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Hybrid filtering recommendation models play an important role in the field of recommender systems 

by helping users to find preferred items and make decisions effectively. Hybrid filtering generally integrates 

strategies from collaborative filtering and content-based filtering together to reinforce their advantages and 

alleviate their disadvantages. Most existing works of hybrid filtering focus on modeling user-item behavior 

data and contextual data, such as text or image. However, few studies consider all three aspects: user-item 

behavior data, contextual data and item-item co-view structure information. In this study, we propose a novel 

attentive hybrid filtering network (AHFN) that integrates latent factors, word- and sentence-level contextual 

information, and item-item co-view relationship to construct item features. Additionally, user features are 

attentively constructed based on their recent behaviors. Specifically, we apply a combination of the latent 

factor model (LFM), convolutional neural network (CNN), sentence bidirectional encoder representations 

from transformers (SBERT) and graph convolutional network (GCN) to build these user and item features. 

A prediction network then takes these user and item features as input to predict user preferences. We 

conducted experiments using data collected from an online news website in Taiwan to demonstrate the top-

N recommendation performance of proposed model. The experimental results show that our proposed model 

outperforms several baselines with statistical significance. 
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1. INTRODUCTION 

The recommendation or recommender system is an information filtering technique that aims to 

extract valuable and preferred information for users from the large amounts of data. The system helps 

users to find information they really need in a more efficient way, saving their time and addressing the 

so-called information overload problem. Nowadays, the recommendation systems are widely applied in 

various industries and continue to keep be a focus of research literature. For example, the 

recommendation system for movie [30, 32], music [1, 13], products [10, 20]. In addition, there are 

researches for online news recommendations [12, 33], where the items to recommended to users are 

mainly consist of words, sentences, and paragraphs. 

Recommendation systems, based on the techniques they adopt to construct or train their model can 

mainly be classified into three categories: collaborative filtering, content-based filtering, and hybrid 

filtering models. Collaborative filtering models, such as the latent factor model (LFM) [28] or matrix 

factorization (MF) [19], are trained primarily using the interactions or the historically data between users 

and items. These models discover the hidden structure of user-item interactions and construct features 

that represent the characteristics of items and the preferences of users. As a result, the system can predict 

the user preferences for unobserved items and make relevant recommendations. Content-based models, 

on the other hand, construct features for users and items mainly based on the content of items (e.g., words, 

sentences, or paragraphs for news recommendation models). These models leverage the valuable 

information extracted from items to enhance system’s abilities to understand users’ preferences, thereby 

improved recommendation performance. Hybrid filtering model integrate collaborative filtering and 

content-based filtering to overcome the limitations of using either approach alone. 
In the development of modern machine learning techniques, advanced models such as Bidirectional 

Encoder Representations from Transformers (BERT) [11] help machines better understand semantic and 

knowledge hidden in text, while Graph Convolutional Network (GCN) are effective at recognizing 

hidden relationship in graph-structured data [43]. In the field of recommendation system research, many 

studies have been proposed to improve the performance of hybrid filtering models. However, few studies 
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focus on integrating BERT and GCN. In this study, we propose a novel hybrid filtering recommendation 

model named attentive hybrid filtering network (AHFN). This model constructs user and item features 

using latent factors and also incorporates word-level and sentence-level information from CNN and 

BERT. Additionally, items’ co-view relationships are modeled in an undirected graph with hidden 

features extracted using GCN model. Finally, comprehensive attentive user features are constructed using 

an attention mechanism to further enhance performance in top-N recommendation tasks. To demonstrate 

the effectiveness of the proposed model, we conduct experiments using data collected from a well-known 

online news website in Taiwan. We summarize the contributions of this study as follow: 

(1) A novel hybrid filtering recommendation model is proposed, integrating matrix factorization, 

CNN, BERT, and GCN to construct user and item features, this allows the model to consider 

latent factors, word-level and sentence-level contextual information, and items’ co-view 

relationships. 

(2) We perform experiments using data collected from a well-known online news website in 

Taiwan and compare the proposed model with several baselines. The experimental results show 

the proposed model outperforms baselines with statistical significance. 

The remainder of this paper is organized as follows: Section 2 provides a brief overview of related 

literature. Section 3 mainly introduces the proposed AHFN recommendation model. Section 4 describes 

the evaluation methodology and demonstrates the top-N recommendation performance of the proposed 

model compared with several baselines. Finally, Section 5 offers conclusions and suggestions for future 

directions. 

2. RELATED WORK 

2.1. Recommender System 

With the rapid development of computer science and the World Wide Web, people receive a larger 

amount of information from various devices every day. Much of this information may be irrelevant, 

making it difficult for people to make decisions effectively [42]. This is referred to as the information 

overload problem. Recommender or recommendation systems aim to overcome the information overload 

problem by using statistical or machine learning models with historical data. For example, large amounts 

of historical data stored in databases reflect interactions between users and items. A value of 1 can 

indicate that a user has interacted with an item (a positive sample), while a value of 0 indicates the 

opposite (a negative sample) [29]. A recommendation model can be trained or constructed using such 

implicit data and then applied to predict users' preferences for unknown items, recommending only the 

items they are likely to prefer. The advantage of implicit data is that it is easy to collect, allowing system 

owners to implement the system at a lower cost. On the other hand, the model can also be trained or 

constructed using explicit data, such as 5-star ratings, where a user expresses their preference by giving 

a rating of 5 if they like the item very much, and a rating of 1 to indicate disappointment [35]. 

Recommendation systems can generally be categorized into various types: collaborative filtering, 

content-based filtering, and hybrid filtering models, depending on the information model adopted to 

generate recommendations for users [17, 24]. Collaborative filtering models provide recommendations 

for a user based on information collected from other users or items. Content-based filtering models 

generate recommendations based on the contextual features extracted from items. Hybrid filtering models 

integrate the other two types into one, thereby mitigating the disadvantages of both collaborative and 

content-based filtering models. 

2.2. Collaborative Filtering 

The collaborative filtering (CF) can be further categorized into neighborhood model and latent factor 

model [5, 15]. In the conventional neighborhood CF models, recommendations are made for a specific 

user based on the information or opinions gathered from other users or items. The criteria for selecting 

the information usually based on the correlations between users and items. For example, user-based CF 
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models analyze correlations between users by using Pearson correlation coefficient or cosine similarity 

[6, 35], and predict preferences for unobserved items by applying weighted-sum. This sum is based on 

target user’s average historical preferences and the preferences of positively correlated neighbors. 

Similarly, item-based CF models analyze correlations between items and make predictions for a target 

user on unobserved items based on similar items that the user has rated in the past [31, 36]. 

The latent factor model generally adopted matrix factorization (MF) with a more holistic goal of 

learning latent features or factors that explain observed user-item preferences [19]. The basic form of MF 

assumes the existence of a user-item preference matrix denote as 𝑅 ∈ ℝ|𝑈|×|𝐼| where U and I represent 

the set of users and items, respectively. This matrix R can be decomposed into two submatrices 𝑃𝑓×|𝑈| 

and 𝑄𝑓×|𝐼|, which represent f-dimensional latent factor vectors for users and items. Consequently, matrix 

R can be approximated as 𝑅 = 𝑃𝑇𝑄. These latent factors for users and items are learned by optimizing 

the objective function shown in Eq. (1): 

min
𝑝∗,𝑞∗

∑ (𝑟𝑢,𝑖 − 𝑝𝑢
𝑇𝑞𝑖)

2
+ 𝜆(‖𝑝𝑢‖2 + ‖𝑞𝑖‖

2)

𝑟𝑢,𝑖 𝑖𝑠 𝑜𝑏𝑠𝑒𝑣𝑒𝑟𝑑

  (1) 

where 𝑟𝑢,𝑖 is observed feedback for user u on item i, and prediction can be obtained using inner product 

of user and item latent factor vectors, denoted as 𝑝𝑢
𝑇𝑞𝑖. The 𝜆 is a weight for the regularization term to 

prevent over fitting. Following to the success of deep neural network (DNN), a modern latent factor 

model called neural collaborative filtering (NCF) has proposed [14]. NCF learns latent features for users 

and items using a DNN architecture and formulates the predictive model as shown in Eq. (2): 

𝑦̂𝑢𝑖 = 𝑓(𝑃𝑇𝑣𝑢
𝑈, 𝑄𝑇𝑣𝑖

𝐼|𝑃, 𝑄, 𝜃𝑓) (2) 

𝑓(𝑃𝑇𝑣𝑢
𝑈, 𝑄𝑇𝑣𝑖

𝐼) = 𝜙𝑜𝑢𝑡 (𝜙𝑋 (… 𝜙2(𝜙1(𝑃𝑇𝑣𝑢
𝑈, 𝑄𝑇𝑣𝑖

𝐼)) … )) (3) 

where 𝑣𝑢
𝑈 and 𝑣𝑖

𝐼 are the one-hot encoded user and item vectors, which are used as the model inputs so 

that model can identify the features for user and item. The matrices 𝑃 ∈ ℝ|𝑈|×𝐾 and 𝑄 ∈ ℝ|𝐼|×𝐾 denote 

the latent factor matrices for users and items, respectively. The 𝜃𝑓  represents the trainable model 

parameters of the interaction function f. The function f is defined as a multi-layer neural network, as 

shown in Eq. (3), where 𝜙𝑜𝑢𝑡 and 𝜙𝑥 denote the output layer and the x-th CF layer in a neural network 

architecture with a total of X layers. In the NCF framework, it is easy to construct a model that combines 

both generalized matrix factorization (GMF) and multi-layer perceptron (MLP), as shown in Eq. (4), to 

capture linear and non-linear user-item behavior structure in the data. 

𝑦̂𝑢𝑖 = 𝜎(ℎ𝑇𝑎(𝑝𝑢 ⊙ 𝑞𝑖 + 𝑊[𝑝𝑢 𝑞𝑖]
𝑇 + 𝑏)) (4) 

where ⊙ denotes the element-wise product for user and item latent factors in GMF. 𝑊 and 𝑏 is the 

trainable parameters and bias for the MLP, respectively. 
Although collaborative filtering models are popular for modern recommendation systems, they suffer 

from the data sparsity problem, where there is insufficient user feedback to train the models, and cold-

start problem, where the system may be unable to provide accurate recommendations if there is 

insufficient data for new users or items [16, 37]. 

2.3. Content-based Filtering 

Content-based filtering (CBF) models recommend items to users based on the analysis of the 

relationship between the target user’s profile and the content of candidate items. Typically, popular 

techniques from the field of information retrieval (IR) are adopted by conventional CBFs to analyze such 

relationships—for example, the vector space model, term frequency-inverse document frequency (TF-

IDF), and cosine similarity [26]. Beyond that, a generative probabilistic model called Latent Dirichlet 

Allocation (LDA) has been proposed [8]. LDA assumes that documents are represented as random 

mixtures over K latent topics, and each topic is constructed as a distribution over words. The model 

provide significant benefits to the field of recommendation system [3, 7]. 
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Due to the successful development of deep neural networks, an efficient word representation method 

called Word2Vec was proposed [27]. Word2Vec maps each word in a corpus into a fixed-dimensional 

vector space using a shallow neural network and either a continuous bag-of-words or skip-gram 

architecture. Since neighboring words in a sentence are considered during the training phase, the semantic 

structures of words in the corpus can be discovered, which helps with contextual analysis. Furthermore, 

following the success of convolutional neural networks (CNNs) in the field of image recognition [2, 21], 

the idea of combining Word2Vec and CNNs in recommendation systems has attracted significant 

attention. Such work typically constructs item features by first representing an item as a set of consecutive 

words in the form of Word2Vec vectors, and then applying CNNs to extract semantic structures as item 

features [20, 40]. 

A modern language model named Bidirectional Encoder Representations from Transformers (BERT) 

has been proposed. The architecture of BERT is a multi-layer bidirectional Transformer encoder [38]. It 

performs masked language modeling and next sentence prediction during the pre-training step to 

construct sequence embeddings for the input sequence. The downstream tasks can fine-tune the initial 

parameters of BERT using task-related labeled data [11]. Sentence-BERT (SBERT) was further proposed 

to construct semantically meaningful sentence embeddings, rather than simply averaging all token 

embeddings in a sentence or using the embedding of the CLS token to represent the sentence [34].  

Compared to CF models, CBF models alleviate the new item problem by using an item’s content 

information to find appropriate user profiles for recommendations. However, CBF suffers from the 

problem of insufficient content information [23], making it difficult for the models to understand the 

characteristics of items and construct user profiles. 

2.4. Hybrid Filtering 

Hybrid filtering recommendation models integrate two or more strategies of recommendation systems 

to reinforce advantages and reduce disadvantages [9]. Collaborative filtering (CF) and content-based 

filtering (CBF) are the most commonly integrated approaches in a hybrid filtering model for making 

recommendations. CF can provide appropriate user and item features for predicting preferences when 

items’ contextual information is limited, while CBF can offer better recommendations when interactions 

between users and items are not available. 

The collaborative topic modeling (CTM) [39] is one of the most well-known hybrid filtering models. 

It represents an item j’s latent vector in the form 𝑣𝑗 = 𝜖𝑗 + 𝜃𝑗, where 𝜖𝑗 is a latent factor offset and 𝜃𝑗 

represents item j’s latent topic proportions constructed using LDA. Then, CTM assumes a preference 𝑟𝑖𝑗 

belongs follows a normal distribution 𝑟𝑖𝑗~𝑁(𝑢𝑖
𝑇𝑣𝑗 , 𝑐𝑖𝑗

−1), and it aims to optimize model with the goal 

𝔼[𝑟𝑖𝑗|𝑢𝑖 , 𝜃𝑗 , 𝜖𝑗] = 𝑢𝑖
𝑇(𝜖𝑗 + 𝜃𝑗). Thus, CTM is able to learn latent factors for users and both latent factors 

and topics for items together using interaction data and contextual data. 

2.5. Graph Convolution Network 

The Graph Convolution Network (GCN) aims to model graph-structured data and adopt the 

constructed features for various machine learning tasks. Many real-world applications involve data that 

is naturally graph-structured, and the structural information can be encoded to model the relationships 

among entities [44]. For an undirected graph 𝒢 = {𝒱, ℰ, 𝑨} where 𝒱 denotes a set of nodes, ℰ is a set 

of edges, and 𝑨 is an adjacency matrix. In the adjacency matrix, 𝑨(𝑖, 𝑗) = 0 if there is no connection 

between nodes i and j; otherwise, 𝑨(𝑖, 𝑗)  can be set a scalar value representing the degree of the 

relationship between nodes i and j. Alternatively, one can set 𝑨(𝑖, 𝑗) = 1 for all i, j in the case of an 

unweighted graph. The work in [43] proposed a multi-layer GCN for document classification, the model 

can be defined as Eq. (5): 

𝐻(𝑙+1) = 𝜎 (𝐷̃−
1
2𝐴̃𝐷̃−

1
2𝐻(𝑙)𝑊(𝑙)) (5) 

where 𝐴̃ = 𝐼 + 𝐴 represents the adjacency matrix combined with the identity matrix, allowing the self-

connection of each node. Thus, the information from each node itself can be considered alongside the 

information from its neighbors during model training. 𝑊(𝑙) represents the trainable parameters in the l-
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th layer, 𝐻(𝑙) is the feature representation for all nodes as the input of l-th layer, and 𝐻(0) represents the 

initial features. 𝐷̃−
1

2 is an inversed degree matrix with normalization, the average features of all nodes 

are obtained in the form 𝐷̃−
1

2𝐴̃𝐷̃−
1

2𝐻(𝑙). Finally, the feature representations 𝐻(𝑙+1) for all nodes in layer 

l+1 are obtained after applying an activation function 𝜎. 

Graph neural networks have been widely adopted in the study of recommendation systems, as data in 

recommenders inherently has a graph structure, including user-item interactions, user behavior sequences, 

social relationships, and knowledge entities [41]. Recently, UltraGCN has been proposed to construct an 

enhanced collaborative filtering model based on GCN and various types of relationships, such as item-

item co-occurrence graphs [25]. On the other hand, the DHGCN model [22] has been developed to 

establish not only user-item connections but also user-user and item-item connections using GCN. 

Furthermore, this model incorporates a gating mechanism to integrate the content information of the top 

TF-IDF words into the feature representation of item nodes. 

3. PROPOSED MODEL 

3.1. Overview 

We propose an attentive hybrid filtering network (AHFN) that constructs item features by considering 

four types of sources: (1) word-level characteristics generated using Word2Vec and CNN models based 

on the content of items, (2) latent factors for users and items learned from interaction data through a 

general matrix factorization (GMF) model, (3) sentence-level representations of items constructed using 

the SBERT model, and (4) item-item co-view relationships encoded in an undirected graph, with item 

features generated using a GCN model. Furthermore, attentive user features are constructed based on the 

user’s most recently interacted items using an attention mechanism. The item features and attentive user 

features are then fed into a prediction network to estimate user preferences for unobserved items. Finally, 

a top-N recommendation list is provided to users. The overall architecture of our proposed attentive 

hybrid filtering network is illustrated in Fig 1.  

Fig 1. Overview of the Attentive Hybrid Filtering Network 
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3.2. Item Features and Attentive User Feature Construction 

3.2.1. Word-level Features 

The attentive contextual user feature considers the target item and users’ recent actions, constructing 

user features based on the items' contextual information. Both the user features and item features are then 

fed into the prediction network for the subsequent recommendation task. The basic item information is 

represented by word sequences, with each word converted into a high-dimensional vector space. A CNN 

model is employed to extract contextual features from both the users’ recent action items and the 

unobserved target item. Finally, the user’s contextual features are constructed by applying an attention 

mechanism to the target item and the users' recent action items. 

For the attentive contextual user feature ℱ𝑢
𝐴𝐶  for user u, the user’s most recently interacted |𝐼𝑢| 

items are taken as input. Each item i in the set 𝐼𝑢 can be represented as a matrix 𝐷𝑖 ∈ ℝ𝑑×𝐿 consists of 

𝐿 words. Each word in 𝐷𝑖, denoted as 𝑤(𝑖,𝑙) ∈ ℝ𝑑  corresponding the l-th word and a d-dimensional 

word embedding constructed using Word2Vec model. A contextual embedding for each item i defined as 

𝑓𝑖
𝐶 ∈ ℝ(𝑛𝐹×𝑛𝐾𝑆), is constructed by applying a CNN model as follows: 

𝑐𝑖
𝑓

= 𝜎(𝑊𝑓 ∗ 𝐷𝑖,(:,𝑙:(𝑙+𝑘𝑠−1)) + 𝑏𝑓) (6) 

𝑒𝑖
𝑘𝑠 = [max(𝑐𝑖

1) , max(𝑐𝑖
2) , max(𝑐𝑖

3) , … , max (𝑐𝑖
𝑛𝐹)] (7) 

𝑓𝑖
𝐶 = [𝑒𝑖

1, 𝑒𝑖
2, 𝑒𝑖

3, … , 𝑒𝑖
𝑛𝐾𝑆] (8) 

where 𝑊𝑓 ∈ ℝ𝑑×𝑘𝑠 is a shared weight matrix for the CNN model’s filter f, with filter size set to ks, and 

𝑏𝑓 ∈ ℝ is the bias for f. The symbol ∗ denotes the convolution operator, and σ represents a non-linear 

activation function. Here the rectified linear unit (ReLU) is adopted over other functions such as sigmoid 

and tanh to avoid the gradient vanishing problem. The contextual feature vector 𝑐𝑖
𝑓

∈ ℝ𝑙−𝑘𝑠+1  is 

constructed by operating the convolution with filter f and a kernel size ks along with the word sequence 

in the item i, as defined as Eq. (6). The number of filters nF is pre-defined for the CNN model, allowing 

the extraction of diverse structural features hidden in the items’ word sequences. As a result, a total of nF 

contextual feature vectors are generated. We then apply max-pooling to obtain maximum value from 

each contextual feature vector, constructing a kernel-size-dependent maximum contextual feature vector 

𝑒𝑖
𝑘𝑠 ∈ ℝ𝑛𝐹, where 𝑘𝑠 = 1,2, … , 𝑛𝐾𝑆 , and nKS is the total number of kernel size settings, as defined in 

Eq. (7). There are different kernel sizes allow the construction of contextual features with varying word 

sequence lengths. Finally, all nKS contextual feature vectors are concatenated to form the representative 

contextual embedding for item I denoted as 𝑓𝑖
𝐶, as defined in Eq. (8). 

To considering user’s recent actions on items while constructing the user feature, an attention 

mechanism is applied. Let the matrix 𝐹𝑢
𝐶 ∈ ℝ(𝑛𝐹×𝑛𝐾𝑆)×|𝐼𝑢|  represents the contextual embeddings of 

items that user u has recently interacted with, contained in the set 𝐼𝑢. The contextual embedding of the 

target item t is denoted as 𝑓𝑡
𝐶. The target item refers to the item that is unobserved by user u. Thus, we 

can obtain a weight vector that represents the importance between the target item t and user u’s recent 

items by Eq. (9): 

𝑎𝐶,𝑢,𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐹𝑢
𝐶 𝑇𝑓𝑡

𝐶) 
(9) 

 

where 𝐹𝑢
𝐶 𝑇  is the transpose of the recent item embedding matrix for user u, and softmax function 

produce a weight vector 𝑎𝐶,𝑢,𝑡 ∈ ℝ|𝐼𝑢| , with elements that summing to 1, the vector captures the 

correlations between the recent items of user u and the target item t. An attentive contextual user feature 

ℱ𝑢
𝐴𝐶 ∈ ℝ(𝑛𝐹×𝑛𝐾𝑆) can then be obtained by applying the weight vector to user u’s recent item embedding 

matrix, as defined in Eq. (10). 

ℱ𝑢
𝐴𝐶 = 𝐹𝑢

𝐶 𝑎𝐶,𝑢,𝑡  (10) 
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3.2.2. Latent Factors 

The latent factor model, such as matrix factorization, aims to extract hidden features or factors from 

the interactions between users and items. Traditionally, the user’s latent factor vector is directly 

constructed during the iterations of gradient descent. In this work, we propose applying an attention 

mechanism to account for the relationship between the target item and the user’s most recent action items 

in constructing attentive user latent factors.  

First, each user's item interactions are taken as model input. The matrix factorization model serves as 

a latent factor learner, learning the users' latent factor matrix 𝑃 ∈ ℝ|𝑈|×𝑑𝑓𝑎𝑐𝑡𝑜𝑟
 and the items' latent factor 

matrix 𝑄 = ℝ𝑑𝑓𝑎𝑐𝑡𝑜𝑟×|𝐼| . The learner aims to find a solution for predicting the user-item interaction 

matrix 𝑅 ∈ ℝ|𝑈|×|𝐼|, where 𝑅 = 𝑃𝑄. Each element 𝑟𝑢,𝑖 = 𝑝𝑢𝑞𝑖 in matrix R represents the interaction of 

user uuu with item iii. A value of 1 indicates that user u has interacted with or liked item i, while a value 

of 0 indicates no interaction or dislike. Thus, we can obtain a 𝑑𝑓𝑎𝑐𝑡𝑜𝑟-dimensional latent factor vector 

𝑝𝑢 ∈ ℝ𝑑𝑓𝑎𝑐𝑡𝑜𝑟
and 𝑞𝑖 ∈ ℝ𝑑𝑓𝑎𝑐𝑡𝑜𝑟

 for user u and item i, respectively.  
Beyond the user latent factors, the items’ latent factors from user’s recently interacted item set 𝐼𝑢 are 

also considered to construct the user’s attentive latent factor features ℱ𝑢
𝐴𝑀𝐹 ∈ ℝ𝑑𝑓𝑎𝑐𝑡𝑜𝑟

, defined as: 

ℱ𝑢
𝐴𝑀𝐹 = 𝑄𝐼𝑢𝑎𝑀𝐹,𝑢,𝑡  (11) 

𝑎𝑀𝐹,𝑢,𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐼𝑢
𝑇 𝑞𝑡) (12) 

where 𝑄𝐼𝑢 is the item latent factor matrix representing user u’s recently interacted items 𝐼𝑢, and 𝑞𝑡 is 

the item latent factors of the target item t. The softmax function applied to the product of 𝑄𝐼𝑢 and 𝑞𝑡 

results in a weight vector 𝑎𝑀𝐹,𝑢,𝑡 ∈ ℝ|𝐼𝑢|. This vector represents the importance between target item and 

user’s recent items, with its elements lying in the interval [0, 1] and summing to 1. The model aims to 

construct attentive user latent factor features that align more closely with target item, predicting a higher 

recommendation score if the user’s recent items have strong correlations with the target item. Conversely, 

the model will assign a low prediction score to the target item if the user has no relevant recent 

interactions. 

At the end, the original user factor vector 𝑝𝑢 learned directly by the matrix factorization model, is 

concatenated with the attentive user factor feature vector ℱ𝑢
𝐴𝑀𝐹  to form the final user latent factor 

representation. Along with the user latent factors, the target item t’s latent factor 𝑞𝑡 is also feed into the 

prediction network for the subsequent recommendation task.  

3.2.3. Sentence-level Features 

In this study, we applied the Sentence-Bidirectional Encoder Representations from Transformers 

(SBERT) model to construct sentence-level item embeddings to obtain rich contextual information for 

recommendation. Compared to conventional word embeddings, the item embeddings extracted by 

SBERT consider the relationships between tokens in the word sequences of items in both forward and 

backward directions. The features hidden in the sentences of items, which are semantically meaningful, 

can be extracted. Based on these item features, a more comprehensive attentive user feature set can then 

be constructed.  

For constructing the contextual embedding of items, we consider the tokens of item sentences rather 

than individual words. Let 𝑁𝑆 be the number of tokens considered for constructing item i’s SBERT 

embedding 𝑓𝑖
𝐵 ∈ ℝ𝑑𝑆𝐵𝐸𝑅𝑇

, where 𝑑𝑆𝐵𝐸𝑅𝑇 is the dimension of a SBERT embedding. For each user u, we 

also take their recent item set 𝐼𝑢  as the input, and each item in the set is used to derived an item 

embedding. Thus, we can obtain a matrix 𝐹𝑢
𝐵 = ℝ𝑑𝑆𝐵𝐸𝑅𝑇×|𝐼𝑢| that represents the SBERT embedding of 

the user’s recent items. Next, we can construct user u’s attentive features based on the sentence-level 

embeddings of items by applying attention mechanism, as defined below: 

ℱ𝑢
𝐴𝐵 = 𝐹𝑢

𝐵𝑎𝐵,𝑢,𝑡 
(13) 
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𝑎𝐵,𝑢,𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐹𝑢
𝐵𝑓𝑡

𝐵) 
(14) 

where 𝑓𝑡
𝐵 ∈ ℝ𝑑𝑆𝐵𝐸𝑅𝑇

  is the target item t’s sentence-level BERT embedding, and 𝑎𝐵,𝑢,𝑡 ∈ ℝ|𝐼𝑢|  is a 

weight vector derived using softmax function, representing the relevance importance between the target 

item and user’s recent items. The vector ℱ𝑢
𝐴𝐵 ∈ ℝ𝑑𝑆𝐵𝐸𝑅𝑇

  represents the user’s attentive features 

constructed using sentence-level BERT embedding. Finally, both the user features ℱ𝑢
𝐴𝐵 and item features 

𝑓𝑡
𝐵 are feed into the prediction network to predict the recommendation score for user u and unobserved 

target item t. 

3.2.4. Item Co-view Features 

In conventional recommendation methods, such as association rules, items are recommended to users 

not based on personal features extracted or learned from the user, but rather on item-to-item rules. For 

example, if a user views item A, they are likely to view item B next. Such rules can assist recommendation 

systems and are constructed by analyzing user interactions with items. These rules can also be converted 

into an item-to-item co-view undirected graph, as illustrated in Fig 2. In this graph, each node represents 

an item, and each edge indicates the relationship between two nodes. This relationship can be quantified 

using the correlation or degree of association between the items.  

 

Fig 2. Item-to-item co-view graph. 

In this study, we assign a value of 1 to an edge if two items were viewed by the same user on the same 

day, and a value of 0 otherwise. Thus, the graph represents the item co-view relationship. Furthermore, 

we can construct an item co-view adjacency matrix for the undirected graph, where an element value of 

1 indicates a co-view relationship between two items, and 0 otherwise. The diagonal elements of the 

matrix are set to 1, representing the self-connection of each node. This allows the model to consider not 

only the information from an item’s neighbors but also the information from the item itself when 

performing graph convolution. 

Once the item co-view adjacency matrix is constructed, we can combine it with the base item features 

from the Word2Vec (W2V) or BERT models and apply a Graph Convolutional Network (GCN) to 

generate item co-view embeddings. These embeddings represent more comprehensive features for each 

item. Finally, users’ attentive features can be constructed based on these item co-view embeddings using 

an attention mechanism. The GCN takes the item co-view adjacent matrix and item features as inputs, 

and the item co-view embedding matrix ℱ𝐺 ∈ ℝ|𝐼|×𝑑 can be constructed using Eq. (15): 

ℱ𝐺 = 𝜎(𝐴𝐶𝑉 … 𝜎(𝐴𝐶𝑉𝜎(𝐴𝐶𝑉𝐻0𝑊0 + 𝑏0)𝑊1 + 𝑏1) … 𝑊𝐿 + 𝑏𝐿) (15) 

where 𝐴𝐶𝑉 ∈ ℝ|𝐼|×|𝐼| is the item co-view adjacent matrix with element values of 1 or 0. 𝐻0 ∈ ℝ|𝐼|×𝑑 is 

the initial d-dimensional feature matrix for all items, where item features can either be constructed using 

the simple average of word embeddings, or by applying the BERT model to the item’s sentences. In layer-

0 of the GCN, the matrix 𝑊0 ∈ ℝ𝑑×𝑑 is the trainable parameters, 𝑏0 ∈ ℝ|𝐼| is the bias, and 𝜎 is the 

ReLU non-linear activation function. Each layer l produces an item embedding matrix 𝐻𝑙+1 , which 

serves as the input for next layer 𝑙 + 1 . We can stack up to L layers in the GCN to generate 

comprehensive co-view item embeddings. Notably, as the number of layers increases, the final node or 

item embedding ℱ𝐺 capture more global information from its neighborhood. 

A B C D 

E F 

1 

1 

1 1 

1 

1 1 
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Furthermore, user u’s recent item feature matrix 𝐹𝑢
𝐺 = ℝ𝑑𝐺𝐶𝑁×|𝐼𝑢| can be retrieved from ℱ𝐺. The 

feature matrix 𝐹𝑢
𝐺  represents user u’s recent preferences on items, and the feature dimension 𝑑𝐺𝐶𝑁 

depended on chosen base item feature model of GCN. Next, we construct user u’s attentive features based 

on the co-view relationship embeddings by applying an attention mechanism to the user’s recent items 

and the target item, as defined below: 

ℱ𝑢
𝐴𝐺 = 𝐹𝑢

𝐺𝑎𝐺,𝑢,𝑡 
(16) 

𝑎𝐺,𝑢,𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐹𝑢
𝐺𝑓𝑡

𝐺) 
(17) 

where 𝑓𝑡
𝐺 ∈ ℝ𝑑𝐺𝐶𝑁

 is the target item t’s features extracted from the co-view item embedding matrix ℱ𝐺. 

The weight vector 𝑎𝐺,𝑢,𝑡 ∈ ℝ|𝐼𝑢|  is derived by using softmax function, representing the relevance 

between the target item and the user’s recent items. The vector ℱ𝑢
𝐴𝐺 ∈ ℝ𝑑𝐺𝐶𝑁

 denotes the user’s attentive 

features constructed using the embedded co-view item relationships. Finally, both the user features ℱ𝑢
𝐴𝐺 

and the item features 𝑓𝑡
𝐺 are fed into the prediction network to predict the recommendation score for 

user u and the unobserved target item t. 

3.3. Prediction Network 

The prediction network predicts the preference of user u for the unobserved target item t based 

primarily on the attentive user features and the target item features, which are constructed from four core 

components: (1) Item contextual features based on word-level embeddings learned using the Word2Vec 

and CNN models; (2) Latent factors for both users and items, learned through general matrix factorization 

(GMF); (3) Item contextual features based on sentence-level embeddings learned using the SBERT 

model; (4) Item co-view relationships encoded by a undirected graph with the GCN model. 

Based on the four base components, to construct comprehensive user features as input to the enhanced 

prediction network when making predictions for user u on item t, the following four base user features 

are considered: (1) attentive contextual user feature ℱ𝑢
𝐴𝐶, derived from the word-level representation of 

the item using CNN model; (2) the original user factors vector 𝑝𝑢 , learned directly using matrix 

factorization model, and the attentive user factor feature vector ℱ𝑢
𝐴𝑀𝐹; (3) ℱ𝑢

𝐴𝐵, representing the user’s 

sentence-level attentive features, constructed using sentence BERT model; (4) ℱ𝑢
𝐴𝐺 , representing the 

user’s attentive features, constructed using embedded co-view item relationship and GCN model. These 

four base user features are then concatenated into a more comprehensive user feature, denoted as Ϝ𝑢
𝐶𝑃 

and defined in Eq.(18). Similarly, the comprehensive item feature ℓ𝑖
𝐶𝑃  for item t is constructed by 

concatenating item features from four base components, as defined in Eq. (19). 

Ϝ𝑢
𝐶𝑃 = [𝑝𝑢, ℱ𝑢

𝐴𝐶 , ℱ𝑢
𝐴𝑀𝐹 , ℱ𝑢

𝐴𝐵, ℱ𝑢
𝐴𝐺] 

(18) 

ℓ𝑡
𝐶𝑃 = [𝑞𝑡, 𝑓𝑡

𝐶 , 𝑓𝑡
𝐵, 𝑓𝑡

𝐺] 
(19) 

𝑟̂𝑢,𝑡 = 𝐴𝐻𝐹𝑁(Ϝ𝑢
𝐶𝑃, ℓ𝑖

𝐶𝑃) 
(20) 

Then, all the comprehensive user and item features are concatenated and feed into a multi-layered 

fully connected (FC) network with ReLU activation. In the network, each FC layer is followed by a layer 

normalization (LN) layer to reduce the internal covariate shift problem during model training. The final 

FC layer produce a scalar that indicated the degree of the preference for user u on item t. A sigmoid 

function then transfers the scalar into the range [0, 1], denote as 𝑟̂𝑢,𝑡, as shown in Eq. (20), where the 

function named AHFN represents our attentive hybrid filtering network. The objective function is defined 

as the binary cross-entropy loss, as described in Eq. (21). 

𝐿 = − ∑ 𝑙𝑜𝑔(𝑟̂𝑢,𝑡) −

(𝑢,𝑡)∈𝑆

∑ 𝑙𝑜𝑔(1 − 𝑟̂𝑢,𝑡)

(𝑢,𝑡)∈𝑆−

 (21) 

where 𝑆 represents the set of positive samples in the training data, where each user u and target item t 
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pair indicated that user liked the item. On the other hand, 𝑆− is the set of negative samples in the training 

data, where user-item pair are chosen randomly. We assume that such randomly chosen items are 

irrelevant to user u. To minimize the loss function, the model needs to predict as 1 if the training sample 

is from the positive sample set, and 0 if the sample is from the negative sample set. The loss function can 

be minimized using the stochastic gradient decent method. 

4. EXPERIMENT AND EVALUATION 

4.1. Dataset and Evaluation Protocol 

We used a dataset collected from a popular online news website in Taiwan called NiusNews 

(https://www.niusnews.com/), as described in Table 1. The dataset was split into a training set covering 

the period from 2018-10-01 to 2019-02-28, which was used for the model to learn the data structure. The 

next consecutive 3 days were used as the validation set for tuning suitable hyperparameters, and the 7 

days following the validation set were used as the test set to evaluate the recommendation performance 

on future data. We adopted this rolling cross-validation approach because it aligns with real-world 

recommender systems, which train models on historical data collected up to the present and predict users' 

preferences for the following day. 

Table 1. NiusNews Dataset Description 

Dataset NiusNews 
Avg. Items Std. Items 

Time Period 2018-10-01 ~ 2019-03-10 

#items 4,723 26.54 68.84 

#users 6,451 Avg. Records Std. Records 

#records 203,632 31.56 99.84 

 

To demonstrate the performance of the proposed models, we adopted the leave-one-out methodology 

for top-N recommendation tasks, which is widely used in the literatures [4, 18]. In the experiments, for 

both the validation and test sets, we collected user-item pair where the item genuinely observed or read 

by the user to represent the user’s true preference. Additionally, we randomly selected 1000 items as 

candidates for each true user-item pair, assuming that these 1000 items are irrelevant to the target user. 

Thus, each 1001-item recommendation task constitutes one test case. For each test case, the 

recommendation models must rank the user’s preferred item in the top-N positions to register a hit.  

One performance metric adopted in this study is recall, defined in Eq. (22), where T is the test case 

set and #hits indicate the number of test cases in which the user’s preferred item is ranked in the top-N 

position among all candidate items. The other metric we used is normalized discounted cumulative gain 

(nDCG), defined in Eq. (23), where DCG (discounted cumulative gain) is defined in Eq. (24) and IDCG 

represents the ideal discounted cumulative gain. In DCG, 𝑟𝑒𝑙𝑖 is 0 or 1, indicating whether the item 

ranked at position i is the user’s preferred item. The model achieves a high DCG score if it ranks the 

user’s preferred item at the top of the candidate items. The main difference between recall and nDCG is 

that nDCG considers the ranking position, while recall does not. A good recommendation system or 

model should rank the user’s preferred items at the top of the candidate list. 

𝑟𝑒𝑐𝑎𝑙𝑙@𝑁 =
#ℎ𝑖𝑡𝑠

|𝑇|
 

(22) 

𝑛𝐷𝐶𝐺@𝑁 =
𝐷𝐶𝐺@𝑁

𝐼𝐷𝐶𝐺@𝑁
 

(23) 

https://www.niusnews.com/
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𝐷𝐶𝐺@𝑁 = ∑
2𝑟𝑒𝑙𝑖 − 1

𝑙𝑜𝑔2(𝑖 + 1)

𝑁

𝑖=1

 
(24) 

We adopted several baseline models to compare recommendation performance with our proposed 

model on the collected dataset in the experiments. The baselines are described in Table 2, where each 

row lists the model’s name used in the experiments along with a description of the model. 

Table 2. Baseline description. 

Model Name Description 

Random 
It is a very simple baseline that ranks all candidates for a user using uniform random 

guess. 

Top-Popular 

A commonly used recommendation method in the real-world ranks candidates for 

a user using the popularity of the items. For example, the item that has been read 

by the most users will be recommended first. 

GMF 

A matrix factorization model that constructs user and item features or latent factors 

using a neural network architecture [14]. This model is trained using only user and 

item interaction data. 

MLP 

A model that constructs user and item features or latent factors using a multi-layer 

neural network. It has the capability to capture non-linear behaviors among user 

and item interactions [14]. This model is trained using only user and item 

interaction data. 

NCF 
A model that integrates the capabilities of the GMF and MLP models to construct 

user and item features or latent factors for making recommendations [14]. 

LDA 

The item features are constructed using the Latent Dirichlet Allocation (LDA) [8] 

model based on the content of the items. The user features are then constructed as 

the average of the item features interacted with by the user. This model is primarily 

trained on the contextual information of the items. 

CTM 

The model trains user and item features or latent factors, which are combined with 

the items' latent topics from the LDA model [39]. Therefore, this model is trained 

based on the contextual information of the items and the interaction logs between 

users and items. 

CNNA 

The model is inspired by [40] and constructs item features using a CNN model 

along with the contextual information of Word2Vec embeddings for the items. User 

features are then constructed based on the item features from the user's recent 

behavior. An attention mechanism is applied to the user's history and the target item 

to obtain summarized user features for making recommendation predictions. 

 

In addition, in the experiments, we denote three alternatives of the proposed AHFN as follows: (1) 

CGMF-A, which integrates word-level contextual features and latent factors; (2) CGMF-BA, which 

incorporates sentence-level contextual features into CGMF-A; and (3) CGMF-BGA, which incorporates 

item-item co-view features into CGMF-BA. For all models, the parameter learning rate is searched within 

the range {0.1, 0.01, 0.001, 0.0001, 0.00001}, and the L2 normalization weight is also searched in the 

same range {0.1, 0.01, 0.001, 0.0001, 0.00001}. The batch size is searched in the range {32, 64, 128, 

256}. We adopted the Adam optimizer to train the models for a maximum of 100 epochs, and the training 

process is stopped if the nDCG@10 on the validation set does not increase for 10 successive epochs. 

4.2. Model Evaluation 

4.2.1. Evaluation of Integration of Word-level Features and Latent Factors 

The CGMF-A model is based on the integration of CNN and GMF, which makes predictions using 
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word-level contextual features and latent factors. Furthermore, it employs the attention mechanism to 

construct attentive user features from latent factors. We set the hyperparameters of the CNN as follows: 

two kernel sizes of 1 and 2, each with 128 filters, and a maximum of 30 words with embeddings of 100 

dimensions will be input to the model for each item. Since a larger number of kernels, filters, and words 

may lead to better model performance but also incur higher computational costs, the CNN’s 

hyperparameter settings are fixed.  
The hyperparameter we need to determine is the number of latent factors for CGMF-A that suit our 

dataset, using a 3-day validation set. We evaluate latent factors ranging from 8 to 128 in the top-N 

recommendation task, with N ranging from 10 to 50. The recommendation performance, in terms of 

average recall and average nDCG for CGMF-A, is reported in Fig 3. Experiment results show that a 

setting of 32 factors is effective for CGMF-A, yielding good performance in both recall and nDCG 

metrics across almost all recommendation tasks. Lower or higher factor sizes may negatively impact 

performance due to underfitting or overfitting of the model.  

 

 

(a) 

 

(b) 

Fig 3. Factors evaluation for CGMF-A models using validation set and recall (a), nDCG (b). 

4.2.2. Evaluation of Integration of Sentence-level Features 

In the CGMF-BA model, we leverage the Sentence BERT (SBERT) model and the tokens in the 

content of an item to construct the sentence-level contextual features for that item. Thus, determining the 

number of tokens in a sentence or the maximum sentence length considered in feature construction is 

necessary. Here, the hyperparameters for CGMF-A are fixed, including number of latent factors, kernel 

size and filter size of CNN, and dimension of word-level features. We determine the sentence length 

using the validation set and the hardest top-10 recommendation task. The sentence length ranges from 

30 to 150 tokens. The experimental results, reporting the average recall and nDCG metrics, are described 

in Fig 4. The results show that we can achieve the highest average recall and nDCG when using a 

maximum sentence length of 90 tokens. 

 

 

(A) 

 

(b) 

Fig 4. Average Recall (a) and nDCG (b) at the top-10 task for sentence length in CGMF-BA. 
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Now we evaluate the performance of CGMF-BA against two alternatives in top-N recommendation 

tasks using the validation set. GMF-BERT-A is the variant where the CNN module is removed from 

CGMF-BA, representing the integration of latent factors and SBERT features. BERT-ATT is the variant 

where both the CNN and GMF modules are removed from CGMF-BA, predicting the user’s preference 

based solely on SBERT features. The maximum sentence length for SBERT in all models is fixed at 90 

tokens. The average recall and nDCG are reported in Fig 5.  
 

                (a)                  (b) 

 

The validation results show that the CGMF-BA model outperforms both alternatives in almost all 

cases except for the recall in the top-50 task. This indicates not only the effectiveness of integrating 

SBERT but also the benefits of constructing contextual features from both SBERT and CNN. This 

improvement may be attributed to the more comprehensive contextual item and user features learned 

from both word and token levels. On the other hand, there is a slight performance improvement when 

combining the latent factor and SBERT, which is better than the model that only considers SBERT, 

particularly in the harder top-10 recommendation task or a more ranking-related metric, nDCG. However, 

the improvement is not substantial compared to the model that takes all three components into 

consideration. 

4.2.3. Evaluation of Integration of Item Co-view Features 

The alternative CGMF-BGA of our proposed AHFN model that incorporates item-item co-view 

relationships to the CGMF-BA model using an undirected graph. For constructing such relations as the 

features for all items, the graph is modeled as an adjacency matrix, and together with the item features 

as the inputs of Graph Convolutional Network (GCN). Thus, there are two main hyperparameters that 

need to be determined for the GCN. The first is the method for constructing features for items or the item 

feature model, and the second is the number of layers for the GCN to learn the embeddings for items.  

For item features, we can either use the simple average of 100-dimensional word embeddings from 

the Word2Vec model or leverage the 384-dimensional token embeddings from the sentence BERT 

(SBERT) model, as adopted in the CGMF-BA model. Regarding the number of layers in our GCN, we 

may choose from a range of 1 to 4. It is important to note that a higher number of layers allows the GCN 

to learn item embeddings by considering information from longer-distance neighborhoods. We conduct 

experiments to determine the optimal learning rate, number of epochs, and the two hyperparameters using 

the validation set. For the CGMF-BA model, there are also two kernels, each with 128 filters for the 

CNN, and a maximum of 30 words with 100-dimensional embeddings as input. The number of latent 

factors is fixed at 32, and the maximum sentence length for SBERT is set at 90, according to the 

experimental results. The evaluation results for the item feature model and layer size for the GCN are 

presented in Fig 6. 

 

Fig 5. Average Recall(a) and nDCG(b) of CGMF-BA in top-n recommendation tasks. 
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(a) 

 

(b) 

Fig 6. The average recall (a) and nDCG (b) for item feature model and number of layers in GCN. 

The results show that the 384-dimensional item features constructed from sentence BERT achieved 

the highest average recall and nDCG using the 3-layer GCN model. The experimental performance 

indicates that the GCN model benefits recommendation tasks by utilizing higher-dimensional item and 

user feature representations, as well as information from longer-distance item neighbors. In contrast, the 

100-dimensional word embeddings performed poorly in many cases, likely due to their simplified 

representation of item characteristics, which utilizes lower dimensions and averages the item features. 
We also evaluate the performance of CGMF-BGA against an alternative model that only employs the 

GCN and feature attention mechanism, denoted as GCN-ATT, on the validation set. The GCN-ATT also 

utilizes SBERT item features and a 3-layer GCN, with hyperparameters tuned to achieve optimal 

performance. The experimental results for top-N recommendation tasks are presented in Fig 7. 
 

                 (a)                   (b) 

 

The experimental results on the validation set indicated that CGMF-BGA outperformed the 

alternative in both average recall and nDCG metrics across all recommendation tasks. This reveals that 

the integration of latent factors, contextual features constructed using both CNN and SBERT, and item 

co-view relations embedded using the GCN model positively contributes to performance improvement. 

Additionally, the results suggest that the GCN model alone is not sufficient to achieve adequate 

performance in these recommendation tasks when compared to our proposed model. 

4.3. Experiment Results 

We now further compare our proposed models, including the alternatives CGMF-A, CGMF-BA, and 

CGMF-BGA, with several baselines on the test set in top-N recommendation tasks. The hyperparameters 

for all comparison models were searched and fixed using the validation set. The experimental results for 

average recall and nDCG are reported in Fig 8. Among our three proposed alternatives, CGMF-BGA 

Fig 7. Average recall(a) and nDCG(b) comparison between CGMF-BGA and alternative. 
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achieved the best performance, followed by CGMF-BA in second place and CGMF-A in third. The 

results also shows that our proposed model, CGMF-BGA, outperforms all baselines in both average 

recall and nDCG metrics for every recommendation task. The performance improvement increases as the 

N recommendation size increases.  

 

               (a)                (b) 

Fig 8. Average recall for CGMF-BGA and baselines on test set in top-N recommendation tasks. 

Here we also summarized the experimental figures in Table 3 and Table 4 for average recall and 

nDCG metrics, respectively. We conducted a one-sample t-test and set the confidence level at 95%, thus, 

a p-value < 0.05 indicates that the proposed model CGMF-BGA has statistically significantly higher 

average recall or nDCG than the baseline. In such cases, we mark a “*” beside the figure of the baseline. 

Additionally, we use boldface figures to report the proposed model if it outperforms the baseline. 

According to the summarized figures, our proposed model CGMF-BGA outperform all baselines, 

including our alternative CGMF-A and CGMF-BA models, in terms of average recall and nDCG across 

all recommendation tasks. Although there is no significant difference between CGMF-BGA and CGMF-

BA. However, if we focus on nDCG metric and compared with CNNA model and other baselines in top-

10 to top-30 recommendation tasks, the obtained improvements are statistically significant. For the top-

40 and top-50 tasks, the CGMF-BGA model achieves statistically significantly higher average nDCG 

compared with the proposed CGMF-A. These results clearly reveal that the item’s co-view relationship 

is an important factor for performance improvement. The co-view relationship, embedded using GCN 

and integrated with the features constructed using CNN, SBERT, and latent factors, can improve the 

recommendation system. This model integration is effective in helping users find their truly preferred 

items among the pool of candidates. 

 

Table 3. Summary of average recall and significance for CGMF-BGA and the baselines. 

Avg. Recall 

Model Top-10 Top-20 Top-30 Top-40 Top-50 

Random 0.00954 * 0.01788 * 0.03013 * 0.03778 * 0.04742 * 

Top-Popular 0.00956 * 0.02192 * 0.03166 * 0.03605 * 0.04933 * 

GMF 0.03707 * 0.06509 * 0.08575 * 0.10771 * 0.12772 * 

MLP 0.05239 * 0.09384 * 0.13328 * 0.17542 * 0.20600 * 

NCF 0.05173 * 0.09373 * 0.12894 * 0.16197 * 0.18978 * 

LDA 0.05301 * 0.11240 * 0.14488 * 0.17364 * 0.19569 * 

CTM 0.06425 * 0.12334 * 0.15157 * 0.17863 * 0.20319 * 

CNNA 0.08042 0.12300 * 0.15730 * 0.18562 * 0.19881 * 

CGMF-A 0.08336 0.14191 0.16836 * 0.18851 * 0.20788 * 

CGMF-BA 0.10955 0.16150 0.19628 0.22354 0.24610 

CGMF-BGA 0.11027 0.16768 0.21880 0.25838 0.29284 

* indicates that the performance difference between CGMF-BGA and the baseline is statistically significant. 
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Table 4. Summary of average nDCG and significance for CGMF-BGA and baselines. 

Avg. nDCG 

Model Top-10 Top-20 Top-30 Top-40 Top-50 

Random 0.00464 * 0.00670 * 0.00930 * 0.01078 * 0.01253 * 

Top-Popular 0.00401 * 0.00732 * 0.00893 * 0.00973 * 0.01254 * 

GMF 0.01815 * 0.02530 * 0.02971 * 0.03389 * 0.03753 * 

MLP 0.02672 * 0.03714 * 0.04553 * 0.05367 * 0.05906 * 

NCF 0.02483 * 0.03532 * 0.04180 * 0.04920 * 0.05409 * 

LDA 0.02528 * 0.04000 * 0.04683 * 0.05246 * 0.05655 * 

CTM 0.02593 * 0.04205 * 0.05175 * 0.05639 * 0.06261 * 

CNNA 0.03598 * 0.04932 * 0.05518 * 0.06177 * 0.06536 * 

CGMF-A 0.03860 0.05338 0.05888 0.06314 * 0.06664 * 

CGMF-BA 0.05101 0.06435 0.071568 0.07715 0.08109 

CGMF-BGA 0.05140 0.06587 0.07667 0.08455 0.09075 

* indicates that the performance difference between CGMF-BGA and the baseline is statistically significant. 

5. DISCUSSIONS AND CONCLUSIONS 

In this work, we propose a novel attentive hybrid filtering network (AHFN) to model three types of 

data: user-item behavior, word and sentence-level contextual information, and item-item co-view 

relationships. Specifically, our proposed model can be classified into three types: (1) the integration of 

latent factors for users and items constructed using a latent factor model (LFM), along with word-level 

contextual item features using a convolutional neural network (CNN), denoted as CGMF-A; (2) CGMF-

A combined with sentence-level item features constructed using sentence bidirectional encoder 

representations from transformers (SBERT), denoted as CGMF-BA; and (3) CGMF-BA integrated with 

the encoded item co-view relationships using an undirected graph structure and graph convolutional 

network (GCN), denoted as CGMF-BGA. The attentive user features in all three types are constructed 

based on item features related to the user's recent behavior. Finally, preferences for items are predicted 

for users using user-item features and a prediction network. 
The experiments are conducted on data collected from an online news website in Taiwan, and 

performance is compared with several baselines for top-n recommendation tasks. The experimental 

results show that CGMF-A outperforms collaborative filtering models that are constructed using only 

interaction data. However, such improvement is not strong enough when compared to NCF, which has 

the capability to model both linear and non-linear user behavior, or to CTM and CNNA, which model 

user behavior and contextual information together. The results demonstrate the effectiveness of CGMF-

BA, which integrates word-level and sentence-level item features with latent factors. On the other hand, 

on the test set, the CGMF-BA model outperforms Random, Top-Popular, GMF, MLP, NCF, and LDA in 

terms of average Recall and nDCG in the top-10 to top-30 recommendation tasks, with improvements 

that are statistically significant. 

For the CGMF-BGA model, which uses item features constructed with SBERT and a 3-layer GCN, 

the performance on the validation set outperforms models that make recommendations using GCN only. 

The results show the effectiveness of integrating latent factors, word-level and sentence-level contextual 

features, and encoded item-item co-view relationships. On the test dataset, CGMF-BGA outperforms all 

baselines in terms of average Recall and nDCG in the top-20 to top-50 recommendation tasks, and the 

experimental results are statistically significant. The findings also reveal the effectiveness of the proposed 

model, demonstrating that latent factors, word-level and sentence-level contextual features, and encoded 

item-item co-view relationships are important factors for improving the performance of news 

recommendation systems. 

There are several suggestions for future study directions: (1) In this work, the proposed model was 

only evaluated on one collected news dataset. It would be beneficial to further confirm the performance 

of the proposed model on additional public datasets to explore the model's application areas. (2) Although 

several baselines were compared in the experiments, some modern models, such as UltraGCN and 
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DHGCN, were not considered. Understanding the performance differences between the proposed model 

and these modern models would be valuable. (3) In this work, we modeled the item-item co-view 

relationship using GCN. It would be an interesting topic to explore whether it is possible to model a 

knowledge graph that represents the relationships between items and to incorporate such relationships 

with GCN to enhance recommendation performance. 
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