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System log is generally existing in software applications to help operators manage their
services. Misbehavior and bugs in a system can cause vulnerabilities and put services in dan-
ger. Therefore, anomaly detection is adopted to aid operators to discover anomalous events
in system log. With the development of deep learning models in Natural Language Pro-
cessing (NLP), recent researches utilize language representation models to take semantics
behind the log into consideration. The approach strengthens the adaptability of an anomaly
detection model to log events with changing formats. We propose the Bert-based One-class
classification with an explicit Reconstruction Gate (BORG) to recognize the benign session
behavior of system log in different levels. Instead of a supervised classifier, our method
integrates the anomaly detection objective with language representation, and comprise a
composite malicious score in the detection phase to reflect the abnormality in trivial events.
We evaluate our concept under two log data sets with contrasting statistic properties. The
result shows the robustness of our method to challenging log data. The experiments and
analysis are also presented to explain our outcomes.

Keywords: log data analysis, anomaly detection, natural language processing, deep learn-
ing, language model

1. Introduction

Anomaly detection has been studied for decades in data mining. The main objec-
tive is to learn a model only describing the normal samples. This assumes samples in a
data set for anomaly detection are either normal or abnormal. Abnormal samples should
have significant deviation from the normals. This property makes binary classification
impractical in these data sets, since unseen abnormal samples can be completely different
from the patterns previously learned by a classifier. For that reason, anomaly detection
recognized samples only by the description generated from the normal model. Samples
well-described are considered normal. Contrarily, samples poorly-described are regarded
as anomalies. Due to the robustness of the concept, anomaly detection has been applied
in many fields including cybersecurity, finance, medical science, etc. Analysis on system
log is also one of its applications.
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System log is a diary existing in most of the systems to record significant events. The
existence of system log is inevitable because system developers require the information
to troubleshoot problems whenever an error occurs. System log helps developers to un-
derstand the state of their programs and track down the root cause. Therefore, anomalous
records in system log can indicate programming bugs and misbehavior of a system. Since
these anomalies may be further exploited by adversaries and cause systems exposed to
danger, discovering anomalies in the early stage is crucial for system operation.

To analyze the messages in system log, studies before tend to process the text by
parsing in a heuristic manner. Some studies design log parsers to extract the common pat-
terns, which we call them templates in our research. Each log message can be represented
with the numerical identifier of the template it belongs. Hence, a group of consecutive
log messages, which we call it a log session, can be described by a sequence of numbers.
However, owing to the strengthened flexibility in modern software design, alterations
to a system can be performed more frequently than before. By these means, operators
nowadays not only have a great amount of logs, but these logs can be even changing
their formats every service update. A log parser may wrongly identify the template of an
event and causes false alarms in a detection model. In addition, an environment consist-
ing of more than one system may require specific observation and domain-knowledge in
each system to design and configure a parser. To mitigate these problems, we proposed
a method based on a tokenizer in the field of NLP to generate contextualized language
embedding and detect anomalous events in system log. This can eliminate the reliance
on the correctness of current log parsers, and also improve the model robustness toward
unstable log data.

Detecting anomalies can be generally separated into two phases, data description and
anomaly identification. Many studies [1, 2, 3, 4, 5, 6, 7] adopt log parsers to represent
log messages with a sequence of numerical identifiers. Statistical properties and sequen-
tial association can be then performed to describe the normal behavior in log sessions.
In recent years, there are some studies emerging and taking semantics into their detec-
tion model. LogAnomaly [8] utilizes synonyms and antonyms to generate word vectors,
and use the vectors in their detection. LogRobust [9] takes the advantage of the off-the-
shelf word vectors in the similar way. HitAnomaly [10] initialized their network with
the weights in BERT [11], a pre-trained language representation model, to obtain the se-
mantic meaning. These methods all show better accuracy over methods with simple ID
sequences, but some are still relying on different log parsers to acquire the text on log
templates. In addition, some are performing supervised classification instead of anomaly
detection that can easily memorize the ground truth labels impractically. Instead of uti-
lizing log parser, other studies [12, 13, 14, 15] simplify the processing with tokenizers,
and input tokens to their detection models directly. These studies decouple their methods
from log parsers and achieve comparable results. We review the detail of these methods
and recognize their limitation in Section 2.

Though these studies successfully address their problems under different observa-
tion, there is still no method fulfilling diversified practical issues in system log. We sum-
marize these issues as the following challenges.

1. Evolution of Log Formats. Formats in log messages can be unstable with the
development of services. Log parsers could not recognize log events with updates
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to existing formats. Therefore, analyzing methods not relying on specific parsers
are preferred. Additionally, representation including semantics for log events can
indicate the direction of these changes, and further improve the robustness of the
detection. To address this issue, our method employs tokenization techniques of
BERT to directly convert log messages into sequences of tokens, without relying
on specific log parsers. This approach eliminates the dependency on log parsers and
improves the model’s robustness to unstable log data. In addition, the syntax and
context of this new ‘log’ dialect will be learned by the further training of language
model.

2. Exceptional Parameter Values. Parameter values in system log are the variable
part in program statements, which produce the log events. They can be a size
of a file, an IP address, an instance identifier, etc. Exceptional parameter values
usually indicate the occurrence of anomalies, e.g., unusual execution time spent and
atypical size of a file transferred. Methods accepting inputs with parameter values
can better reflect this kind of anomalies. Our proposed method addresses variable
parameters by replacing these values with special tokens during a domain-specific
preprocessing phase. To minimize human intervention, we only replace limited
variables, such as IP. This approach prevents the tokenizer from erroneously parsing
variables and provides sufficient contextual information for the language model to
comprehend log messages. This approach enables the model to better capture such
anomalies while simultaneously simplifying the model’s input, making it easier to
discern the underlying semantics of log messages.

3. Sequential Relationship among Events. Each log event stands for a certain op-
eration executed by system programs. These operations are normally performed in
a certain order. A session containing events executed disorderly can indicate the
occurrence of an anomaly. This property requires the detection models to learn the
sequential relationship in normal execution paths from these operations. To this
end, by training the language model exclusively on benign logs, we ensure its pro-
ficiency in reconstructing normal log sequences. Conversely, when an anomalous
log is processed, the reconstruction loss is markedly elevated, indicating the pres-
ence of an anomaly. Furthermore, the RNN-based model enables us to learn the
characteristic patterns of benign log event sequences, facilitating the identification
of anomalies based on both event order and contextual information.

To overcome the challenges, we define the anomalies with their source into ones in
event level and the others in session level. In our method, Bert-based One-class classifi-
cation with explicit Reconstruction Gate (BORG) integrates the pre-trained transformer
[16] into anomaly detection with the help of recurrent based neural networks. In event
level, we train a transformer encoder with the cloze [17] objective in the manner of the
pre-training task in BERT [11] to recognize normal log events as a reconstruction model.
In session level, we use the reconstruction model as an explicit gate to control the outputs
of a pre-trained transformer encoder, and utilize a RNN-based network with the one-class
classification objective proposed in Ruff’s work [18] to shape the normal behavior in log
sessions. Eventually, we can identify the anomalies in both levels by our definition. We
evaluate the concept with two contrasting data sets in our experiments.
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The contributions of our work are the following.

* We design an anomaly detection network based on language representation models
that can construct a normal model comprehending semantics and sequential rela-
tionships for system log.

¢ Our method provides state-of-the-art performance with other anomaly detection
model working on the challenging data set.

* We state insights in our experiment results by analyzing sequential properties in the
data sets for the evaluation.

The rest of the paper is organized as follows. In Section 2, we review the background
of NLP and works adopting anomaly detection on system log. Section 3 are the detailed
design of our method and adopted models. Section 4 covers implementation details, eval-
uation in data sets, and findings in our experiments. In Section 5, we discuss the common
issues we met in our experiments and insights by our observation. At last, Section 6
concludes this research and states possible future works.

2. Related Work

2.1 Background: Natural Language Processing

In Natural Language Processing, tokenization is the procedure first performed to
separate a sentence into words and even subwords that are contained in a limited set.
WordPiece [19] is optimized to select a number of subwords to minimize the number of
tokens in segmented corpus. A sentence “I like tacos.” can be separated into subwords
[“I”, “like”, “ta”, “##cos”, “.” ] by this tokenizer. Resulting tokens are then represented
by identifiers in the vocabulary. And, identifiers can be mapped to vectors by an em-
bedding layer in language representation models. We adopt WordPiece as our tokenizer
for its adaptability to rare words in system log and the compatibility to broad pre-trained
models.

For language representation models, they transform tokens to vectors containing se-
mantic meaning. The way learning word embeddings before training on a task-specific
objective is proposed [20] due to the diversity of tasks in NLP and limited labels in lan-
guage data. The objectives in pre-training procedure are usually self-supervised. They
make use of the properties existing in language itself to create ground truth labels. Cloze
[17] is the one of the properties in language that was adopted in famous language rep-
resentation model, BERT [11], as the objective of its masked language model. After
pre-training, embeddings can be either independent or dependent on the context. Mod-
els such as Word2vec [21] and FastText [22] learn context-independent embedding with
objectives similar to cloze in deep neural networks. Permanent embedding vectors are
stored for each token after their training. People can obtain the same vectors for tokens,
which are independent from their positions and other tokens in the samples which they
belong to. With the development of neural networks for sequential data, such as LSTM
[23], GRU [24], and Transformer [16], context-dependent word vectors can be derived by
leveraging their structures. A token in different context can have different vectors. ELMo
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Table 1. A comparison with other works based on stated challenges

Change Log Format | Parameter| Sequence Anomaly

Log Parser [ Semantic Value Relation Detection
DeepLog [5] Spell No Aware Yes Yes
Tiered LSTM [12, 13] N/A No - Yes Yes
LogAnomaly [8] FT-Tree Yes - Yes Yes
LogRobust [9] Drain Yes - Yes No
HitAnomaly [10] Drain Yes Aware Yes No
Logsy [14] N/A Yes - No Yes
LogBERT [6] Drain No - Yes Yes
0C4Seq [7] Drain No - Yes Yes
BORG N/A Yes Aware Yes Yes

[25] learns a linear combination from all internal states of a bidirectional LSTM network
pre-trained on LM task. BERT [11] pre-trains an encoder-only transformer on masked
language model and next sentence prediction. All of these designs can output representa-
tion vectors for input tokens, but they differ from the way taking the context into account.
In our work, we utilize cloze task in BERT to be our reconstruction model for benign log
events. And, a pre-trained transformer encoder is adopted to learn the semantic in normal
messages.

2.2 Related Work: Log Analysis

In analyzing system log, a method can be generally divided into two phases: repre-
sentation and detection. To represent log data, some works require the help of log parser
such as Spell [26] and Drain [27]. Other works directly convert a log message to a se-
quence of tokens with tokenizer, such as NLTK [28] and WordPiece [19]. Still others use
both of the two to further transform messages into more structured formats. For detection,
most of the works perform anomaly detection with different algorithms, including prin-
ciple component analysis (PCA), language modeling, and deep one-class classification
[18]. Some others conduct classification on this task. Methods that perform classification
usually have better prediction accuracy, but does not address the characteristics of the
system log. We review following works from the perspective of these two phases.

Vaarrandi [29] proposes SLCT, a density-based clustering algorithm that considers
the positions of words to each log message to identify frequent patterns. Samples out
of patterns can be then considered anomalies. Xu et al. [2] perform PCA on count vec-
tors, which they first obtain log templates by parsing system source code, and describe
each session with the counts to each template. Similarly, Lou et al. [3] mine program
invariants with linear relationships from the count vectors. New samples break the in-
variants are then identified as anomalies. To take in sequential association among logs,
Zhang et al. [4] train a stacked LSTM as a binary classifier to detect malfunctions in web
and mailer servers. DeepLog [5] constructs a bidirectional LSTM network to predict the
next template identifier in the manner of language model. An anomaly can be detected
if the corresponding template had a probability under a threshold. LogBert [6] utilizes
the structure of BERT [11] with modified pre-training objectives, and treats events in a
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session as tokens in a sentence. It detects anomalies by the number of masked events
that are wrongly predicted. Still in the manner of log parsing, OC4Seq [7] utilizes RNN-
based neural networks with the objective in Ruff’s work [18] to learn the normal event
sequence in multiple scales. For the purpose of handling unstable logs, LogRobust [9]
leverages the word vectors provided by FastText [22] to represent semantic information
in log messages instead of simple identifiers. An attention-based Bi-LSTM is then applied
as a classifier to identify anomalies. In HitAnomaly [10], Huang et al. use a combination
of transformer encoders with parameters initialized by BERT [11]. Both of the text in log
templates and parameter values are represented by corresponding transformer encoders.
Anomalies are recognized by their attention-based classifier in the last layer. Though both
of LogRobust and HitAnomaly detect anomalies based on classification, they still present
their independence from log parsers. Nedelkoski et al. [14] also proposes a classification-
based method that utilizes a transformer to learn the normal representation of good log
messages. Their anomalous samples can be derived from auxiliary log messages from
other systems instead of ground truth labels in the same system. But, the method is only
applied to one single log line at a time. It does not consider the sequential relationship
between lines.

2.3 Comparison

We observe that every study successfully address some of the issues. We summarize
the methods and the issues they have addressed in Table 1. These issues are based on
the challenges we point out in Section 1. Many works [5, 8, 9, 10, 6] adopt a log parser
as an important role in data representation. There are few studies [5, 10] introducing
a structure for parameter values. Some works [14, 15] are only considering single log
message instead of a session. To the best of our knowledge, we are the first study to
address all these issues.

3. Bert-based One-class classifier with explicit Reconstruction Gate

3.1 Overview

To learn the normal behavior of system log in better granularity, we define the sam-
ples in system log as groups of consecutive log events that we call log sessions. We
can categorize our anomalous samples into two levels. One includes anomalous ses-
sions that can be identified by a single event, e.g., sessions containing alert events and
sessions containing events with exceptional parameter values. The other considers the
sequential relationship of the events in a session. They can be only determined in a log
session by some properties such as an unexpected event order. We propose the Bert-based
One-class classification model with explicit Reconstruction Gate (BORG). It includes the
event reconstruction model (Section 3.3) and BERT-based one class classification model
for sessions (Section 3.4). We present the overview of the proposed model in Fig. 1.

Principles of design: The Rec-Gate is designed to learn the semantic structure of
normal log events and serve as a “gate” to control the output of Gated-BERT. Rec-Gate
is trained using the same encoder architecture and masked language modeling objective
as BERT, enabling it to understand the sentence structure underlying log events. Dur-
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Fig. 1. An overview to the proposed model.

ing training, Rec-Gate attempts to predict masked tokens, learning the vocabulary and
syntactic patterns of normal log events. In the testing phase, for normal log events, the
prediction error (cross-entropy loss) of Rec-Gate will be lower; for anomalous or rare log
events, the prediction error will be higher. This error value is used as a destructive scalar
to adjust the output of Gated-BERT, enabling the subsequent RNN detection model to
better identify anomalies. This design allows Gated-BERT to produce output vectors that
incorporate event reconstruction information, assisting the RNN detection model in more
comprehensively learning the normal behavior of log event sequences and identifying
anomalies. In this case, anomaly in event can be captured by Rec-Gate, and the anomaly
in event sequences can be captured by RNN and the one-class classifier. In practical ap-
plications, attackers may employ novel attack techniques, generating a single abnormal
event and/or a sequence of events (which its pattern are considered as abnormal). With
Gated-BERT, RNN, and one-class classifier, we can capture a more comprehensive set of
log event patterns, improving the model’s generalization ability to unknown attacks.

First, before our training, we process system log with an intuitive preprocessing tech-
nique to replace certain strings that are highly related to the domain of the system with
special tokens. Secondly, with the normal events as our input samples, we train the event
reconstruction model to learn the normal behavior in the level of individual. The architec-
ture of this model is the same with the encoder in the transformer [16]. The objective is to
learn the cloze task [17], which is adopted as a pre-training objective in BERT [11]. For
our BERT-based one-class classification model, it stacks a recurrent neural network on
a pre-trained transformer encoder. The trained event reconstruction model is then added
into the structure as an explicit gate in the way explained in Section 3.4. The objective
of our one-class classification model is to minimize the distance of the last hidden state
to a center point. The concept is proposed by Ruff et al. [18] as an extension to Support
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An example of single log event with <ID> = blk_-6867873931012347356:

- Received block blk_-6867873931012347356 of size 67108864 from /10.251.39.64
After our preprocessing:

— Received block <ID> of size <NUM:8> from <IP>
After BERT tokenizer:

- received, block, <id>, of, size, <num:8>, from, <ip>

An example of log event sequence, which is labeled as anomaly:
- Receiving block <ID> src: /<IP> dest: /<IP>
— BLOCKx NameSystem.addStoredBlock: blockMap updated:
<IP> is added to <ID> size <NUM:8>
— PacketResponder <NUM:1> for block <ID> terminating
- Received block <ID> of size <NUM:8> from /<IP>
- PacketResponder <NUM:1> for block <ID> terminating
- Received block <ID> of size <NUM:8> from /<IP>
— PacketResponder <NUM:1> for block <ID> terminating
- Received block <ID> of size <NUM:8> from /<IP>
— BLOCK* NameSystem.addStoredBlock: blockMap updated:
<IP> is added to <ID> size <NUM:8>
- <IP> Served block <ID> to /<IP>
- <IP>:Got exception while serving <ID> to /<IP>:
— <IP> Served block <ID> to /<IP>
— <IP>:Got exception while serving <ID> to /<IP>:
- <IP> Served block <ID> to /<IP>
- <IP>:Got exception while serving <ID> to /<IP>:
— BLOCK* NameSystem.delete: <ID> is added to invalidSet of <IP>
- Deleting block <ID> file /mnt/hadoop/dfs/data/current/subdir27/<ID>
- Deleting block <ID> file /mnt/hadoop/dfs/data/current/subdir4l/<ID>
- Deleting block <ID> file /mnt/hadoop/dfs/data/current/subdirl3/<ID>
— Unexpected error trying to delete block <ID>. BlockInfo not found in volumeMap

Fig. 2. Examples of Events, Event Sequences, and Domain Pre-processing.

Vector Data Description (SVDD) [30] in deep learning. At last, we also composite the
loss from event Rec-Gate with the distance to obtain the malicious scores. Log sessions
with higher malicious scores after the transformation in BORG are considered anomalies.

3.2 Domain Preprocessing

Domain preprocessing is the way we adopt to teach the language model to under-
stand domain words in system log corpus. Domain words include the physical machine
address, which can be a long sequence of hexadecimal numbers, IP address, instance iden-
tifier, etc. Operators of a system can use this method to replace trivial information and
to enhance the performance of the following detection. The number values can be also
transformed into tokens representing ranges they belong to. For example, the IP address
10.251.39.64 in Fig. 2 is replaced with the token <IP>. Without abstracting the text, the
WordPiece [19] tokenizer we adopted can convert each . as a token resulting a long token
sequence for a simple IP address. However, with our prepressing method and tokenizer,
IP is treated as a special token.This preprocessing is also intuitive for system operators
reading the log messages. The specific information, such as hash values and IP address,
is only meaningful to the developer who wrote the log statement. However, for opera-
tors, the information required to recognize anomalies is the existence of a certain concept
and corresponding positions. Similarly, if we apply the method to parameter values, the
numbers for an operator can be either in the range often seen or in an unexpected one.
Figure 2 also shows an (anomaly) example of log event sequence, our language model
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will learn the normal pattern of log sequence from the normal training data, and try to
find out any deviation identified with the help of Rec-Gate,, RNN and one-class anomaly
detection model.

3.3 Event Reconstruction Model

Event Reconstruction Model

1
.
L

Cross
Entropy

\’1 LR

Fig. 3. An illustration to the event reconstruction model.

The event reconstruction model is a transformer encoder [16] learning cloze [17] task
by using the training system log. As an anomaly detection system, if a token used in a
sample in the testing dataset is unusual or rarely-seen, the event reconstruction model will
output a larger value (cross-entropy loss) to point it out. The information will be consider
for the later model. We illustrate the structure in Fig. 3. It acts as a Language Model (LM)
to understand the sentence structure behind log events. Conventional language models
can have different learning objectives. For example, a n-gram language model generally
maximizes the probability to predict each word in a sentence by their previous n words,
ie.

n
LM (n—gram) = Hp(w,'|w,',1 SWii2y e, Wisp),

i=1
In the transformer encoder, we follow the same way with BERT [11] to mask 15% of
tokens with the special token, [MASK]. We have the model to predict the true sentence
with the masked one. Instead of previous n tokens, the transformer encoder is given the
information of all other tokens. In system log, we are given normal events is a system
with the size |E,|, i.e., E, = {e1,e2,...,e|g, |}, the WordPiece [19] tokenizer first seg-
ments the text in each event into tokens. After masking, each token is then mapped to
a vector by its index in the vocabulary. We get the token vectors, x' = {x},x}, ...,xTX,-‘},

where i € {1,...,|Ey|}. Since the transformer encoder [16] fully utilizes the self-attention
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mechanism,

Attention(Q,K,V) ft (QKT
ention(Q,K,V) = softmax

Vi
we get the contextualized embedding for each token. That is, matrices Q, K,V are com-
puted by multiplying the input matrix x; by the weights Wy, Wi, Wy,. Self-attention can
use dot product of the query feature matrix Q and key feature matrix K to calculate the
similarity among token vectors, which is the attention score after a scalar —— and the

A

softmax function. With attention scores, the contextualized representations for each to-
ken can be calculated by the multiplication with value feature matrix V, and they can be
recognized as the weighted average of each tokens that takes in all the other tokens. In
a complete transformer, the multi-head attention is applied instead, which is a variation
of the attention above. It uses more than one set of feature matrices, and concatenate the
outputs. A detailed explanation is well presented by Lippe’s work '. And, the structure
of the transformer encoder enables itself to act as a language model considering all other
tokens in a sentence.

In the end of the transformer encoder, a classification layer with weight W, €
RYocabxH j5 appended to calculate the probability distribution for each token, where Vocab
and H are the vocabulary size and hidden dimension of the transformer. The logit values
for the distribution can be

WV,

Logits; = W - o7 (xi; W) + bias, (D

where Logits; € RVo® *leil and @7 (x;;W*) is the output embeddings from masked token
vectors in i-th event. With Logits; and original token vectors, #; = {t; 1,2, ...,t,-,‘tl.‘}, we
can compute the event loss /.’ by cross entropy loss, i.e.

‘{[ll lei'
l i J:. J 2
e ‘tl| K ( )
) Vocab
Li=—Y £ logf, 3)
c=1
exp(Logits?c)
Ye = FVocab 4)

i exp(Logits;_’k)

3.4 BERT-based One-class Classification Model

To learn the relationships between log events in a sequence and incorporate anomaly
information into embedding vectors, the BERT-based One-class Classification Model in-
cludes two components: 1) a gated-BERT for outputting the embedding of event with
the degree of anomaly in event reconstruction and 2) a RNN model to process the output

mttps://pytorch-lightning.readthedocs.io/en/latest/notebooks/course_
UvA-DL/05-transformers-and-MH-attention.html
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Fig. 4. An illustration to the BERT-based one-class classification model.

sequence of Gated-BERT and capture long-range dependencies and patterns in logs, and
identifying anomalies based on the sequence and semantic information of events.

Figure 4 illustrates the two components. The gated-BERT adopts the structure and
pre-trained weights of BERT-mini [31]. This helps embeddings for log events containing
the semantic information behind the text. In addition, since we expect our normal model
can also reflect the event-level abnormality, we utilize Rec-Gate (an event reconstruction
model) that we have trained in the previous section to adjust the output embeddings from
BERT for the RNN-based detection network. For the events that the Rec-Gate has learned
before and recognized (i.e., with less loss value), the Gated-BERT outputs the original
embeddings. In contrast, for unseen events, the Rec-Gate tends to output a larger value so
that the corresponding a vector d can disrupt the embeddings from BERT. The disrupted
embeddings would contain less information, and be considered the noise in the later RNN-
based detection model. Figure. 4 presents the event reconstruction model as a Rec-Gate.
le§ is denoted as the loss of j-th log event in i-th session from the Rec-Gate. In our design,
this value is set to the disruptive scalar d; to indicating how good the event reconstruction
model performs. If a rare-seen log event is observed (which is possibly an anomaly event),
the loss (i.e., the cross-entropy of the masked token prediction) of the event reconstruction
model would be larger for analysis. d’] value will be outputted by Rec-Gate and passed to
RNN for further use. .

The information of embedding r’] is then concatenated with the disruptive scalar d;
We anticipate that the gates in RNN-like structure (such as LSTM and GRU) could work
with d’, to tweak r}; for the one-class classfier.

g =ri@di, 5)

and we can get the output gi- that includes an additional reconstruction information.
Here, we plot the distribution of dl}- value using one of our experiment data set (BGL)
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Fig. 5. An illustration of the outliers (detected by Rec-Gate with threshold 7) in BGL data set.

in Fig. 5. We can see that most of the loss value of Rec-Gate is larger than outlier threshold
7, which is Q3 + 1.5IQR, where

InterQuartileRange(IQR) = 03 — Q1

For our detection network, it is a RNN-based model to cope with variable-length
events in a log session, which is the nature of system log. We avoid to use strategies like
truncation and padding in session level, since we observe that an anomaly can occur at
the last few events in a session. Also, in anomaly detection, we should assume we do not
know how long an anomalous log session can be. That makes it hard to determine the
max length in such strategies.

At the top of Fig. 4, we adopt the One-Class Deep SVDD [18] as the objective to
train our network. The one-class objective is to transform samples into a hypersphere
with a center point ¢ by updating a deep neural network, such that the distance between
all samples and the center is minimized. Instead of deep neural network, we utilize the
RNN-based network as our interval transformation that updates the same set of weights
in a sequence of inputs, which is a similar idea with OC4Seq [7]. That is, given n sessions

{51,852,y }>
l n

in— Y ||h —

min s X sy =

we calculate the Euclidean distance between the last hidden state &)y, and initialized center
c. And, hy,,| is subject to approaching c after ¢ (;W)’s transformation, i.e.,

I

; (6)

|si|

h =Y (gl 1:W). (7)
=1

¢ (;W) can be any RNN-based network, e.g., GRU and LSTM, and the input timestamps
are from the outputs of the gated-BERT g'. Our initialized center c is calculated by the
whole model only with initialized weights before training.
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Table 2. The statistics in HDFS and BGL data set

HDFS BGL
Normal  Anomaly Overall Normal Anomaly Overall
event - - 11,175,629 | 4,399,503 348,460 4,747,963
session (sess) 558,223 16,838 575,061 166,095 15,140 181,235
unique event - - 239 17,742 2,306 20,048
tokens per event - - 15.1 14.8 14.1 14.8
events per sess 19.5 17.1 194 61.8 66.3 62.2

3.5 Composite Malicious Score

Generally, the distance of a new sample to the trained center ¢’ is the score to evaluate
its abnormality. We further compose the loss in event reconstruction model with the
distance to make abnormality in event level more prominent. The malicious score we use
to evaluate our method in the compositing way can be written as

[y — '+ BL, ®)

where B is a hyper-parameter to determine how much the reconstruction loss (Rec-Loss)
can contribute to the malicious score. And, the Rec-Loss /s for i-th session is the average
of the Rec-Loss [, for each event in the session. The Rec-Loss of i-th session is defined
as Eq. 9.

Isi

. 1 sl
I'= max(m Z le} —1,0), )
j=1

where 7 is determined by the data point of Q3 4 1.5IQR like Fig. 5 in our work.

The design of Eq. 9 is based on an observation that anomaly events are usually
observed continuously in a system. Therefore, if the average of the Rec-Loss is larger
than 7, it strongly suggests that this session has above-average unseen or rare-seen logs.

4. Experiment

4.1 Data set

We use logs in Hadoop Distributed File System (HDFS) and BlueGene/L Supercom-
puter System (BGL) to evaluate our concepts. These data sets are accessible in Loghub
[32] for research purposes. It provides a collection of system logs containing some data
used in previous studies.

4.1.1 Hadoop Distributed File System

HDFS data set was first introduced by Xu et al. [2]. This data set contains 11,175,629
lines of logs collected from a Hadoop cluster with over 200 nodes. Every log event
has corresponding block identifier, and there are 575,061 distinct identifiers. Xu et al.
manually labeled the anomalous data blocks with the help of experts in Hadoop. We
organize the contents and form log sessions by these identifiers. Anomalous sessions are
directly determined by the labels to the block IDs.
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4.1.2 BlueGene/L Supercomputer System

Blue Gene/L is a supercomputer with 131,072 processors and 32,768 GB memory
designed by IBM. Oliner et al. [33] introduced the data set with the supercomputer pro-
vided by Lawrence Livermore National Labs. The data set consists of 4,747,963 messages
including a total of 348,460 alerts caused by software and hardware failure at all levels.
Anomalies in this data set are labeled on each event, and events do not contain specific
identifiers. Therefore, we organize with a time sliding window to assemble log sessions.
For any group of consecutive events containing at least one alert, we label the group as
an abnormal log session. In our implementation, we also introduce a hyper-parameter M
to decide the maximum number of events that a session can include. If a session included
more than M events, we evenly separate the session s; into [%] sessions. In following
experiments, we choose 10 seconds, 4 seconds, and 100 for the parameters of window
size, stride, and M respectively.

4.2 Implementation

The domian pre-processing is implemented by regular expression library in Python
3.9. And, we construct our model with PyTorch 1.10.0 in the same environment. For our
training samples in BERT-based one-class classification model, we randomly select 5%
of normal log sessions in HDFS data set and 10% in BGL. To evaluate over unbalanced
samples in these two data sets, we collect all anomalous sessions, and sample the same
number of normal sessions from the sessions excluding training samples, to form a bal-
anced testing samples for each data set for the better understanding of the performance
of different models. The training and evaluating to the model are performed on a single
NVIDIA GeForce GTX 1080 Ti graphics card.

4.3 Evaluation
4.3.1 Model Evaluation

Since we have a rich combinations in our architecture, Table 3 shows our evaluation
results on HDFS and BGL data sets over different parameters and rnn-based model. In
our embedding layer, we adopt BERT [31] with the mini size that has 4 encoder layers
and 256 hidden dimensions. For the internal transformation in one-class objective, we
experiment on each of the common RNN-based networks with 2 layers and 64 hidden
units. At last, we use AUC, f1, precision and recall to evaluate the performance of the
proposed system. We intentionally remove the Rec-Gate structure and its loss to perform
ablation study (while only using Euclidean distance (L2 norm) to optimize the one-class
classifier without using any information from the Rec-Gate). Our proposed system is
marked as ‘L2+RecLoss’ which optimizes the Rec-Gate and the downstream classifier.

The composite malicious score shows significant performance improvement on BGL
data set. This conforms with the finding in Fig. 6 that most of anomalous events shows
higher loss values identified by Rec-Gate. And, the result can be more significant when we
only count the unique log events. We observe that the performance improvement in HDFS
data set is trivial. That also conforms with the distribution in Fig. 7. Events appearing
in anomalous sessions are mostly similar to the ones in normal sessions. Though the
two distribution can be still distinguished in unique events, the small portion which they
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Table 3. The BORG performance in different combinations.

HDFS
RNN Network AUC fl score precision recall
RNN(tanh) L2 norm 0.900 0.892 0.983 0.816
RNN(relu) L2 norm 0.864  0.840 0.987 0.738
GRU L2 norm 0.807  0.807 0.966 0.712
LSTM L2 norm 0.939 0.932 0.982 0.887
RNN(tanh) L2+RecLoss 0.903 0.894 0.981 0.821
RNN(relu) L2+RecLoss 0.866  0.840 0.987 0.739
GRU L2+RecLoss 0.810  0.808 0.966 0.714
LSTM L2+RecLoss 0.945  0.936 0.977 0.898
BGL

AUC fl score precision recall
RNN(tanh) L2 norm 0.638  0.719 0.722 0.729
RNN(relu) L2 norm 0.537 0.750 0.644 0.921
GRU L2 norm 0.755 0.784 0.741 0.835
LSTM L2 norm 0.627  0.659 0.757 0.702
RNN(tanh) L2+RecLoss 0.856  0.797 0.817 0.783
RNN(relu) L2+RecLoss 0.848  0.811 0.787 0.844
GRU L2+RecLoss 0.821  0.794 0.736 0.870
LST™M L2+RecLoss 0.903  0.823 0.914 0.749

account for is not enough to make the difference significant when considering the entire
data set.

4.3.2 Performance Comparison

We present the comparison of our method with other works in anomaly detection.
The evaluation in HDFS and BGL are respectively displayed in Fig. 8 and Fig. 9. In HDFS
data set, most of the baselines have fl scores over 0.90. We show comparable results
with the state-of-the-art method. However, these methods all rely on the log parsers that
converts log events into numerical identifiers. We conduct a series of analyzing methods
on the sequence properties in the next section to show our insights. In BGL data set, our
method outperforms the existing methods in anomaly detection. BGL data set is a more
challenging data set with its statistics properties showed in Table 2. After we replace
domain words in log events with special tokens, the HDFS data set contains only 239
kinds of messages in 11,175,629 lines. In the other hand, the BGL data set contains over
20,000 unique messages remaining after our preprocessing. This property largely affects
the performance of a log parser. Therefore, methods relying on log parsers usually show
lower scores over this data set. In addition, BGL has a much more number of events in a
session in average. That also makes the sequential relationship harder to learn in anomaly
detection models.
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Fig. 6. The distribution of RecLoss in BGL data set.

4.3.3 Performance Analysis

To better interpret our experiment results, we analyze the sequence properties in log
sessions. For the ease of analyzing sequences, we transform log events into template
identifiers with the help of the log parser Drain [27]. And, we design a few criteria to
determine if there is any identical sequences existing in both of data sets. The first method,
identical order I, is directly performing unique function on ID sequences. The second
approach, identical order II, is to perform unique function after removing redundant IDs.
For example, a sequence [/, 2, 2, 5] can be converted to [/, 2, 5]. It is based on the fact
that some events appear a few times consecutively in both of the data sets. And, it is also
similar with the way human reading a sequence. We usually do not put much attention
on the identical items in a row, but put attention on the changes in the sequence. Thirdly,
we use count vectors to stand for a sequence in identical counts method, i.e., a sequence
[1, 2, 2, 5] can be converted to (I, 2, 0, 0, I). Eventually, we check the number of
unique sequences with these identical definitions under each data set. And, these unique
sequences are later called patterns.

We present the statistics of HDFS and BGL data sets in Table 2 and Table 4. The
following findings help us to prove the capability of the proposed system confronting the
challenging data set.

1. There actually exists normal behavior and deviation in anomalies. We found the
number of unique event sequence is much lower than the total amount of normal
sessions. There are only 14,259 unique sequences in HDFS data set that contains
558,223 normal sessions. For the deviation, the abnormal samples have 4,126
unique sequences in 16,838 anomalous sessions. The ratios of remaining unique
patterns across all identification methods in abnormal samples, are all much higher
than the ratios in normal samples.

2. The normal behavior in BGL is more complex than the behavior in HDFS. For
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Fig. 7. The distribution of RecLoss in HDFS data set.

normal sessions in BGL data set, the ratios of unique patterns to total amount are
all much larger than ratios in HDFS. Table 2 also shows the BGL data set has longer
lengths for sequences in event and session level. In other words, we can say that
BGL data set is harder to tell if a session is anomalous only by the order of log
events.

3. There exists anomalies in event level. Since we are curious about if there are pat-
terns both appearing in normal and abnormal sessions, we calculate the number by
the intersection of column one and two. By our results, the answer is affirmative.
We call these patterns baffling patterns because they can confuse models that only
comprehend sequential relationship of log events. It shows such anomalies can only
be recognized by models considering their messages.

4. Baffling patterns affect the accuracy more in BGL data set. In HDFS, the portion
the baffling patterns takes in the testing data set is not significant enough to affect
the performance of a model. That is, methods considering anomalies in event level
such as exceptional parameter values would hardly have improvement over samples
in HDFS. In BGL, the result is on the contrary. Whichever identification method
we adopt, baffling patterns comprise over 20% of testing data set. Methods not con-
sidering event-level anomalies can have significant performance decrease in BGL
samples.

5. The bottom of Fig. 2 shows an anomaly example of HDFS logs. This specific
pattern of event logs is considered as anomaly by the BORG. We find that those
events (for example, “Receiving block”, “BLOCK* NameSystem.addStoredBloc”,
“PacketResponder”, “Served block™, etc) can exist in the system solely without
reporting anomaly, but as a whole, our system identify them as an anomaly. We
anticipate that our language model (with MLM) and the RNN can indeed learn the
normal pattern.
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Fig. 9. Evaluation on BGL data set.

By the findings mentioned above, we verify our claiming that anomalies in system
log can be generally categorized by event level and session level. The data sets that we
evaluate our method indeed have contrasting properties by our statistics results. With the
comparable results of these two data sets in Fig. 8 and Fig. 9, the way we utilize language
model to reconstruct log events is confirmed to enhance the robustness of our anomaly
detection model in system log.

5. Discussion

In this section, we state our limitation and possible improvement to our work. The
findings in the procedure of our experiments and analyzing are also mentioned.

Our method integrates reconstruction based anomaly detection and one-class clas-
sification. However, the disruption we generate for the reconstruction is still based on a
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HDFS
Identification # of patterns in # O.f # of. bafﬂmg patte.rns in
normal | abnormal | baffling | testing entire
Methods . .
session session patterns | dataset dataset
Identification 14,259 4,126
order | (2.6%) (24.5%) 10 0.073% 0.008%
Identification 5,250 3,097
’ ’ 1.1 .1
order I 0.9%) | (18.4%) >0 88% 0-103%
Identification 212 394
counts (0.04%) (2.3%) ? 0.968% 0.096%
BGL
Identification | 31,508 4,110
order I (19%) 27%) 129 22.7% 8.23%
Identification 11,999 1,642
order II° (71.2%) (11%) 67 45.8% 34.7%
Identification 16,632 3,174
counts (10%) 21%) 159 23.3% 8.39%

Table 4. The sequence statistics of HDFS and BGL data sets

random selection. Though the masking technique works fine in language representing,
for anomaly detection on system log, the unstable interference would cause a poor learn-
ing in the one-class objective. Stabilizing the reconstruction process is the main task to
accomplish in our future work. In addition, the method we adopt to initialize center point
is passing training data through the entire model including the pre-trained transformer
encoder. We observe that difference initialization strategies can affect the performance
in one-class classification. Though we have experimented the influence of different acti-
vation function in RNN-based networks, we did not observe the hypershpere collapsing
mentioned in original paper [18] that utilizes the deep neural network.

6. Conclusion

Our work designs the Bert-based One-class classification with an explicit Recon-
struction Gate (BORG) to learn the normal model for system log in the event level and
session level. We state the challenges in log analysis, including changing formats, pa-
rameter values, and sequential relationship for anomaly detection. To cope with these
practical issues, we utilize the tokenizer and language representation models in NLP to
eliminate the reliance on log parsers, and to learn the semantic information. Also, in
the manner of anomaly detection, we integrate RNN-based networks with the one-class
objective for sequential relationship instead of a supervised classifier. We design the
Gated-BERT and Rec-Loss to reflect the event-level abnormality in our overall normal
model for log sessions. With two common data sets possessing contrasting properties
in our analysis, we demonstrate comparable results in our experiments and outperforms
state-of-the-art methods in BGL data set. The sequential statistics also provide a deeper
understanding to the anomalies of system log in different levels, and further verify our
concepts.
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