news topic classification 

performance using four English news datasets (20Newsgroups, R8, News Category, and 

AG News). All datasets included in the experiments were subjected to text preprocessing 

           
     

               

               

               

               

 

               

   

 
 

 
 

 

 

                     

               

               

               

               

 

               

   

 
 

 
 

 

 

  

                 

 
 
    

   
 
   

 

 

                   

     

           

 

               

 

                

                

                

               

 

               

 

                

                

                

                

  

      
   

 

         

 

         

 

         

 

         

 

 

              

                     

                

                 

 
 
  

  
  
  

 
 
  

                   

                                      

Fig. 7. The sequence extraction part: the sequence channel is trained with the Transformer encoder 

structure, and feature map vectors containing semantic information and sequence information are 

extracted. 
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steps, including special character handling and conversion to lowercase. Each dataset was 

configured to ensure smooth experimentation within the particular memory constraints. 

For datasets with an excessively large number of samples, we adjusted the sizes of the 

training and test data. If a dataset contained a class with insufficient samples, that class 

was excluded (or its balance was adjusted) before experiments were performed. As a result, 

the training and test data were divided at approximately an 80:20 ratio. The details of da-

tasets used in the experiments are provided in Table 1. 

 

4.2 Experimental setup 

We classified the datasets introduced in Table 1 using the proposed model and exist-

ing models, then compared their performances according to accuracy. The models for com-

parison included: 1-Channel Tensor (ELMo), 1-Channel Tensor (BERT), 2-Channel Ten-

sor (ELMo), 2-Channel Tensor (BERT), and conventional machine learning algorithms 

(such as support vector machine, Naïve Bayes, and logistic regression). The various hy-

perparameters for each dataset and model are described in Figures 8, 9, 10 and Table 2. 

For convenience, the function names are written using Python terminology. 

For this experiment, we trained the proposed models and other models using RTX 

4070 Ti GPUs, an Intel i9 (32 core) CPU, and 64G of RAM. We observed that the training 

time varied significantly across different datasets. For simpler datasets, our model typically 

completed training in under 5 minutes, while more complex datasets required between 15 

and 20 minutes for 50 epochs. Regarding inference speed, our model consistently achieved 

prediction times of under 30 seconds. 

4.2.1 Hyperparameter Setup for 1-Channel Tensor Space Model 

The 1-channel tensor is a model that classifies a tensor space model consisting only 

of contextual embedding channels into the TextCNN structure. The architecture of the 

model takes the form of adding a fully-connected layer to Figure 6; this approach classifies 

the output into the corresponding prediction class. In the convolution operation that accepts 

the contextual embedding channel of the tensor space model as input, the size of the filter 

was (1, embedding size), and the number of filters was set differently for each dataset. The 

ratio of dropout in the Dropout-①,② layers was set to 0 or 0.5, the activation function of 

the output layer was softmax, each of the other activation functions was ReLU, and the 

batch size was set to 256. For detailed dataset-specific hyperparameters, refer to Figure 8 

and Table 2. 

 
Fig. 8. 1-Channel Tensor conceptual diagram for hyperparameter setting. 
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4.2.2 Transformer Classifier Hyperparameter Setup 

The Transformer classifier is a classification model that utilizes the encoder structure 

of the Transformer model. As in Section 4.2.1, the architecture of the model adds a fully-

connected layer to the structure shown in Figure 7, which classifies the output into the 

corresponding predicted class. The Dropout-①,② ratios within the Transformer block 

were set to 0.1, identical to the existing Transformer model; the other Dropout-③,④ ra-

tios were set to 0 or 0.5. The dimensionality of the embedding vector of the sequence 

channel was set differently for each dataset; Dense(i) and Dense(iii) were also set differ-

ently for each dataset. Dense(ii) is the point where the reduced embedding vector dimen-

sion is restored; thus, it was set to the same dimensionality as the input embedding. The 

activation function of the output layer was set to softmax, each of the other activation 

functions was set to ReLU, and the batch size was set to 256. For detailed dataset-specific 

hyperparameters, refer to Figure 9 and Table 2. 

 
Fig. 9. Transformer classifier conceptual diagram for hyperparameter setting. 

4.2.3 2-Channel Tensor Hyperparameter Setup 

The settings of the convolution operation applied in the proposed model, the 2-chan-

nel tensor, were set identically to those of the aforementioned 1-channel tensor. Addition-

ally, the hyperparameter settings that varied for each dataset were the dimensionality of 

the embedding vector in the sequence channel, the number of dense function nodes ex-

cluding Dense(iii), and whether self-attention was applied to the trained feature. In the case 

of dropout, the ratio within the Transformer block was set to 0.1 and the rest were set to 0 

or 0.5, as in the Transformer classifier described above. Similarly, the number of nodes in 

Dense(iii) was equal to the dimensionality of the embedding vectors of the sequence chan-

nel. The activation function of the output layer was set to softmax, each of the other acti-

vation functions were set to ReLU, and the batch size was set to 256. For detailed dataset-

specific hyperparameters, refer to Figure 10 and Table 2. 
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Fig. 10. 2-channel tensor conceptual diagram for hyperparameter setting. 

4.2.4 Hyperparameter Optimization 

To determine the optimal hyperparameters for the deep learning model, we prioritized 

the hyperparameters to be varied, establishing the best settings for a particular hyperpa-

rameter, and then moving on to explore the next hyperparameter for optimization. This 

approach was adopted due to the time and cost burden of considering all possible combi-

nations of hyperparameters. For our proposed 2-channel tensor space model, we explored 

and established the optimal values for applying Dropout-①,④,⑤ to either 0 or 0.5 

through grid search. Next, we examined performance variations according to the presence 

or absence of a self-attention layer before concatenation. The remaining continuous hy-

perparameters were changed to powers of 2 and explored in the order of the dimensionality 

of the position embedding vector, the number of Conv1D filters, and the number of dense 

layer nodes. A secondary optimization process was conducted to determine the precise 

optimal value for dimensionality of the embedding vector in the sequence channel. With 

the other hyperparameters at specific values, the dimensionality of the embedding vector 

was increased from 128 in intervals of 128 up to 1280 to measure performance. For the 

IMDB, WELFake, and 20Newsgroups datasets, due to memory limitations, the dimension-

ality of the embedding vector was increased from 64 to 640 (in intervals of 64) to measure 

performance. The optimal hyperparameters of the ultimately identified deep learning mod-

els are presented in Table 2. 

Table 2. Datasets: Hyperparameter settings: the meaning of each model is described in the table 

footer; the locations of options for column-specific models are presented in Figures 7, 8, and 9. 

(‘Self-Attention’ refers to whether self-attention is performed in the classification step of the 2-

channel tensor. ‘ osition Embedding’ refers to the dimensionalit  of the position embedding 

vector. ‘Conv1  # of filter’ refers to the number of filters in the convolution operation per 

formed in a 1-channel or 2-channel tensor.) 
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Dataset Model 
Dropout Self- 

Attention 

Position 

Embedding 

Conv1D 

# of filter 

Dense 
Epoch 

① ② ③ ④ ⑤ (ⅰ) (ⅱ) (ⅲ) (ⅳ) 

IMDB 

A 0.5 0 - - - - - 1024 256 - - - 15 

B 0.5 0.5 - - - - - 1024 256 - - - 15 

C 0 0.1 0.1 0.5 0.5 T 640 1024 256 64 640 256 20 

D 0 0.1 0.1 0.5 0.5 T 640 1024 256 32 640 256 45 

E 0.1 0.1 0.5 F - - 64 - 32 64 256 - 5 

WELFake 

A 0.5 0.5 - - - - - 1024 256 - - - 20 

B 0.5 0.5 - - - - - 1024 256 - - - 20 

C 0 0.1 0.1 0.5 0 F 192 1024 256 128 192 256 10 

D 0 0.1 0.1 0.5 0 F 512 512 256 32 512 256 5 

E 0.1 0.1 0.5 F - - 128 - 128 128 256 - 5 

20News-

groups 

A 0.5 0 - - - - - 256 256 - - - 50 

B 0.5 0 - - - - - 512 1024 - - - 45 

C 0 0.1 0.1 0.5 0.5 F 384 256 256 32 384 256 10 

D 0 0.1 0.1 0.5 0.5 F 512 1024 1024 32 512 256 10 

E 0.1 0.1 0.5 0.5 - - 256 - 32 256 256 - 50 

R8 

A 0.5 0.5 - - - - - 512 256 - - - 35 

B 0.5 0.5 - - - - - 1024 1024 - - - 45 

C 0.5 0.1 0.1 0.5 0 F 256 256 256 32 256 256 15 

D 0 0.1 0.1 0.5 0.5 F 256 256 256 32 256 56 20 

E 0.1 0.1 0.5 0 - - 256 - 64 256 256 - 25 

News 

Category 

A 0.5 0 - - - - - 1024 1024 - - - 20 

B 0.5 0 - - - - - 1024 1024 - - - 20 

C 0 0.1 0.1 0.5 0.5 T 640 1024 256 32 640 256 45 

D 0 0.1 0.1 F 0.5 T 768 1024 256 64 768 256 45 

E 0.1 0.1 0.5 0.5 - - 512 - 64 512 512 - 20 

AG News 

A 0.5 0 - - - - - 256 256 - - - 50 

B 0.5 0 - - - - - 512 1024 - - - 45 

C 0 0.1 0.1 0.5 0.5 T 640 1024 256 32 640 256 30 

D 0 0.1 0.1 0.5 0.5 T 384 1024 1024 32 384 256 10 

E 0.1 0.1 0.5 0.5 - - 256 - 32 256 256 - 50 

A: 1-Channel Tensor (ELMo) 

B: 1-Channel Tensor (BERT) 

C: 2-Channel Tensor (ELMo) 

D: 2-Channel Tensor (BERT) 

E: Transformer classifier 

 

The hyperparameter optimization for conventional machine learning algorithms such 

as SVM, Naïve Bayes, and logistic regression was conducted through grid search. For 

SVM and logistic regression, we varied the C value from 0.1 to 1000 in powers of 10, then 

explored both L1 and L2 penalties. For Naïve Bayes, we varied the alpha value from 0.01 

to 100 in powers of 10. 
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Fig. 11. The classification accuracy according to dimensionality: To determine the optimal dimen-

sionality of the embedding vectors in the sequence channel, the classification accuracy according to 

dimensionality was visualized using a line graph. The point corresponding to the optimal value indi-

cates the classification accuracy and is represented as a shape larger than the surrounding vertices. 

IMDB: Internet Movie Database; WELFake: Word Embedding over Linguistic Features for Fake 

News Detection. 

 

4.3 Experimental results 

Table 3 presents the performance evaluation of the proposed model and other models 

using six English text datasets. The best performing model in each dataset is highlighted 

in bold. When the baseline model for the proposed 2-channel tensor was set to a 1-channel 

tensor, improvements in performance were observed across all six datasets. In the case of 

WELFake and R8 datasets, the performance improvement of the 2-channel tensor was 

minimal compared with the 1-channel tensor; however, in the other datasets, the perfor-

mance improvement of the proposed model was noticeable. Specifically, in the IMDB, 

News Category, and AG news datasets, the performance of the 2-channel tensor showed a 

substantial difference compared with the second-ranked model. The performance gaps be-

tween the 2-channel tensor and the second-ranked model were 4% in the IMDB dataset, 

3.8% in the AG news dataset, and 8.8% in the News Category. 

In the experiments, classification models using ELMo outperformed those using 

BERT. This is likely because the tensor space model necessitates word-level embedding 
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vectors. That is, since ELMo directly provides word-level embeddings, it seems better 

suited for tensor space models compared to BERT, which derives word-level embeddings 

from subword token-level vectors. 

Table 3. Performance comparison between the proposed models and other machine learning 

models in terms of classification accuracy: the performance of the best model for each dataset 

is indicated in bold. 

Model 
Dataset 

IMDB R8 WELFake News Category 20Newsgroups AG news 

1-Channel Tensor (ELMo) 91.0% 97.7% 98.4% 74.9% 84.3% 91.8% 

1-Channel Tensor (BERT) 90.5% 96.8% 94.2% 75.9% 80.3% 91.6% 

2-Channel Tensor (ELMo) 95.0% 97.9% 98.7% 85.1% 88.4% 96.1% 

2-Channel Tensor (BERT) 94.0% 97.6% 98.0% 84.5% 88.1% 94.5% 

Transformer classifier 88.9% 97.2% 96.4% 65.5% 87.4% 89.1% 

SVM 87.2% 97.3% 94.5% 71.0% 86.6% 91.3% 

Naïve Bayes 86.4% 95.3% 87.4% 71.7% 86.3% 92.0% 

Logistic Regression 87.2% 96.7% 94.2% 69.2% 86.3% 91.3% 

 
Fig. 12. Bar chart illustrating the performance comparison in Table 3: For the proposed model, an 

asterisk (*) is placed on the right side of the bar. 
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4.4 Performance comparison with LLM-based text classification methods 

In order to compare with recent state-of-the-art techniques that have demonstrated 

excellent classification performance using large language models (LLMs), this section pre-

sents a performance comparison with the existing LLM fine-tuning methods (such as RoB-

ERTa-Large [26], DeBERTa [27], and BertGCN [25]) and in-context learning (ICL) meth-

ods (such as GPT-3 Vanilla [29], GPT-3 CARP [29], and GPT-3 CoT [30]). The datasets 

used here are AG News, R8, which are common with this study and [27]. Table 5 shows 

the classification accuracy and parameter size of each model for the two datasets. 

The parameter size is calculated as the sum of the parameters from the pre-trained 

language model and those from the classification model. The fine-tuning method using 

RoBERTa-Large, proposed in [28], has a total of 355 million parameters. DeBERTa, in-

troduced in [29], features 134 million parameters in its DeBERTa-based model. The size 

of additional parameters trained during the fine-tuning process for each language model in 

the te t classification tas  are denoted as α. Similarly, the parameter size for the proposed 

method is derived from the sum of 14 million parameters from ELMo (embedding size of 

256) and 110 million parameters from BERT, along with the parameters trained for the 

classification model. 

As shown in Table 5, for the AG News dataset, GPT-3 CARP slightly outperforms 

the proposed model, while for the R8 dataset, both BertGCN and GPT-3 CARP demon-

strate better performance. When considering both parameter size and classification accu-

racy, the proposed model using a 2-channel tensor with ELMo achieves results that are 

close to state-of-the-art, despite having a significantly smaller number of parameters. Note 

that the 2-channel tensor with ELMo has a parameter size of just 46M and 19M for the AG 

News and R8 datasets, respectively. 

Table 5. Performance comparison between the proposed models and recent LLM-based models 

in terms of classification accuracy and parameter size (M: Million, B: Billion): the performance 

of the proposed models and those of models that outperform the proposed models are indicated 

in bold. 

Dataset Model Accuracy (%) Parameter Size 

AG News 

Fine-tuning method 

RoBERTa-Large 95.6% 355M+α 

DeBERTa 95.3% 134M+ α 

BertGCN 95.7% 111M 

In-context learning method 

GPT-3 Vanilla 94.1% 175B 

GPT-3 CoT 94.9% 175B 

GPT-3 CARP 96.4% 175B 

Proposed method 
2-Channel Tensor (ELMo) 96.1% 46M 

2-Channel Tensor (BERT) 94.5% 130M 

R8 

Fine-tuning method 

RoBERTa-Large 97.8% 355M+α 

DeBERTa 98.3% 134M+α 

BertGCN 98.1% 111M 

In-context learning method 

GPT-3 Vanilla 95.6% 175B 

GPT-3 CoT 95.6% 175B 

GPT-3 CARP 98.9% 175B 

Proposed method 
2-Channel Tensor (ELMo) 97.9% 19M 

2-Channel Tensor (BERT) 97.6% 115M 
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5. CONCLUSIONS 

 To improve text classification performance, the classification architecture should be 

trained so as to account for semantic, contextual, and sequential information. In our study, 

we incorporated semantic and contextual information into the tensor space model using 

contextual embedding vectors and proposed a 2-channel tensor model that effectively han-

dles sequential information as input. The contextual embedding-based tensor space model 

includes a term axis composed of words that help in text classification. In the process of 

selecting the words that make up the term axis of the tensor space model, these words lose 

their sequence information. In this paper, we proposed a 2-channel deep learning architec-

ture that adds a sequence channel to manage sequence information, thereby enhancing the 

training performance of tensor space models that previously did not include sequence in-

formation. The 2-channel tensor deep learning architecture was devised to effectively pro-

cess semantic information, context information, and sequence information by separately 

training the ELMo (or BERT) channel composed of contextual embedding vectors and the 

Transformer-based sequence channel. Using six English text datasets, we experimentally 

demonstrated that the proposed method performs better than existing models. Furthermore, 

we described the process of optimizing the hyperparameters of the proposed model and 

provided a table of optimal hyperparameters to enable readers to implement our model; 

this allows researchers to realize not only sentiment analysis and fake news detection, but 

also for various text classification tasks. We hope that the performance improvement 

demonstrated in this study will contribute to performance enhancements in real-world ap-

plications. In addition to semantics, context, and sequence information, there are other fac-

tors, such as keywords and tag information, that can be considered for text classification. 

Future work includes another multi-channel architecture with new channels for learning 

this additional meta-information. 
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