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Software reliability is a fundamental pillar for ensuring the quality and dependability
of software systems. Traditionally, software errors were commonly associated with coding
mistakes. However, recent insights have shed light on the fact that human error is not static;
rather, it is influenced by dynamic elements such as the processes of learning and the impact
of fatigue. This study presents an approach that factors in the fatigue experienced by soft-
ware testers during the debugging process, resulting in more reasonable software reliability
growth models (SRGMs). By integrating S-shaped learning curves alongside an exponential
function to model tester fatigue, the proposed models offer a more realistic representation
of reliability growth over time. The models’ quality, predictive capabilities, and accuracy
are assessed to other existing models using three established fit criteria and two commonly
used datasets. By including the fatigue component into SRGMs, a more comprehensive
representation of software reliability dynamics is achieved. The inclusion of this feature en-
hances the precision and prediction capabilities of the models, therefore facilitating a more
realistic evaluation of the long-term reliability of the software system.
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1. Introduction

In recent years, the advancement of technology has seamlessly integrated software
systems into every aspect of human life. It’s challenging to fathom even a single day
without relying on software. This omnipresence of software has revolutionized daily
routines, reshaping lifestyles. Its influence spans across individuals and organizations
alike.

Software’s widespread influence is clear in the variety of applications it powers: from
smart devices that streamline everyday tasks to traffic light systems that manage road
safety. With the growing demand for software, developers face increasing pressure to
deliver highly reliable products. From initial concept to market launch, ensuring software
reliability is crucial in a competitive environment. Developers must rigorously evaluate
and test their products’ reliability, as this quality is essential before presenting the software
to a discerning and competitive market.
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In software development, reliability refers to the software’s ability to function seam-
lessly within a specified time frame and under defined conditions [1, 2, 3]. Assessing
software reliability involves a mathematical analysis that examines how factors like the
number of detected faults or successfully fixed issues align with the testing duration. Re-
searches like [4, 5, 6, 7] have explored this area, leading to the development of software
reliability growth models (SRGMs). Identifying the “best” SRGM is a challenging task
due to the numerous factors involved in these models.

Debugging is a fundamental part of the software development process, focused on
identifying and fixing errors that can compromise software reliability. Although achieving
perfection is nearly impossible, the goal is to minimize bugs and produce a high-quality
product. Debugging is rarely simple, as it often involves navigating the complexity of
modern software systems. Effective debugging relies on a careful balance of various
factors, one of which is the learning curve of software testers. This refers to how quickly
testers familiarize themselves with the software’s code, logic, and behavior. As their
understanding deepens over time, testers become more adept at handling the complexities
of debugging.

In this complex environment, one significant challenge is the subtle yet impactful
role of fatigue. Extensive research has shown that fatigue has a strong influence on cog-
nitive performance [8, 9]. Studies indicate that prolonged work without breaks can lead
to diminished focus, as fatigue causes a gradual decline in attention. This happens due to
reduced dopamine levels in the brain, a chemical critical for maintaining concentration.
This decline follows an exponential decay pattern over time, continuing until a critical
threshold is reached [7].

Debugging requires intense focus and concentration, as developers must meticu-
lously review code, spot patterns, and find solutions. Fatigue can severely impact this
focus, increasing the risk of missing critical details or making mistakes. The debugging
process can be lengthy and challenging, particularly when dealing with complex issues.
The relationship between learning and fatigue is evident in this context. Novice develop-
ers or those unfamiliar with the codebase often experience greater fatigue as they invest
more effort in understanding the code and finding issues. On the other hand, fatigue
can hinder the learning process, making it harder for developers to grasp new concepts
or gain deeper insights into the software. This interaction between learning and fatigue
highlights the challenges developers face in achieving effective debugging and ensuring
reliable software.

Based on these insights, this research explores a new dimension of debugging: the
combined effects of learning and tester fatigue. It introduces two SRGMs that incorporate
both the learning rate and the impact of fatigue on testers. The study then performs a
thorough comparative analysis, evaluating these new models against existing SRGMs to
assess their effectiveness.

The paper is organized as follows: Section 2 provides a detailed review of the exist-
ing literature. Section 3 outlines the fundamental definitions necessary for understanding
the study. Section 4 discusses the research process, explaining the assumptions and for-
mulation of the mathematical model. In Section 5, an overview of the datasets, models,
and criteria used for comparison is presented. The study’s findings are discussed in Sec-
tion 6. Finally, Section 7 wraps up with a summary of key findings and suggests directions
for future research.
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2. Literature review

Historically, SRGMs have primarily been based on non-homogeneous Poisson pro-
cess (NHPP). Additionally, some researchers have investigated alternative approaches,
such as Bayesian and Markov models, as well as machine learning techniques [10, 11, 12,
13]. The domain of reliability modeling is broad, featuring a wide array of models based
on varying assumptions and techniques. For instance, Goel and Okumoto [4] introduced
the GO model, a stochastic approach for reliability evaluation based on NHPP, which uses
an exponential curve to represent the failure occurrence pattern.

Several researchers have explored the learning effect of software testers when calcu-
lating software reliability. As testers gain experience, their ability to detect and resolve
faults improves over time, which can significantly influence the accuracy of reliability
models. This learning effect often leads to higher fault detection rates in the later stages
of testing. Ahmad et al. [3] proposed a model that integrates the exponentiated Weibull
testing-effort function into inflection S-shaped SRGM based on NHPP. Roy et al. [14]
introduced an S-shaped SRGM which accounts for imperfect debugging with an expo-
nentially increasing fault content function and an S-shaped fault detection rate. Zhang et
al. [15] proposed a software reliability model that integrates a constant fault removal effi-
ciency (FRE) and fault introduction rate. The model reflects the learning process of soft-
ware developers through an inflection S-shaped curve. Samal and Kumar [16] introduced
an SRGM that accounts for the removal efficiency of testers, while also incorporating the
learning effect through an S-shaped function. Iqbal et al. [17] introduced an SRGM that
incorporates two types of learning effects: autonomous learning and acquired learning.
Al-Turk and Al-Mutairi [18] proposed a model that incorporates the one-parameter Lind-
ley distribution, integrating learning effects. Wang and Zhang [19] proposed a model that
accounts for the continuous learning required during the open-source software testing pro-
cess due to its iterative development. Chiu [2] proposed SRGMs incorporating multiple
change-points in the software testing and debugging process, considering time-dependent
learning effects. Yaghoobi and Leung [7] examined the influence of learning and fatigue
on software testing errors. They introduced two SRGMs: one utilizing the hyperbolic
tangent function to capture the effects of learning, and the other applying an exponential
function to represent fatigue during the testing process.

2.1 Contributions

From the aforementioned discourse, it’s evident that while the learning effect has
been acknowledged in numerous studies by S-shaped functions, these endeavors have not
comprehensively encompassed all potential factors related to human resources, such as
fundamental abilities, learning efficiency, negligence by testing staff, and fatigue. In this
context, the present study aims to make a distinctive contribution by addressing these
previously overlooked dimensions. Specifically, an exponential curve is introduced to
encapsulate the influence of fatigue while incorporating two S-shaped learning curves to
accurately model the learning process of testers.
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3. Preliminaries

i) NHPP: A computational process N(t) is categorized as NHPP with an intensity
function λ (t) when its behavior can be described by a Poisson distribution with a
mean value function m(t), applicable for t ≥ 0. Mathematically,

Pr{N(t) = k}= [m(t)]k

k !
e−m(t), k = 0,1,2, · · · (1)

where m(t) = E [N(t)] .

ii) Software reliability: R(x/t) is the likelihood that no software fault will be found
between the times (t, t + x), assuming that the prior fault occurred at time t, where
t ≥ 0, x > 0. Mathematically,

R(x/t) = e−[m(t+x)−m(t)]. (2)

4. Model development

4.1 Notations

Table 1 presents the symbols and abbreviations used throughout the study.

Table 1. Notations
m(t) Projected number of software faults resolved by time t

N Total number of faults in the system
f (t) Rate of fatigue accumulation
b(t) Rate of fault identification
β Parameter influencing the learning process
b Initial fault identification rate
w Parameter related with the fatigue function
s Scaling coefficient for the fatigue function

m0 Baseline value for fault rectification

4.2 Assumptions

The proposed model is based on the following key assumptions:

1. The software failure process follows NHPP, accounting for the time-varying nature
of fault occurrences.

2. The fault detection process reflects a learning curve effect, where testers become
more efficient as they gain experience over time.

3. Tester fatigue gradually impacts the fault detection rate, diminishing the efficiency
of the testing process as fatigue builds up.
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4. All identified faults are assumed to be completely resolved upon detection, with no
partial fixes or residual issues.

5. An initial testing phase, often a pre-testing analysis, is carried out to correct basic
issues, improving the effectiveness of the formal testing that follows.

4.3 Formulation

Taking into account assumptions 1, 2, 3, and 4, an SRGM that incorporates the NHPP
framework can be formulated as follows [7]:

dm(t)
dt

= (b(t)− f (t))(N −m(t)) . (3)

Assumption 2 suggests that the fault detection process follows a learning curve,
where testers become more proficient as they gain experience over time. To repre-
sent this behavior, two different functions are introduced. The first function, b1(t) =
b/

(
1+βe−bt

)
, models an initial rapid improvement in detection efficiency as testing

progresses. This captures the early learning phase, where testers quickly enhance their
skills, leading to a sharp rise in fault detection rates. Over time, the curve levels off, indi-
cating that efficiency gains begin to slow down as testers reach their maximum potential.
The second function, b2(t) = b2t/(1+bt), shows a different trend. In the early stages,
the increase in efficiency is more gradual compared to the first function. However, as time
goes on, the learning process accelerates, resulting in a more significant improvement in
detection rates later in the testing phase. This function reflects a scenario where testers
take longer to gain momentum but eventually exhibit a faster rate of efficiency growth. By
incorporating these two learning functions, the proposed model effectively captures dif-
ferent learning behaviors—one where testers adapt rapidly and then stabilize, and another
where learning is slower initially but accelerates over time.

Assumption 3 highlights the influence of tester fatigue as a critical factor affecting
the fault detection rate, ultimately reducing the overall effectiveness of the testing process.
To address this, a fatigue factor is incorporated, modeled by the function f (t) = sewt . This
function captures the progressively growing fatigue over time, with its exponential form
reflecting the increasing impact that fatigue has on testers as the testing period extends.
As fatigue builds up, it gradually diminishes the testers’ ability to maintain high fault
detection efficiency. Here, s represents the scaling coefficient, which determines the initial
intensity of fatigue when the testing process begins. A higher s value indicates that testers
experience fatigue more rapidly from the outset, while a lower s suggests a slower onset
of fatigue. The parameter w governs the rate of fatigue accumulation over time. A larger
w value implies that fatigue increases more rapidly, leading to a faster decline in fault
detection efficiency, whereas a smaller w value indicates a slower accumulation of fatigue,
allowing testers to sustain their efficiency for a longer duration.

Now, Eq. (3) will have two parts, Eq. (4) and (5).

d m1(t)
dt

=

(
b

1+βe−bt − sewt
)
(N −m1(t)) . (4)

d m2(t)
dt

=

(
b2t

1+bt
− sewt

)
(N −m2(t)) . (5)
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As stated in assumption 5, an initial pre-analysis phase is carried out to correct fundamen-
tal errors and minor glitches, improving the efficiency of the formal testing process that
follows. To account for this, the model assumes that:

m1(0) or m2(0) = m0, m0 > 0. (6)

Now, solving Eq. (4) and (5) using Eq. (6),

m1(t) = N − e
s (et w −1)

w (N −m0) (β +1)
β + ebt . (7)

m2(t) = N − e
−

s− set w +bt w
w (N −m0) (bt +1) . (8)

5. Experimental design

5.1 Model evaluation

The potency of a model is assessed by examining its advantages, limitations, and
accuracy. The performance analysis of the proposed models are compared with several
existing SRGMs, as outlined in Table 2.

5.2 Dataset

To evaluate the prformance of the proposed models, data from two versions of the
Tandem computer project is used [16]. These versions are labeled release-1 and release-
2, with their data presented in Table 3 and Table 4, respectively. Over a 20-week period,
release-1 had a total of 100 reported faults. The effort utilization for the first release was
10,000 units. In comparison, release-2, tested over 19 weeks, reported 120 faults. The
effort utilization for the second release was 10,272 units. These datasets are used by var-
ious authors [5, 16, 7]. These datasets represent real-world fault detection and debugging
efforts over time, capturing the cumulative number of faults detected during each testing
week. These reflect a controlled system environment where systematic debugging and
reliability assessment were conducted.

Although various authors have utilized these datasets, they are subject to certain limi-
tations. The datasets primarily focus on fault detection trends over time without explicitly
considering factors such as varying testing team sizes, adaptive debugging strategies, or
dynamically changing system environments. However, to evaluate the performance of
the proposed model, these datasets are chosen as they are well-established in software
reliability research. It is important to emphasize that no single SRGM can be universally
optimal for all scenarios, as different software systems exhibit unique fault detection and
debugging characteristics.

5.3 Model fit evaluation criteria

To evaluate the accuracy of the proposed models, three standard metrics are used:
mean squared error (MSE), mean absolute error (MAE), and the coefficient of determina-
tion (R2). Various authors have used these metrics in their works [5, 11]. MSE measures
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Table 2. SRGMs considered for comparison

Sl.No. Model m(t) Reference

1. GO model N
(
1− e−bt

)
[4]

2. DSS model N(1− (1+bt)e−bt) [20]

3. ISS model
N(1−e−bt)

1+βe−bt [21]

4. ETC model
N
β

(
eβk

(
1−e−btφ

)
−1

)
[22]

5. TC model N
[
1−

(
β

β+(at)b

)a]
[23]

6. WFRF model N
p−α

(
1− e−bβ (p−α)tk

)
[24]

7. SU model N

1− β

β + ln
(

a+ebt

1+a

)
α

[25]

8. NFRE model
N
ϕ

[
1− 1+β

(β + ebt)
ϕ

]
[26]

9. Proposed model-1 (P1) N − e
s (et w −1)

w (N −m0) (β +1)
β + ebt Equation 7

10. Proposed model-2 (P2) N − e
−

s− set w +bt w
w (N −m0) (bt +1) Equation 8

Table 3. Release-1 dataset
week C.F. week C.F. week C.F.

1 16 8 58 15 96
2 24 9 69 16 98
3 27 10 75 17 99
4 33 11 81 18 100
5 41 12 86 19 100
6 49 13 90 20 100
7 54 14 93 - -

Table 4. Release-2 dataset
week C.F. week C.F. week C.F.

1 13 8 75 15 112
2 18 9 84 16 114
3 26 10 89 17 117
4 34 11 95 18 118
5 40 12 100 19 120
6 48 13 104 - -
7 61 14 110 - -

the average squared difference between predicted and actual values, where a lower MSE
indicates better accuracy. MAE quantifies the average absolute error, with lower values
signifying improved predictive performance. R2 assesses how well the model explains
the variance in the observed data, where higher values indicate a better fit.

6. Results and discussion

When evaluating the software reliability models for release-1, Table 5 clearly indi-
cates that models P1 and P2 outperform the others. Model P1, in particular, achieves the
lowest MSE at 1.7581, the smallest MAE at 0.7439, and the highest R2 value of 0.9984.
These metrics collectively demonstrate P1’s superior accuracy in predicting cumulative
failures. Model P2 also performs well, though slightly behind P1. It ranks second with an
MSE of 5.0395 and an MAE of 1.5007, making it a strong alternative. P2’s R2 value of
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0.9952, while slightly lower than P1’s, still indicates excellent predictive capability. The
evaluation extends beyond numerical metrics, as shown in Figure 1 and Figure 2. Figure
1 provides a visual comparison of the actual and predicted cumulative faults across all
ten SRGMs for release-1, with P1 closely tracking the observed data. Similarly, Figure
2 presents a boxplot, where P1 shows the least variation, indicating that its predictions
are consistently close to the actual outcomes. P2 follows as a strong second, with slightly
more spread in its predictions.

For release-2, the evaluation of software reliability models reveals that P1 and P2
are superior to the other models, as shown in Table 6. Model P1 excels with the lowest
MSE of 3.9338, the smallest MAE of 1.2596, and the highest R2 value of 0.9979, demon-
strating its exceptional accuracy in predicting cumulative failures. Model P2 also per-
forms admirably, with the second-lowest MSE of 4.8543 and the second-smallest MAE
of 1.4319. While its R2 value of 0.9972 is slightly lower than that of P1, it still reflects
strong predictive performance. Further insights are provided by Figures 3 and 4. Figure
3 shows that P1’s predictions closely match the actual cumulative failures, while Figure 4
highlights that P1 exhibits minimal spread in the boxplot, indicating consistent accuracy.
P2 also demonstrates strong performance, with only a slight increase in spread compared
to P1, affirming that both models are highly effective for release-2.

Table 5. Estimation of parameters for release-1
S.N. Model Parameters MSE MAE R2

1. GO b = 0.0832, N = 133.2011 16.2257 3.1508 0.9858

2. DSS b = 0.2651, N = 103.9841 28.0626 3.1679 0.9831

3. ISS b = 0.1721, β = 1.3615, N = 109.8287 14.9372 2.9110 0.9919

4. ETC b = 0.2281, β = 3.6248, φ = 0.8573, k = 0.5308, N = 74.5108 17.8475 2.8219 0.9895

5. TC b = 1.1102, a = 0.0912, α = 39.1723, β = 36.1021, N = 119.8553 14.6305 2.7226 0.9873

6. WFRF b = 0.0562, α = 1.5773, β = 1.7843, p = 2.3408, k = 1.1093, N = 90.5226 15.5297 2.7015 0.9874

7. SU a = 0.7161, b = 3.0966, α = 3.0371, β = 6.4381, N = 141.3354 44.1457 4.2472 0.9676

8. NFRE b = 0.1916, ϕ = 1.0614, β = 1.3112, N = 110.6624 16.3895 2.9112 0.9839

9. P1 b = 0.5353, β =−0.4117, s = 0.6398, w =−0.0752, m0 = 0.0367, N = 102.2702 1.7581 0.7439 0.9984

10. P2 b = 0.3266, s = 0.0813, w = 0.0529, m0 = 22.6325, N = 122.3659 5.0395 1.5007 0.9952

Table 6. Estimation of parameters for release-2
S.N. Model Parameters MSE MAE R2

1. GO b = 0.0615, N = 182.9517 24.5574 4.3561 0.9836

2. DSS b = 0.2417, N = 131.3989 21.5280 3.8544 0.9928

3. ISS b = 0.2534, β = 3.7784, N = 124.4452 6.7074 1.7643 0.9952

4. ETC b = 0.1561, β = 3.9217, φ = 1.0772, ,k = 0.5260 N = 74.8926 17.4502 3.0831 0.9949

5. TC a = 0.1025, b = 1.4552, α = 41.7413, β = 40.4027, N = 128.5296 22.4067 3.5998 0.9943

6. WFRF b = 0.0489, α = 1.5474, β = 1.2210, p = 2.2529, k = 1.4381, N = 91.2062 15.0811 2.4154 0.9936

7. SU a = 1.7804, b = 6.7509, α = 4.3357, β = 14.4449, N = 202.0216 37.6864 4.1728 0.9915

8. NFRE b = 0.2541, ϕ = 1.0321, β = 3.7784, N = 124.1792 10.3948 2.5884 0.9951

9. P1 b = 0.3395, β =−0.4426, s = 0.5173, w =−0.1473, m0 = 6.0722, N = 121.5872 3.9338 1.2596 0.9979

10. P2 b = 0.2875, s = 0.0805, w =−0.1231, m0 = 19.2409, N = 125.1794 4.8543 1.4319 0.9972
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Fig. 1. Goodness of fit plot for release-1

Fig. 2. Boxplot analysis of results for release-1

7. Conclusion and future scope

This paper introduces two NHPP based SRGMs that integrate the crucial factors
of learning and fatigue. The efficacy of these models is substantiated through rigor-
ous validation, employing real-life fault datasets obtained from Tandem computers. It
is worth noting that the existing body of research on SRGMs rarely considers both learn-
ing and fatigue, making this study particularly innovative. Throughout the comprehensive
evaluation of various models, the proposed ones consistently exhibit exceptional perfor-
mance. Beyond advancing the understanding of software reliability dynamics, these mod-
els demonstrate practical utility in real-world contexts, thanks to their unique integration
of learning and fatigue variables. Looking ahead, the future idea is to incorporate the
concept of change points and environmental factors. This will enable to evaluate the ef-
fectiveness of testers within the framework of learning and fatigue, further enriching the
practical relevance and utility of the proposed models.
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Fig. 3. Goodness of fit plot for release-2

Fig. 4. Boxplot analysis of results for release-2
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