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The identification of vulnerabilities in smart contracts is a vital component of blockchain
security technology. Traditional techniques such as static analysis, fuzz testing, and formal
verification often have elevated false-positive rates and lack adaptive learning capacities.
This study presents GPT-CodeBert Deep Learning Vulnerabilities Identification Architec-
ture, a tool for detecting vulnerabilities in smart contracts using deep learning. The system
begins by utilizing big language models, specifically ChatGPT, to examine smart contracts
and identify essential functions that may conceal vulnerabilities. The CodeBert model is
consequently employed for feature extraction on these functions. A high-precision predic-
tive model is eventually developed by integrating an attention mechanism with a bidirec-
tional long short-term memory network. The experimental results imply that the suggested
framework is efficient, extremely accurate, and possesses superior detection rates regarding
accuracy, precision, and recall. The proposed framework achieves an accuracy of 96% in
identifying reentrancy vulnerabilities and 98% in recognizing Tx-Origin issues. Keywords:
ChatGPT, CodeBert, Smart Contracts, Deep Learning
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1. INTRODUCTION

The fast advancement and wide utilization of blockchain technology [1] have made
smart contracts a crucial element that can broaden blockchain’s potential while intro-
ducing unparalleled hurdles. The intrinsic security flaws of smart contracts have led to
considerable financial losses and eroded trust in the Bitcoin ecosystem. However, ma-
jor security holes have been observed [2] previously, such as the reentrancy attack on
the DAO [3] and the default visibility vulnerability in the Parity MultiSig Wallet. These
holes have cost a large amount of money and hurt the credibility of blockchain technol-
ogy. These occurrences highlight the pressing need for further research into the security
of smart contracts.
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In the field of smart contract vulnerability detection, present technologies are largely
categorized into three [4]: traditional detection methods [5], deep learning-based meth-
ods [6], and methods utilizing large language models such as ChatGPT. Traditional tech-
niques, such as fuzz testing [7], formal verification [8], and symbolic execution [9], have
exhibited practical efficacy. Nevertheless, their dependence on specialized knowledge and
minimal automation restrains their adaptability to the constantly changing environment
of risks. Deep learning methodologies [10–17], through autonomous feature learning of
smart contract vulnerabilities, have reduced reliance on expert knowledge and enabled
novel approaches for automated vulnerability detection. However, managing massive
sample quantities and intricate smart contract codes has considerably hindered the suc-
cessful extraction of vulnerability-related features. Despite ChatGPT’s robust proficiency
in code comprehension, its direct utilization for smart contract vulnerability detection
may not provide optimal outcomes [18, 19].

This study presents a code trimming strategy utilizing ChatGPT to identify essential
code portions that may include vulnerability issues. This method evidently enhances
sample quality and detection efficacy. The refined CodeBert model [20, 21] is combined
with an attention-augmented Bidirectional Long Short-Term Memory (BiLSTM) deep
learning model, and this approach results in the effective, accurate identification of smart
contract vulnerabilities. This study’s principal contributions are listed below:

• ChatGPT is employed for pruning operations to isolate the essential functionalities
and consequently enhance the semantic density of vulnerability traits. This ap-
proach efficiently streamlines smart contract programming by detecting and segre-
gating functions that may possess substantial vulnerabilities. The procedure greatly
decreases interference from extraneous code and hence improves the efficiency and
precision of ensuing deep learning models.

• The GPT-CodeBert Deep Learning Vulnerabilities Identification Architecture
(GCB-DVIA) framework, an advanced approach for detecting vulnerabilities in
smart contracts that integrates big language models with deep learning methodolo-
gies, is employed. The system efficiently and accurately detects smart contract vul-
nerabilities by integrating ChatGPT’s semantic comprehension, CodeBert’s code
understanding, and BiLSTM’s sequence feature extraction capabilities.

• Comprehensive experiments across several datasets reinforce the efficacy and su-
periority of the proposed system in detecting vulnerabilities in smart contracts. The
detection rates for reentrancy and transaction-origin vulnerabilities are 96% and
98%, respectively, which greatly surpass those of current detection methods.

2. Related Work

Research on vulnerability detection methods is crucial in the domain of smart con-
tract security. Current research can be classified into three categories according to the
technological methodologies utilized: conventional detection techniques, deep learning-
based detection techniques, and detection techniques leveraging big language models
(e.g., ChatGPT).
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2.1 Traditional detection method

Conventional approaches primarily depend on a range of static and dynamic anal-
ysis techniques. Grieco et al. [7] present Echidna, a fuzzing tool tailored for Ethereum
smart contracts. The tool enhances the generation of test cases specific to the distinct
functionalities of smart contracts and can automatically identify and exploit particular
contract behavior patterns. Park et al. [8] created VeriSmart for the detection of security
vulnerabilities in smart contracts through the application of formal verification methods.
VeriSmart enhances the efficiency and accuracy of the formal verification process through
the adoption of advanced abstractive and optimized solvers, facilitating secure verifica-
tion of complex smart contracts. Mueller et al. [9] introduced Mythril, an open-source
tool for analyzing the security of Ethereum smart contracts, employing symbolic exe-
cution for the examination of smart contract code. Mythril effectively identifies deeper
vulnerabilities and complex attack vectors by employing an efficient symbolic execution
strategy and conducting thorough analyses of contracts. Feist et al. [22] introduce Slither,
a static analysis framework designed to convert smart contract code into an intermediate
representation. Slither enhances the speed and accuracy of vulnerability detection through
optimizations in static analysis and intermediate representations, simultaneously minimiz-
ing false positives. The dependence on expert knowledge and the minimal automation of
traditional methods restrict their capacity to adjust to the evolving vulnerability landscape.

2.2 Vulnerability detection method based on deep learning

Artificial intelligence has facilitated the detection of vulnerabilities in smart con-
tracts through deep learning techniques. The remarkable feature extraction capability
of deep neural networks is employed to autonomously identify patterns of code vulner-
abilities. Huang et al. [10] devised a mechanism for detecting vulnerabilities in smart
contracts based on multi-task learning. The model enhanced contract vulnerability corre-
lation by parallelizing detection operations within a framework. Liu et al. [11] devised a
technique for detecting vulnerabilities in smart contracts through the application of deep
learning and expert rules. The enhancement of vulnerability identification and smart con-
tract security verification is achieved through the improved accuracy and efficiency of
deep learning’s pattern recognition and expert rules. Sendner et al. [12] propose employ-
ing deep transfer learning to detect vulnerabilities in smart contracts [23]. This approach
employs pre-existing data sets for model training using transfer learning, improving de-
tection in data-scarce situations and strengthening model generalization and efficiency.
Sun et al. [13] developed ASSBert, a mechanism for detecting smart contract vulnerabil-
ities utilizing active and semi-supervised learning. This approach improves vulnerability
detection with minimal annotation data and provides a technology framework for analyz-
ing smart contract security. Notwithstanding these advancements, deep learning methods
encounter difficulties in feature extraction and the encoding of complex semantic infor-
mation.

2.3 Large Language Model Based Vulnerability Detection Method

Researchers are examining vulnerability detection systems based on huge language
models to resolve the aforementioned challenges. ChatGPT’s proficiency in code compre-
hension positions it as a possible detector of smart contract vulnerabilities. Sun et al. [18]
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introduced GPTScan, an innovative method for identifying logical errors in smart con-
tracts, by integrating GPT technology with program analysis. This approach enhances
vulnerability detection by integrating ChatGPT with program analysis, hence further-
ing research in smart contract security. Hu et al. [19] present the GPTLens framework
for identifying vulnerabilities in smart contracts through the utilization of large language
models. The system employs a two-stage generative and discriminative approach to en-
hance the accuracy and efficiency of ChatGPT vulnerability identification. Nonetheless,
these methods possess limitations. Expertise is required to formulate vulnerability situ-
ations and attributes in GPTScan, constraining its ability to respond to swift vulnerabil-
ity advancements. Any misconfiguration of scenarios and attributes might significantly
diminish the detection rate. GPTLens utilizes ChatGPT, and its training data includes
substantial non-smart contract vulnerability information, which impacts its detection effi-
ciency.

To tackle the aforementioned difficulties, we suggest the GCB-DVIA methodology.
In contrast to conventional approaches that depend on expert experience, GCB-DVIA
employs the semantic information of vulnerabilities for training and prediction via a deep
learning model. Initially, ChatGPT is employed to analyze the code, concentrating on
the critical aspects of vulnerability risk, thereby enhancing the focus on the semantic in-
formation related to internal vulnerabilities, minimizing distractions, and augmenting the
specificity and precision of vulnerability detection. We subsequently refine the CodeBert
model to tailor it for the extraction of vulnerability aspects from smart contracts written
in Solidity. GCB-DVIA achieves efficient and precise identification of smart contract vul-
nerabilities by integrating the fine-tuned CodeBert model with the BiLSTM deep learning
model featuring an attention mechanism. This solution utilizes transfer learning to swiftly
adapt to new vulnerabilities and successfully address the rapid developments in smart con-
tract security. This adaptive and efficient approach offers a more sophisticated solution
for the security detection of smart contracts.

3. GCB-DVIA FRAMEWORK

We present the GCB-DVIA framework, a novel deep learning architecture explicitly
developed for the identification of smart contract vulnerabilities, with its primary structure
and method illustrated in Figs.1 and 2. The framework is the inaugural solution to utilize
ChatGPT for the extraction of smart contract features and comprises three essential stages:

• Data Preprocessing: At this stage, we utilize a refined iteration of ChatGPT to
pinpoint and extract essential code snippets pertinent to security vulnerabilities
in smart contracts. This technique maximally utilizes ChatGPT’s robust semantic
comprehension skills [24], significantly diminishing the impact of extraneous infor-
mation and facilitating the accurate identification of potential vulnerability feature
functions.

• Feature Extraction: We employ CodeBert [25] to do a comprehensive analysis of
the code segments obtained in the initial phase, deriving high-dimensional feature
values that signify vulnerability attributes. CodeBert excels in its deep compre-
hension of programming languages, allowing it to accurately discern patterns and
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characteristics associated with vulnerabilities in intricate code architectures.

• Vulnerability Detection and Classification: In the concluding phase, a BiLSTM
model combined with a self-attention mechanism is employed for vulnerability cat-
egorization and prediction.
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Fig. 1. This figure illustrates the architecture of the GCB-DVIA framework, comprising three main
stages: data preprocessing, feature extraction, and model training. The framework integrates Chat-
GPT for code pruning, CodeBert for feature extraction, and BiLSTM for vulnerability classification,
enabling efficient and accurate detection.
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Fig. 2. This figure depicts the workflow of the GCB-DVIA framework, covering data preprocessing,
feature extraction with Fine-CodeBert, and vulnerability classification using BiLSTM with attention
mechanisms.

This framework’s primary novelty is the amalgamation of ChatGPT with deep learn-
ing methodologies, facilitating rapid and precise vulnerability detection in smart contract
security analysis. This multidisciplinary technology integration enhances the effective-
ness of vulnerability identification and broadens the research methodology and applica-
tion scope in smart contract security analysis.
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3.1 Data preprocessing

The data preprocessing stage emphasizes the extraction and cleansing of source code
to enhance data quality and assure its appropriateness for further analysis. Fig.3 illustrates
that the entire process is segmented into three primary stages: data cleansing, contract
segmentation, and GPT filtration.

    Contract{

 // annotation 1
 function A{
  function B
 }
 ...
 function C
 // annotation 2
 function add

    }

  Contract{

 function A{
  function B
 }
 ...
 function C

  }

Data cleaning

  Contract{

 function A{
  function B
 }
 ...
 function C

  }

function A
function B

function C

function A
function B function C

Potential vulnerability function segment

GPT
(a) Data Cleaning

(b) Contract Segmentation (c) GPT Filtering

Fig. 3. This figure details the data preprocessing workflow, consisting of three main steps: (a)
cleaning redundant data, (b) segmenting long code snippets, and (c) pruning irrelevant segments
using ChatGPT. These steps ensure high-quality and relevant input for further analysis.

During the data cleaning procedure, as seen in step (a) of Fig.3, we first employ reg-
ular expressions to exclude comments and other unstructured characters from the source
code. This not only formats the code but also minimizes its size, enhancing the efficiency
of further analysis and filtering with ChatGPT. Subsequently, due to the frequent struc-
tural similarities across common code libraries in the source code (as depicted in Fig.4),
we established a blacklist of these libraries. The function names in the contract are jux-
taposed with those in the blacklist, and matching functions are eliminated to minimize
interference in later phases.

During contract segmentation, as illustrated in procedure b of Fig.3. We account
for ChatGPT’s input token limitation (maximum of 16,385 tokens) by dividing the ex-
cessively lengthy contract code by function while maintaining the interrelation between
functions. For instance, if function A invokes function B, we ensure that both functions
reside within the same code section, as depicted in Fig.3. Furthermore, due to CodeBert’s
input restriction of 512 tokens, code snippets shorter than 512 tokens are omitted in the
subsequent ChatGPT filtering to maintain process efficacy.

In the GPT filtering procedure, as seen in step (c) of Fig.3, we initially refine Chat-
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Fig. 4. This figure presents an example of removing redundant library code during data preprocess-
ing, ensuring the dataset focuses on relevant contract logic for vulnerability detection.

GPT. The fine-tuning procedure is depicted in Fig.5. We initially chose 128 smart con-
tracts manually as valid scenarios. Various probable correct vulnerability code portions
were detected in each contract. Reentrancy vulnerabilities typically manifest when a con-
tract permits re-entry into the same function prior to the completion of an external call,
resulting in several invocations. In the filtering process, we concentrated on the ratio-
nality of external function calls and their corresponding state modifications, specifically
assessing whether transfer operations were finalized prior to an external contract invoca-
tion. We meticulously identified the appropriate probable vulnerability code parts from
each contract and utilized these accurate instances to refine ChatGPT. Consequently, by
persistently refining the output format and precision of ChatGPT, the results more closely
conformed to our unique requirements.

Contract
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vulnerability

vulnerability

vulnerability

GPT
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Example

Filtering

Manual
GPT

Fine-Tuning

Fig. 5. This figure illustrates the fine-tuning process of ChatGPT, optimizing its ability to identify
vulnerability-related code segments while minimizing irrelevant data interference.

The primary objective of fine-tuning is to enhance ChatGPT’s ability to effectively
analyze smart contract code, particularly with vulnerability filtering, while minimizing the
removal of essential data. The fine-tuning method includes modifying the hyperparame-
ters of ChatGPT, as illustrated in Table 1, to yield more accurate results when identifying
potentially vulnerable functions. The outputs are presented in JSON format, as illustrated
in Fig.6, and encompass essential information such the names and types of state variables,
function names, and their visibility. This organized output allows us to easily identify and
extract the essential code segments. The information acquired via ChatGPT is utilized to
precisely extract pertinent code snippets from the sanitized source code repository. The
cleaned smart contract function snippets were acquired using these procedures, resulting
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in a dataset size reduction to 31% of the original dataset.

Table 1. ChatGPT Hyperparameter Configuration for Vulnerability Filtering Optimiza-
tion.

Hyperparameter Name value Purpose
Batch size 8 Affects the number of samples per parameter update.

Learning rate multiplier 0.1 Controls the step size for parameter updates.
Number of epochs 5 Determines the number of times the model is trained.

Fig. 6. This figure shows ChatGPT’s output in JSON format, extracting critical state variables and
functions.

3.2 Feature extraction

We adopted the CodeBert model for feature extraction to facilitate the training and
prediction tasks of smart contract vulnerability detection [26]. As CodeBert was not orig-
inally trained on the Solidity language, we fine-tuned the model for this specific applica-
tion, and the modified model is designated as Fine-CodeBert.

Initially, we tokenize the smart contracts employing the CodeBert tokenizer. Due to
the model’s restricted input capacity, it is impractical to directly input lengthy sentences,
such as a full source code file. Consequently, we employ a sliding window technique
with a 256-token window to segment the code. The quantity of created input segments
is thereafter compared to the established threshold (14 segments) to ascertain whether
to incorporate padding segments or to terminate surplus segments. Incomplete segments
are supplemented with designated padding tokens, while excess segments are trimmed,
thereby maintaining uniformity in the dimensions of the input data. The tokenized data
from each smart contract X ∈ R1×14×512 serves as input for the Fine-CodeBert model.

Subsequently, we do feature extraction. In the Fine-CodeBert model, every input se-
quence commences with a [CLS] token. Upon processing the input through many levels,
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the ultimate state of the [CLS] token serves as the condensed representation of the entire
input sequence, effectively encapsulating the fundamental semantics of the input data.
Consequently, we obtain the [CLS] token from each segmented sequence as the feature
representation of the smart contract X ∈ R1×768. The extraction procedure is depicted in
Fig.7.

Smart
contracts

512

768512

CodeBertTokens Embedding CLS Vector

Fig. 7. This figure demonstrates the feature extraction process using CodeBert. Tokenized inputs
are processed, and the [CLS] token represents the semantic features of the code for downstream
tasks.

3.3 Model Training

Subsequent to feature extraction, we utilize BiLSTM network augmented with a
self-attention mechanism for model training and prediction [27]. The model’s input is
X ∈ RB×768, with the primary design illustrated in Fig.8. The BiLSTM proficiently gath-
ers contextual information from code sequences in both forward and backward direc-
tions. The incorporation of this contextual information improves forecast accuracy. The
self-attention method allows the model to concentrate on the more important portions of
code while ignoring those of lesser semantic significance, therefore enhancing the model’s
overall performance.

The BiLSTM design consists of two separate LSTM layers: one processes the se-
quence in a forward direction, and the other processes it in reverse. Each LSTM layer
comprises numerous LSTM units, each equipped with three gates and a cell state, which
collectively provide the retention of information continuity and the proficient learning
from extended sequence data:

Input Gate: it = σ(Wi · [ht−1,xt ]+bi)

Forget Gate: ft = σ(Wf · [ht−1,xt ]+b f )

Output Gate: ot = σ(Wo · [ht−1,xt ]+bo)

Candidate Cell State: c̃t = tanh(Wc · [ht−1,xt ]+bc)

Cell State Update: ct = ft · ct−1 + it · c̃t

Hidden State Update: ht = ot · tanh(ct)

(1)

In these equations, σ denotes the sigmoid activation function, which compresses
any real number into the interval (0, 1). tanh, the hyperbolic tangent activation function,
outputs values in the range (-1, 1).Wf , Wi, Wc, Wo are the weight matrices corresponding



10 Y.ZHAO,H.ZHANG,L.WANG,K.WANG,W.SONG,Z.ZHANG,W.ZHANG,Y.-C.CHEN

to the forget gate, input gate, candidate cell state, and output gate, respectively. b f , bi, bc,
bo are the bias terms for the forget gate, input gate, candidate cell state, and output gate,
respectively. ht−1 denotes the hidden state from the previous timestep, xt represents the
input vector at the current timestep, and ct−1 is the cell state from the previous timestep.
ct and ht are the updated cell state and hidden state at the current timestep, respectively.

Sigmoid

Fully Connected Layer

Self-Attention Layer

Source Code

Fine-CodeBert

...

Fig. 8. This figure depicts the BiLSTM model combined with an attention mechanism, capturing
contextual information to improve the detection of complex vulnerabilities.

4. Experiments and Analysis

4.1 Experimental Setup

4.1.1 Dataset

In this study, smart contracts implemented on the Ethereum platform are investigated
[28]. An in-depth analysis of four prevalent, representative vulnerabilities identified by
the Smart Contract Vulnerability Classification Registry was conducted [29]: reentrancy
(RENT) vulnerability, tx.origin authentication (TX) vulnerability, unchecked return (UR)
value, and locked fund (LE) vulnerability.

Two publicly accessible Ethereum smart contract datasets were used: the ScrawlD
dataset [30] and the Slither Audited Smart Contracts dataset [31]. Both datasets comprise
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authentic smart contracts deployed on the Ethereum blockchain. The ScrawlD dataset
has 9,123 samples, whereas the Slither Audited Smart Contracts dataset encompasses
120,608 samples.These datasets were selected for their complementary characteristics:
the ScrawlD dataset, with its smaller and more focused sample size, is ideal for validating
the detection capabilities on specific vulnerabilities, while the larger Slither dataset pro-
vides a robust foundation for model training and enhances generalization across a diverse
range of vulnerabilities.

To address the problem of sample imbalance, samples were selectively extracted
from the Slither Audited Smart Contracts dataset according to several categories of vul-
nerabilities to create a balanced dataset. The minimum ratio of positive to negative sam-
ples was at least 1:3. The quantity of samples in each of the four assembled datasets is
specified in Table 2.

The detection outcomes of the proposed strategy relative to existing technologies
utilizing the ScrawlD dataset were assessed. This dataset was evaluated utilizing tools in-
cluding Slither, Mythril, Smartcheck, Oyente, and Osiris, with a specific focus on assess-
ing the identification of vulnerabilities such as RENT, Ether locking, and TX concerns.
The amounts of these three categories of vulnerabilities are presented in Table 3.

Table 2. Number of Samples in Datasets Constructed According to Different Types of
Vulnerabilities.

Vulnerability Dataset Positive Samples Negative Samples Total
TX Dataset 3,043 6,086 9,129
LE Dataset 3,334 6,666 10,000

RENT Dataset 10,204 21,030 31,234
UR Dataset 42,573 78,035 120,608

Table 3. Quantities of Different Types of Vulnerabilities in the ScrawlD Dataset.
Vulnerability Type Positive Samples Negative Samples

TX 283 8,840
LE 1,696 7,427

RENT 5,132 3,991

4.1.2 Experimental Environment

This study utilized an environment comprising Ubuntu 22.04 as the operating sys-
tem, Python 3.10 as the programming language, CUDA 12.1, and PyTorch 2.1.0.All ex-
periments were performed on a high-performance machine with an Intel(R) Xeon(R)
Gold 6430 processor comprising 16 vCPUs, a single NVIDIA RTX 4090 (with 24GB
of VRAM), and 120GB of RAM.

4.1.3 Parameter Settings

The parameter configuration for model training and testing was defined to improve
performance and guarantee result reliability. The batch size was configured to 2,048 to
optimize the memory requirements of training alongside processing efficiency. Binary
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cross-entropy loss was utilized because it is appropriate for binary classification tasks and
to enhance the model’s precision in predicting the existence or nonexistence of vulnera-
bilities. The Adam optimizer was selected due to its adaptive learning rate modification
mechanism, which promoted swift model convergence; the learning rate was established
at 0.003, a figure determined from initial trials to guarantee rapid convergence and sta-
bility during training. The Sigmoid activation function, suitable for the output layer of
probability forecasts, was utilized. In dataset management, 80% of the data was des-
ignated as the training set for model development and optimization, whereas the 20%
served was considered the test set to assess the model’s performance on novel data. The
parameter configurations were based on established best practices from the literature and
preliminary experimental trials, designed to optimize training efficiency and ensure the
validity of the outcomes.

4.1.4 Evaluation Metrics

To thoroughly assess and contrast the methodologies presented in this study, we
utilized four commonly employed evaluation measures. The measures include Accuracy,
Precision, Recall, and F1 Score.

4.2 Comparative Experiments

4.2.1 Compare Feature Extraction and Model Architectures for Smart Contract
Vulnerability Detection

This approach integrates ChatGPT, the specialized Fine-CodeBert, and a BiLSTM
network to tackle proficiently key challenges in smart contract vulnerability detection,
such as erroneous feature extraction, inadequate model generalization, and inability to
manage intricate vulnerability characteristics. Finetuning Fine-CodeBert improves the
accuracy of feature extraction and enables it to discern the intricate semantics of So-
lidity code more effectively, especially in detecting concealed vulnerability patterns. The
BiLSTM network supplements the model’s comprehension of code sequences via its bidi-
rectional architecture, hence improving its adaptability and generalization across various
vulnerability types. Utilizing ChatGPT for code trimming effectively eliminates essen-
tial code snippets, minimizes redundancy, and improves detection efficiency for intricate
vulnerabilities, such as Ethereum locking and TX issues. The presented approach demon-
strates remarkable enhancements in critical measures, including accuracy and recall, rel-
ative to conventional deep learning methods.

Comparison studies utilizing the Slither Audited Smart Contracts dataset were per-
formed. In the feature extraction phase, Fine-CodeBert was employed to extract code
features, and its efficacy was compared with that of the Word2Vec model trained on So-
lidity data [32]. Conventional deep learning models, including LSTM, GRU, RNN, and
BiLSTM, were utilized in model training for comparative analyses to evaluate the adapt-
ability and efficacy of various neural architectures in vulnerability detection tasks. The
findings in Table 4 reveal the substantial superiority of Fine-CodeBert.

Table 4 demonstrates that models utilizing Fine-CodeBert for feature extraction ex-
ceed those adopting Word2Vec across all metrics. For example, in the context of RENT
vulnerabilities, Fine-CodeBert consistently achieves accuracy rates of 95%, regardless
of the application of the BiLSTM, LSTM, RNN, or GRU models, whereas Word2Vec’s
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maximum accuracy is 89%. In addition, Fine-CodeBert displays average improvements
of approximately 8%, 12%, and 12% in accuracy, recall, and F1 scores, respectively,
which indicate its superior ability to comprehend intricate semantic information linked to
vulnerabilities.

This inclination is similarly observed in the recognition of supplementary vulnerabil-
ities. For instance, in detecting locked Ether vulnerabilities, Fine-CodeBert enables mod-
els to obtain accuracy rates ranging from 96% to 99%, which exceed that of Word2Vec
by greater than 11% in accuracy and over 16% in F1 score. Models employing Fine-
CodeBert for TX vulnerabilities realize accuracy rates of 97% across all neural architec-
tures, and F1 scores consistently reach 95%. By contrast, Word2Vec realizes a maximum
accuracy of 92% and an F1 score of 87%.

Table 4. Feature Extraction and Classification Model Cross-Combination Experiment
Results.

Vulnerability Model Word2Vec CodeBert
ACC P R F1 ACC P R F1

RENT

GRU 89 84 76 80 95 93 90 92
LSTM 89 84 76 80 95 93 90 92
RNN 88 82 75 79 95 92 91 92

BiLSTM 90 85 76 80 96 93 91 92

LE

GRU 85 84 68 75 97 96 94 95
LSTM 85 81 73 77 96 94 93 93
RNN 84 75 77 76 96 93 94 93

BiLSTM 86 75 80 77 99 98 97 98

TX

GRU 92 89 85 87 98 97 95 96
LSTM 92 89 83 86 97 95 96 95
RNN 90 86 83 85 97 95 96 95

BiLSTM 91 85 87 86 98 96 96 96

UR

GRU 92 90 88 89 97 96 94 95
LSTM 92 90 87 88 97 96 96 96
RNN 91 89 86 88 97 95 94 95

BiLSTM 92 90 89 89 97 96 96 96

The GCB-DVIA framework skillfully addresses the principal issues in smart contract
vulnerability detection—specifically, erroneous feature extraction, insufficient model
generalization, and limited efficacy in recognizing intricate vulnerabilities—by incorpo-
rating Fine-CodeBert and BiLSTM alongside ChatGPT’s code pruning phase. The exper-
imental results clearly establish Fine-CodeBert’s capability in identifying hidden vulner-
abilities within the code, hence substantially improving model performance in complex
vulnerability scenarios and supporting smart contract security.

4.2.2 Comparison with Traditional Tools

To validate the efficacy of the proposed GCB-DVIA method, comparison experi-
ments were performed utilizing the ScrawID dataset against established traditional smart
contract security analysis tools, including Slither, Mythril, SmartCheck, Oyente, and
Osiris. Table 5 compares and details performance metrics, including accuracy and recall
for various vulnerabilities, and thus provides robust data to measure the overall efficacy of
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each method. In Table 5, the dash (“-”) indicates that the instrument cannot identify cer-
tain sorts of vulnerabilities, which underscores the coverage limitations of conventional
techniques. The GCB-DVIA framework achieves superior detection capabilities for di-
verse prevalent vulnerability types, especially in identifying reentrancy vulnerabilities and
locked Ether vulnerabilities, and considerably surpasses traditional tools in key metrics
of accuracy and recall.

Table 5. Comparison Results of the Proposed Method with Traditional Tools (Vuln-type
represents vulnerability type).

Vuln-type Metric GCB-DVIA Slither Mythril Smartcheck Oyente Osiris

RENT ACC 90.69% 77.86% 79.16% - - 44.56%
R 84.99% 60.65% 62.95% - - 1.46%

LE ACC 95.51% 92.6% - 92.5% - -
R 94.98% 60.73% - 59.66% - -

TX ACC 97.8% 97.05% 99.6% 97.68% - -
R 97.52% 4.94% 88.33% 25.44% - -

For RENT vulnerabilities, GCB-DVIA obtained an accuracy of 90.69% and a re-
call of 84.99%. By contrast, conventional tools such as Slither and Mythril only reached
accuracies of 77.86% and 79.16%, respectively, and recall rates of 60.65% and 62.95%,
respectively. T his result implies that GCB-DVIA not only detects vulnerabilities with
greater precision but also includes a larger share of genuine vulnerability occurrences.
The recall inadequacies of conventional tools may lead to a considerable quantity of un-
detected potential vulnerabilities and fail to meet the stringent security standards of smart
contracts.

In identifying locked Ether vulnerabilities, GCB-DVIA demonstrated superior per-
formance and attained accuracy and recall rates of 95.51% and 94.98%, respectively, and
remarkably surpassed the efficacy of Slither and SmartCheck. GCB-DVIA considerably
improved recall rates by more than 34% and 35% compared with Slither and SmartCheck,
respectively. This outcome illustrates GCB-DVIA’s capacity to identify locked Ether vul-
nerabilities more thoroughly, decrease the occurrence of overlooked incidents, and sub-
stantially strengthen smart contract security.

In addressing TX vulnerabilities, GCB-DVIA reached an accuracy of 97.8%, which
was inferior to Mythril’s 99.6%, although it greatly surpassed Mythril in recall and
achieved 97.52% versus Mythril’s 88.33%. This outcome demonstrates that GCB-DVIA
not only maintains high accuracy but also offers a more thorough recognition of vulner-
ability occurrences, hence minimizing missed detections. The TX vulnerability dataset
comprises only 283 positive samples, which causes a considerable data imbalance that
could limit a comprehensive assessment of accuracy. Consequently, the more equitable
RENT vulnerability dataset is predominantly utilized to highlight the benefits of the GCB-
DVIA architecture.

The experimental results unequivocally validate the efficacy and superiority of GCB-
DVIA in vulnerability identification, notably its substantial enhancement in recall, a vital
parameter, signifying its robust capacity to reliably identify potential weaknesses. The ex-
ceptional efficacy of GCB-DVIA in vulnerability identification is due to its rectification of
two substantial shortcomings of conventional methods. First, traditional techniques pre-



EXAMPLE FOR USING THE JISE TEMPLATE 15

dominantly rely on established rules and pattern recognition and render the identification
of unique or changing vulnerabilities challenging. GCB-DVIA utilizes the self-learning
capabilities of deep learning models to enable the automatic extraction of vulnerability
features and to adapt to the quick evolution of vulnerabilities. Second, conventional tools
are prone to disruption while handling contracts with excessive irrelevant code. GCB-
DVIA employs ChatGPT for code pruning and concentrates on the essential components
associated with vulnerabilities, thus minimizing extraneous information and improving
detection precision and efficacy.

4.3 Ablation Study

In the ablation study, the e ffects of the GPT trimming step and the finetuning of the
CodeBert model within the GCB-DVIA framework on overall performance were compre-
hensively investigated. This paper aims to handle two important issues: The first is the
abundance of redundant, irrelevant information in the code that may impede the model’s
vulnerability detection efficacy. The second is the insufficient feature extraction capacity
of pretrained models lacking finetuning in specific domains, which hinders the compre-
hensive capture of intricate semantic features in smart contract code.

To evaluate the individual effects of each component, two sets of comparative exper-
iments were devised: one eliminating the GPT trimming phase (labeled as No-GPT) and
another excluding the finetuning of CodeBert (labeled as No-Fine). This methodology
facilitated the assessment of the influence of each component on the model’s performance
and thereby confirmed the efficacy of the recommended techniques. The results in Table 6
reveal that by integrating GPT pruning with finetuned CodeBert, the GCB-DVIA frame-
work achieved substantial enhancements in the detection of all vulnerability classes.

Table 6. Results of the Ablation Study.
Vulnerability Metric No-GPT No-Fine GCB-DVIA

RENT

ACC 94% 92% 96%
P 91% 89% 93%
R 91% 85% 91%
F1 91% 86% 92%

LE

ACC 96% 96% 99%
P 94% 94% 98%
R 93% 93% 97%
F1 93% 93% 98%

TX

ACC 97% 94% 98%
P 95% 93% 96%
R 96% 92% 96%
F1 95% 93% 96%

UR

ACC 97% 95% 97%
P 96% 93% 96%
R 96% 94% 96%
F1 96% 94% 96%

In relation to RENT vulnerabilities, the accuracy of GCB-DVIA increased from 94%
without GPT pruning (No-GPT) to 96%, precision rose from 91% to 93%, and recall and
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F1 scores advanced from 91% to 92%. This outcome presents that GPT pruning efficiently
removes extraneous code, sharpens the model’s emphasis on essential vulnerability char-
acteristics, and strengthens detection precision and thoroughness.

The enhancement in performance for detecting locked Ether vulnerabilities was sub-
stantially greater. The accuracy improved by 3% and rose from 93% in the No-GPT setup
to 96%. The F1 score greatly increased by 5%, from 93% to 98%. The results indicate
that GPT trimming is essential for minimizing code redundancy and focusing on critical
vulnerability elements, thereby markedly increasing the model’s detection efficacy.

GCB-DVIA achieved superior performance in all evaluation metrics for TX vulner-
abilities and UR value vulnerabilities. This result highlights the substantial benefits of
finetuning the CodeBert model. The refined CodeBert is more suited to the exact syn-
tax and semantic characteristics of the smart contract domain, which enables it to derive
more profound code representations and enhance the model’s capacity to identify intricate
vulnerability patterns.

The experimental findings unequivocally demonstrate the efficacy of GPT trim-
ming and CodeBert finetuning in improving model performance. This study presents
the GCB-DVIA method, which effectively alleviates code redundancy interference and
increases feature extraction in classic vulnerability detection methods using GPT pruning
and CodeBert finetuning. GPT pruning enables the model to focus on essential vulnerabil-
ity elements and minimize extraneous information. The refined CodeBert strengthens the
model’s comprehension of profound semantic characteristics in smart contract code. The
consolidation of these two methodologies greatly improves the precision and dependabil-
ity of smart contract vulnerability identification and underscores their essential function
in managing intricate code semantics and improving detection efficacy.

4.4 Generalization Discussion

This study confirms the efficacy of the GCB-DVIA framework utilizing the Solidity
language; nonetheless, it is important to recognize that the existing framework has specific
constraints when applied to other smart contract languages. These constraints are chiefly
evident in the subsequent facets:

Syntax and Semantic Differences:Diverse smart contract languages demonstrate
substantial variations in syntax structures and semantic characteristics. The Vyper lan-
guage eliminates intricate features like inheritance and function overloading, prioritizing
simplicity and security. Other blockchain platforms utilize languages such as Michelson
for Tezos and Plutus for Cardano, which possess fundamentally distinct programming
paradigms and semantic frameworks. The models within the GCB-DVIA framework are
trained and fine-tuned on Solidity code, making their straight application to other lan-
guages potentially inadequate for accurately capturing their distinct syntax and vulnera-
bility patterns.

Applicability of Pre-trained Models:The framework employs pre-trained models,
like CodeBert and GPT, which have been fine-tuned on Solidity to offer specialized fea-
ture extraction capabilities. Nonetheless, when analyzing alternative smart contract lan-
guages, these models may inadequately extract essential information, resulting in dimin-
ished vulnerability detection efficacy. The characteristics specific to a language and its
security patterns require the models to be re-tuned for the intended language.



EXAMPLE FOR USING THE JISE TEMPLATE 17

Lack of Multilingual Vulnerability Datasets:The efficacy of the GCB-DVIA ar-
chitecture depends on the accessibility of a high-caliber vulnerability dataset. At now,
there is an absence of publicly accessible vulnerability datasets for other smart contract
languages, especially those that are newer or less often utilized. This constraint impedes
the training and validation of the framework in these languages, thereby impacting its
generalization capacity.

Differences in Vulnerability Types:Various languages may possess distinct vul-
nerabilities and security issues. Reentrancy vulnerabilities prevalent in Solidity may be
absent in other programming languages or may present differently. This necessitates the
framework’s capacity to identify diverse vulnerability types, while existing models are
predominantly trained on prevalent vulnerabilities in Solidity.

To mitigate the previously described constraints and improve the applicability of
the GCB-DVIA framework to more smart contract languages, we propose the following
measures:

Collection and Construction of Multilingual Vulnerability Datasets:Gather an
extensive collection of code samples and documented vulnerability instances in the target
language to create a high-quality vulnerability dataset. This will furnish the requisite data
support for model training, facilitating the model’s acquisition of specific vulnerability
patterns in the target language.

Cross-Language Fine-Tuning and Training of Models:Refine CodeBert and GPT
models in the target language, or develop new pretrained models. Enhancing the model’s
feature extraction capability and vulnerability detection performance is achieved by ad-
justing to the syntactic and semantic characteristics of various languages.

Adjustment of Model Architecture and Detection Algorithms:We adjust the
model’s input representation and the detection technique based on the attributes of other
languages. For instance, based on the grammatical attributes of the target language, the
model’s encoding method and neural network architecture are modified to successfully
identify its distinct susceptibility patterns.

Development of a Modular Framework:Construct a highly extendable modular
architecture capable of accommodating new smart contract languages with little alter-
ations. The modular design segregates the language-specific processing flow, enhancing
the framework’s generalization capability and adaptability.

By recognizing the existing framework’s constraints in accommodating alternative
smart contract languages and suggesting feasible enhancement options, our study attains
more comprehensiveness and equilibrium. This methodology not only augments the prac-
tical use of the GCB-DVIA architecture but also offers guidance for subsequent research
in the domain of smart contract security detection.

5. CONCLUSION

5.1 Summary of Research

This research presents a methodology for detecting vulnerabilities in intelligent con-
tracts, utilizing big language models and deep learning, termed GCB-DVIA. The ap-
proach initially utilizes ChatGPT for code trimming, subsequently employs a fine-tuned
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CodeBert model for feature extraction, and ultimately applies a bidirectional long short-
term memory network integrated with a self-attention mechanism for vulnerability iden-
tification and categorization. The experiments detailed in the paper were confirmed using
two public datasets of Ethereum smart contracts, yielding significant results. The de-
tection accuracy for RENT vulnerabilities attained 96%, while for TX vulnerabilities, it
achieved 98%. The GCB-DVIA architecture surpassed standard methods in multiple crit-
ical performance parameters, particularly in recall and F1 score. Furthermore, studies
revealed that employing the Fine-CodeBert model for feature extraction enhanced detec-
tion accuracy by 5%-10% relative to the Word2Vec model.

5.2 Future Work

Future work primarily concentrates on two facets: advancing vulnerability detection
methodologies, particularly for intricate vulnerabilities prevalent in DeFi platforms, such
as flash loan attacks; and exploring Few-shot techniques or self-supervised learning for
model training on limited datasets.
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