JOURNAL OF INFORMATION SCIENCE AND ENGINEERING XX, XXXX-XXXX (2024)
DOI: XX.XXX.XXXX.XX

PowerTimestamp: Toward Global Event Ordering*

CHIH-WEN HSUEH* AND YEN-SHUO CHEN
Graduate Institute of Networking and Multimedia
National Taiwan University
Taipei, 10617 Taiwan
E-mail: {cwhsueh, d11944009} @ntu.edu.tw

In distributed systems, event ordering is a critical issue, but there is still a lack of a
complete solution. In 1978, Lamport introduced the concept of partial ordering, which
made the construction of event orderings possible based on causal relationships between
events. However, it is still unable to determine the chronological precedence for concurrent
events, and the logical clock with a different concept of time is not widely accepted. In
this paper, we propose a mechanism called PowerTimestamp to address this limitation by
constructing a comprehensive ordering for all events in an environment where an event is
earlier if it is certain time error ahead of NTP timestamp first or with higher priority such as
the estimated computing power. To reach transitivity in total ordering, the time error must
be well defined and dynamically adjusted according to the arrival time at the destination
environment. PowerTimestamp adopts the General Proof-of-Work model, invented to reach
consensus on blockchain, ensuring both trustworthiness and fairness in the establishment
of global event ordering for any event arriving in time. With PowerTimestamp, events in
distributed systems can be ordered by occurrence and synchronization can be deterministic
in time with an error of hundreds of microseconds to hundreds of milliseconds.

Keywords: PowerTimestamp, global event ordering, total ordering, partial ordering, Gen-
eral Proof-of-Work, proof-of-work, NTP.

1. INTRODUCTION

Time, as a concept, remains one of the most enigmatic and foundational elements in
human understanding. Despite centuries of philosophical debate and scientific inquiry, a
universally accepted definition of time still eludes us. Is time a linear sequence of events,
a physical dimension, or merely a construct of human perception? These questions high-
light the inherent ambiguity of time, which has far-reaching implications, particularly in
distributed systems. In such environments, where multiple nodes operate independently
and collaboratively, time is necessary for synchronization, including event ordering, ac-
tion coordinating, and consistency. However, the ambiguous nature of time introduces
significant challenges in achieving these goals.

Received March 11, 2014; revised June 20, 2014; accepted September 28, 2014.

T Corresponding author
Communicated by the editor.

2 CHIH-WEN HSUEH, YEN-SHUO CHEN

Event ordering is broadly categorized as total ordering and partial ordering, where
total ordering guarantees that all events in the system occur in the same order on all
nodes, while partial ordering only guarantees that some events are ordered with respect
to each other. It is difficult to define time precisely so as to tell exactly what time is or
how time is running. Clocks or watches are just instruments that let us feel locally that
time is running or record time easier. We might perceive time as a way to measure the
changes in the world - in other words, the sequence in which events occur. In distributed
systems, defining the order of events through time is challenging due to the absence of a
global clock that can be accessed without error. To avoid ambiguity, we call it global event
ordering for the total ordering at the destination of events that occur in distributed systems
on the Internet where the Network Time Protocol (NTP)[1] can be applicable. There may
be slightly different global event ordering at different destinations due to different arrival
times for the same event. All nodes are in the same destination if they refer to the same
event ordering. An event is ready for ordering only once after existing events arrive and
are ordered in advance. Therefore, for simplicity, late events are rejected, and the waiting
or rejection threshold is determined by the destination. Once an event is ordered, it will
not be changed by new events for total ordering and its transitivity. If the threshold is the
maximum transmission time from the occurrence to the arrival, total ordering can be done
at all destinations. Otherwise, total ordering can still be made only at each destination.
We adopted NTP because it is popular and does not need special hardware support such
as Precision Time Protocol (PTP) — IEEE 1588-2008.

Even with a local clock correction by NTP, machines run at slightly different rates,
leading to time drift, which can accumulate to minutes per day without periodic adjust-
ment. In fact, NTP servers can be polled by default with periods from 64 to 1024 seconds
to dynamically correct the local timestamp according to traffic load. It can be configured
by the client side at even slower rates. Furthermore, retrieving or correcting the time
introduces indefinite delays, meaning that absolute total event ordering is unattainable,
and only partial or causal ordering is possible, as proposed by Lamport in 1978[2] and
later called the logical clock or Lamport timestamp. Although the logical clock supports
partial order, it is not natural to what we feel on the wall clock and is not popularly im-
plemented. By employing the notion of “happening before” and incorporating a bounded
error of timestamps, clock synchronization in distributed systems becomes feasible. NTP
provides this bounded error, maintaining time accuracy within tens of milliseconds on
the public Internet and achieving submillisecond precision in local area networks under
ideal conditions. Despite the lack of global event ordering, distributed systems can rely
on centralized clocks or partial ordering for synchronization, as long as the resulting con-
flicts are acceptable. However, for events without causal relationship, such as concurrent
events, timing conflicts might not be acceptable. For systems like blockchain or Internet
of Things(IoT) with limited human interference or malicious error, achieving global event
ordering with controllable bounded errors is crucial for trustworthiness and scalability.

Through NTP correction, the timestamp of the local clock provides a possible mea-
surement to achieve deterministic global event ordering with bounded error. In other
words, if the errors are acceptable, the order can be defined by timestamps. However, if
the timestamps are not accurate enough to uniquely define the order, an additional unique
measurement is required. We assume that events need to be ordered somewhere at the
destination after they arrive. This means that the ordering might be made at some node

POWERTIMESTAMP: TOWARD GLOBAL EVENT ORDERING 3

in the destination but used later at other places. However, events can be ordered by at-
tributes before they arrive, such as occurrence or issue time. Therefore, the error is well
defined at the time of occurrence and may need to be dynamically adjusted to reach tran-
sitivity for total ordering at the destination. Moreover, it is also necessary to ensure that
the timestamp is trustworthy without tampering and that the design is feasible.

PowerTimestamp was coined with Estimable Proof-of-Work (EPoW)[3] to integrate
the local timestamp and estimated computing power, as a unique indicator and priority, for
global event ordering. The timestamp has an error, called TimeError, indicating that the
actual time (UTC) of occurrence is in the range of the timestamp minus and plus multiple
of TimeErrors for different percentage of confidence interval. The number of multiples
of standard errors is specified in the block header with 2 bits. If the number is zero, an
optional z score can be specified for the confidence interval as the fixed point number for
the Bitcoin target. Events with a PowerTimestamp arriving at the destination form event
groups and are ordered by event groups. An event group is formed with the events ordered
by priority, whose timestamp ranges overlap with the main event. The main event of the
event group is the earliest event with the earliest timestamp, the smallest TimeError, the
highest priority, and the highest identity in order. By carefully defining the way an event
group can be formed, global event ordering can be achieved.

Ordering is decided at the ready time after the events arrive; usually, the ready time
is the same as the arrival time for convenience. If the ready time can be later so that the
existing events have arrived, the global event ordering will be the same at all destina-
tions. Since ordering by priority is to compensate for time errors, it needs to be limited
to overkill. Setting the ready time properly after the arrival time might relax the overkill,
which is out of the scope of this paper. The priority of the indicator might be converted
so that it is not linear to the estimated computing power or even inverted for any consid-
erations such as energy consumption, speculation, or business model for a certain kind
of fairness. For example, if the lower estimated computing power has the higher prior-
ity, it might be fair with more inclusion, since the higher computing power already has
advantages over the earlier timestamp. However, EPoW is not efficient enough to make
PowerTimestamp feasible. Extended from EPoW, the General Proof of Work (GPoW)[4]
is an efficient and reliable proof of work that could serve as a unique indicator of the
estimated computing power. With GPoW, PowerTimestamp is trustworthy and feasible.

In this paper, we briefly describe related background in Section 2. Section 3 de-
scribes different types of PowerTimestamp design with optimized time or space in a pro-
totype, and Section 4 discusses the implementation issues in the prototype. The paper is
concluded in Section 5.

2. Background

Trust is an abstract concept and difficult to articulate. In order to design a trustworthy
timestamp, it is crucial to first understand the nature of trust and how a PowerTimestamp
is considered trustworthy. To facilitate this understanding, we first introduce blockchain
technology, which is widely considered to be inherently trustworthy. In addition, we also
briefly describe the GPoW consensus model as a means of establishing trust indicators.
Then, we briefly introduce the Network Time Protocol.

4 CHIH-WEN HSUEH, YEN-SHUO CHEN

2.1 Blockchain

In recent years, blockchain technology has attracted increasing attention from the
public. Blockchain is often associated with key characteristics such as decentralization,
immutability, transparency, and anonymity. The aspect that truly differentiates blockchain
and makes it significant is its ability to function as a trust machine. Bitcoin was a pioneer
in introducing the concept of decentralized currency by cryptography, the so-called cryp-
tocurrency. The implementing technology was called blockchain few years after Bitcoin
was coined. The key model that supports decentralized systems and statistically reaches
consensus within a specific time frame is Proof-of-Work (PoW)[5]. The PoW model in-
volves finding a random number, the so-called nonce, and embedding it within a block
header as input to a hash function. If the generated hash value is lower than or equal to the
target value set by the system, called valid, the individual who found the nonce is deemed
to have completed a certain amount of work and might receive a reward, the so-called
Proof-of-Work and mining.

By the SHA-256 hash function used in Bitcoin, it is very unlikely that one will de-
termine in advance who will receive the next mining reward. Using a cryptographic hash
function such as SHA-256, a small change in the input will greatly change the output.
Therefore, the nonce in the block header need not be random to make the hash value ran-
dom enough with little collision. This randomness introduced by SHA-256 ensures a level
of fair competition within the Bitcoin network. Increasing computing power becomes a
means to obtain greater rewards, since trying more nonces in each round of mining in-
creases the likelihood of finding a valid nonce. The fairness of Bitcoin makes people
think of it as a trustworthy system in the belief that the more work, the more reward.
However, it still lacks clear metrics to quantify the level of trust it provides. There are
many other consensus models, e.g. Proof of Stake(PoS). Despite the energy consumption
problem, PoW is still the most reliable model for blockchain, with the largest market since
lunching.

2.2 General Proof-of-Work (GPoW)

Based on PoW, EPoW, the US patent[6], records the individual two nonces of the
highest and lowest hash values to estimate how many trials of nonces are in each round of
mining as an indicator of the estimated computing power of the individual mining nodes.
Extended from EPoW, GPoW, the ROC patent[7], is also estimable. The objective is
to find the first m, the conservative GPoW model, or the best m, the aggressive GPoW
model, valid nonces such that their hash values, individually, were lower than or equal
to the target value no later than reaching the maximum number n, of nonce trials. The
value of GPoW is the mean of the m hash values. The smaller GPoW indicates the higher
estimated computing power. It is very unlikely that you have the same GPoW value. If
it does happen, we can leave it to users to decide which one wins, usually by the object
ID, the hash of block header, or just tie. Statistically, conservative and aggressive models
are shown to be equivalent with the same probability density function (PDF), and so is
the cumulative distribution function (CDF). Since the random variable of GPoW is in the
beta distribution, the behavior of GPoW can be described in simple formulas of m and
n to adjust the behavior of the system. Following the definition of PoW, a GPoW also
stands for the information sent to receivers for verification.

POWERTIMESTAMP: TOWARD GLOBAL EVENT ORDERING 5

The coefficient of variation (CV), defined by the ratio of standard deviation (square
root of variance) to mean: CV = Yaiance ooy he used as a trust indicator C = 1 — CV.

To make it simple, by adopting conlggr\l/ative GPoW, let the number of maximum trials
n, be m, and the target value be m’il . For example, for m in [1, 2, 3, 5, 10, 1000], the
trust indicator C corresponds to specific values: [33.3%, 57.1%, 69.2%, 80.6%, 90.0%,
99.9%]. That is to say, theoretically, trying 1000 nonces, the corresponding output value
represented by the mean of hash values is trustworthy in the long run with a trust indicator
of 99.9% or the coefficient of variation is 0.1%. If only 10 nonces are tried, it can reach
90%. In this paper, more than 90% or 1000 is considered high and less than 10% or 10 is
considered low. That means GPoW is trustworthy, efficient, and feasible. When m is 1,
GPoW behaves like Bitcoin, but the trust indicator is only 33.3%. Note that Bitcoin might
try nonces for more than 10%° times in a round of mining to reach enough security. Given
n and m in GPoW, we can always find a target value to satisfy some system need, such as
the successful rate of building a GPoW or mining a block in a blockchain. However, the
trust indicator would change accordingly and need a double check. If some configuration
conflicts or security concerns arise, the use of a low target value to protect tampering
might be replaced by an additional encryption mechanism on the GPoW or embedded
in another protecting system such as blockchain. This is beyond the scope of this paper.
With estimable computing power and flexible mathematic adjustment, GPoW can avoid
increasing energy competition like PoW used by Bitcoin while maintaining an even higher
level of security.

2.3 Network Time Protocol

Network Time Protocol (NTP) is a protocol designed to synchronize computer sys-
tem clocks. Coordinated Universal Time (UTC) is based on International Atomic Time
(TAI), which is a weighted average of hundreds of atomic clocks around the world. UTC
is within about one second of mean solar time at 0° longitude, the currently used prime
meridian, and is not adjusted for daylight saving time. The goal of NTP algorithms is
to minimize both the time difference and the frequency difference between UTC and the
system clock. When these differences have been reduced below nominal tolerances, the
system clock is said to be synchronized with UTC. It operates within a client-server ar-
chitecture, where time-stamped packets are exchanged between the client and the server
to determine the time error or offset between the two machines. This offset information is
then used to adjust the system clock on the client machine. To achieve reliable time syn-
chronization, a client typically connects to three or more servers simultaneously. Using
sophisticated algorithms, NTP evaluates and filters potential sources of misleading time
information. This ensures that accurate time synchronization is maintained even if one or
more servers become unavailable or even provide incorrect data. The error of timestamps
in a distributed system can be robustly estimated in a given confidence interval[8], even
if there are outliers from malicious attackers. With Network Time Protocol (NTP)[9], it
can usually maintain the time error to within tens of milliseconds over the public Internet,
and it can achieve a better accuracy than a millisecond in local area networks under ideal
conditions. In addition, asymmetric routes and network congestion can cause errors of
100 ms or more[10].

In RFC 5905 (NTP4 Specification), time-related factors such as timestamp, offset,

6 CHIH-WEN HSUEH, YEN-SHUO CHEN

NTP servers PowerTimestamp
00 ®
1
2 a8 |

Transmission

Sl

. -_—

Fig. 1. The system architecture of NTP and PowerTimestamp.

delay (round trip), jitter (an estimator of offset), wander (oscillator frequency stability),
etc. are clearly specified with simple formulas. Since timestamps are synchronized or cor-
rected in an open network with open frequencies, the protocol and formulas help to bound
the errors but still cannot support total ordering. The error is bounded because the servers
are hierarchically connected with limited access, usually by mainly local machines. The
event closer to the servers thus has more accurate timestamps. Using the capabilities of
NTP, PowerTimestamp seals the events locally and can determine the reliable total order-
ing of events at the destination, ignoring errors in between as long as they arrive and are
accepted within delay.

3. PowerTimestamp

In this section, we will describe the design and implementation of PowerTimestamp.
m still represents the number of valid nonces selected in the GPoW, and n represents the
maximum number of trials in which users attempt to find the nonces in a GPoW. If mn in
the PowerTimestamp block header is O, m and n are defined locally by users; otherwise,
they are defined by participants. As shown in Fig. 1, PowerTimestamp takes advantage
of NTP where local computers connect to NTP servers to correct the local clock. Starting
from the first stratum connected to accurate time sources (the atomic clock), NTP servers
can stack up to 15 strata. Depending on the stratum on which the server resides and how
close the local machine is connected to the server, the timestamp synchronized might
have differences ranging from a few microseconds to hundreds of milliseconds. On the
Internet without traffic jam, usually, the round-trip latency is around tens of milliseconds.
The FirstHop stands for the potential first hops of computers that support PowerTimes-
tamp on the way to the destination, similar to the eight outbound neighbors collected for
broadcasting on the Bitcoin network. The round-trip latency is measured and maintained
between the FirstHop and local machines. At FirstHop, the PowerTimestamp will be ver-
ified and rejected to be sent further to the destination if it is a potential faking in time.
Before using PowerTimestamp, users need to set up the requirement of the trust indicator,

POWERTIMESTAMP: TOWARD GLOBAL EVENT ORDERING 7

the time for the last trial, the size of PowerTimestamp, and the security preference, etc.
The requirement is usually requested from the destinations or negotiated in advance by
all participants.

Using GPoW, as PoW by definition, a PowerTimestamp should take much more time
in construction than in verification. However, if m is large, it might take too much network
bandwidth and transmission time. Therefore, there are different types of PowerTimestamp
with optimized time or space. All types can be compared with each other in the ordering
of events if the participants agree regardless of the time or space issue. There might
be different versions of PowerTimestamp, and only the same version can be compared,
with the same GPoW model and priority scheme. The configuration will be fixed prior
to the construction stage. Some requirements may not be met because the system is
changing dynamically. However, the determinism of event ordering should be kept in all
circumstances. After the construction stage with the best effort, the PowerTimestamp can
be sealed in a GPoW. Then, the PowerTimestamp can be transmitted to any destination
simultaneously or repeatedly one after another for verification and ordering.

3.1 Design

To construct a reliable timestamp, a straightforward design for PowerTimestamp can
integrate the physical timestamp obtained from the computer into the GPoW with a set of
m nonces. Most computers today have a high-resolution clock of nanoseconds. Although
NTP can be with a precision of hundreds of picoseconds or higher[10], different from the
32-bit Unix-type timestamp in Bitcoin, PowerTimestamp has a 64-bit unsigned timestamp
in nanoseconds following the standard C++ library. The TimeError takes an unsigned
one-byte integer in milliseconds, and the maximum value is 255. If TimeError is 0, we
can directly compare the timestamp, and the unique indicator is ignored. Following the
same data type used in Bitcoin, the data type of nonces in GPoW is normally also a 32-bit
unsigned integer. The nonce is tried starting with O incremented by 1. If a nonce is found,
the next nonce starts on the nonce plus 1. For space concern, one type of PowerTimestamp
can be any size s from 1 to 31, with a size of s x i bits for the ith nonce, Nonce;. The
Nonce,, contains all previous nonces. The next nonce is tried starting with O of the s bits
attached to the least significant end of the previous nonce, still incremented by 1. For
this type to find a successful GPoW, backtracking of iterating previous nonces might be
needed. If no nonce can be found even with backtracking, we can update the timestamp
to try all over again. We can increase the target value to decrease the time it takes to
construct a PowerTimestamp. A PowerTimestamp should be constructed in a bounded
time after its timestamp. The size field of version in the block header is set to O, if the
PowerTimestamp accepts any number of MTU (maximum transmission unit, 1500 bytes
in Ethernet). The size can be up to 15 MTUs.

For the different types of PowerTimestamp, the timestamp can be verified by any of
the nonces transmitted. However, if the target value is not set low enough, it might be
too easy to reconstruct one, i.e. it is not secure. Usually, the successful rate of a GPoW
is set to high to allow PowerTimestamp to be constructed easily in time. If m is not too
high, it is still possible to find a target value for security purposes. Otherwise, the trust
indicator or m should be decreased. If security is a concern, the PowerTimestamp must be
signed with the Public Key Infrastructure before transmission. After verification at each
destination, the PowerTimestamp information can be retrieved, if necessary, for a secure

8 CHIH-WEN HSUEH, YEN-SHUO CHEN

and intact comparison. We can ensure that the timestamp is in the moment, close to UTC,
when the PowerTimestamp is constructed in a bounded error of time.

Setup Construction Transmission Verification
PowerTimestamp PowerTimestamp PowerTimestamp PowerTimestamp
PreviousBlockHash Timestamp Timestamp
=) =)

m, n, Target, TimeError
FirstHop, Version, ... Nonce; m Nonce;

Fig. 2. The stages of simple PowerTimestamp.

3.1.1 Simple PowerTimestamp

After setup with configured parameters, as shown in Fig. 2, the timestamp and each
Nonce; can be tried in the construction stage. Then, put together in the PowerTimestamp
block header to transmit to destination for verification on each nonce. The GPoW value
can be calculated accordingly for comparison. We call it a simple PowerTimestamp.

3.1.2 Incremental PowerTimestamp

However, if m is large, the m nonces might take too much network bandwidth
and transmission time, especially when it needs to be broadcast in applications such as
blockchain. When constructing the nonces, we can keep the previous nonces in order and
attach the ith nonce at the end, as Nonce; .. ;. The nonces should be verified later in the
same way. Unlike the simple PowerTimestamp, the order of nonces matters. We call it
incremental PowerTimestamp. In this way, each nonce need not to be 32 bits. Actually,
depending on the target value, one bit is also feasible. The size of nonces can thus be
reduced to one thirty-second. However, there might be backtracking to find all the valid
nonces. It might be time-consuming. For a PoW-like model, it is usually acceptable to
take more time building for less space requirement.

3.1.3 Thin PowerTimestamp

The smaller the size of the nonces, the higher the target value needed for a successful
GPoW. The higher the target value, the less secure the system. Is there a way to take care
of both size and security? Although in GPoW, the normalized target value 1 is added for
easier analysis of beta distribution, we can ignore it in practice for security. That is, some
trials might not be valid and easier error checking might be performed. Therefore, fol-
lowing the same monotonically incremental generation of nonce for a successful GPoW,
as long as the timestamp is fixed, the m valid nonces are unique. If m is large, it is difficult
to guess in advance the value of the last nonce, Nonce,,. We can put only the last nonce,
Nonce,,, to be transmitted for verification. If verification time is not a concern, we can
reconstruct all the nonces on the destination side and verify by whether the last nonce is
the same. We call it a thin PowerTimestamp.

3.1.4 Quick PowerTimestamp

Once the timestamps for different PowerTimestamps can be verified and ordered,
the following reconstruction or verification can be skipped, and the GPoW value can

POWERTIMESTAMP: TOWARD GLOBAL EVENT ORDERING 9

be calculated later on demand. Similarly to the thin PowerTimestamp, we can add the
nonces, Nonce(1) and Nonce,,), for the smallest and the largest hash values, respectively,
to transmit for verifying timestamp first, and then form a range of GPoW value. If the
range cannot still prioritize the PowerTimestamps, we then continue to reconstruct and
find the GPoW value for ordering. We call it a quick PowerTimestamp.

3.1.5 Compressed PowerTimestamp

If m is too large so that the PowerTimestamp cannot fit the size specified in the block
header. The nonces of simple and incremental PowerTimestamps need to be lossless com-
pressed before transmission and decompressed for verification afterwards. The nonces are
m increasing unsigned integers of the same size from 1 to 32 bits. The lossless increasing
integer compression[11] has been well studied. The compression rate is data dependent
and varies greatly, even greater than 1. The compression algorithm with the best com-
pression rate is tried and specified in the version field of a byte, but the byte needs to
be excluded from construction and verification for the nonces. If no algorithm can fit to
the specified size, this would be Algorithm 0 and the last nonce would be used for the
compressing result and processed as the thin PowerTimestamp. The rest of space can be
filled with other evenly selected nonces starting from Nonce; for more security checks.
This would be Algorithm 1. The different algorithms implemented will be numbered
and updated on the to-be-released PowerTimestamp Github site. We call it a compressed
PowerTimestamp.

3.2 GPoW Issues

Since there is no mechanism like Bitcoin to reach consensus on GPoW in Power-
Timestamp, PowerTimestamp randomly chooses a node in FirstHop in the middle[8] of
round-trip latency to transmit for better security. We tested on a 64-bit Ubuntu 22.04.5
LTS with 16 GB RAM and an Intel® Core™ i7-8750H CPU, and 64 GB RAM and an
Intel® Core™ 19-12900F CPU, to construct successful thin PowerTimestamps. Both the
i7 and 19 machines behave similarly, except that i9 is faster for large cases, while i7 is
faster for small cases since the CPU clock rate of i9 changes dynamically, thus with much
more variance in time, but better performance on average.

n=1000
conservative GPoW aggressive GPoW

— —]
0.6 0.6
s 0.9375 — 0.9375

05 — 0875 o5

— ().875

— 0.8125

— 0.8125
0.4

0.75

0.75

03 06875 03

0.6875
0.625 0.625
0.2

0.2
0.5625 0.5625

0.1

05 0.1

0.5

—025 —0.25

0 -

0
2 10 100 200 300 400 500 700 900 1000 = == bound 2 10 100 200 300 400 500 700 900 1000 == == bound

Fig. 3. The GPoW mean for target 0.25 to 1.

Although the two GPoW models are statistically equivalent, they behave differently
in practice. On average for 100 rounds on the i7 machine, as shown in Fig. 3, the X axis

10 CHIH-WEN HSUEH, YEN-SHUO CHEN

is m, n 1000, the Y axis is the mean GPoW, each line represents using different target
values from 2.5 to 1, and the dashed line is the theoretical bound. The conservative model
behaves consistently for each target value after about m > 100, but far from the theoretical
bound. The aggressive model fits the theoretical bound perfectly, but looks as if there is
no difference in the different target values. However, since the hash values are very fine
with 256 bits, they are still differentiable. This is because the hash function SHA-256 is
not random enough or is too evenly distributed, and is avoiding collision for hashing. For
a “perfect random” hash function, the CV for conservative GPoW would have more slope,
and aggressive GPoW would have more difference. Note that, as m increases, with the
lowest target value first, there may not be a successful GPoW and the mean drops to zero.
No matter how m and n change, the mean value changes linearly and is bounded at 0.5.
As shown in Fig. 4, CV also performs differently when m is low. However, as m grows,
the CV is low and close to the theoretical bound, and stable enough for a trust indicator,
as is the mean for comparison. Note that the scale is not evenly distributed.

n=1000
conservative GPoW CV N aggressive GPoW CV
— —
08 —09375 ! —09375
\ —0.875 —_—
08 0.875
0.6 \ —(0.8125 —(.8125
—_—075 o 075
04 0.6875 0.6875
0625 04 0625
0o 0.5625 05625
os 02 05
— () 25 c
o o 0.25
2 10 100 200 300 400 500 700 900 1000 = == bound 2 10 100 200 300 400 500 700 900 1000 == = bound
Fig. 4. The GPoW CV for target 0.25 to 1.
n=1000
conservative GPoW time/round (ms)) aggressive GPoW time/round (ms)
— —]
0.7 07
09375 —0.9375
0.6 0875 06 0875
05 08125 0.5 0.8125
0.4 —075 04 —0.75
03 —06875 (3 —0.6875
s 0625 . 0.625
0.5625
01 o1 0.5625
(0.5 — (.5
0 0
2 10 100 200 300 400 500 700 900 1000 025 2 10 100 200 300 400 500 700 900 1000 ====0.25

Fig. 5. The GPoW constructing time for target 0.25 to 1.

As shown in Fig. 5, the conservative GPoW constructing time per round grows lin-
early with m starting from a few microseconds. The aggressive GPoW constructing time
per round starts around 0.6 milliseconds, grows slowly, and drops a little because it is
more difficult to find a better nonce after some nonces are found; the lower the target
value, the more difficult. As shown in Fig. 6, although there might not be a tight theo-
retical bound for execution time and its trust indicator, CV is lower on average as m or
n grows. However, the variance is sensitive to the load of the system, especially when
the CPU clock rate can be boosted on demand. The aggressive model might even incur

POWERTIMESTAMP: TOWARD GLOBAL EVENT ORDERING 11

conservative GPoW time/round CV . aggressive GPoW time/round CV

16 0.09
—(0.9375 —(0.9375

008

—03875
007
—08125 ¢ —0.8125
=075 005
—0.6875 004
0625 003

05625 002

05 0.01

0
2 10 100 200 300 400 500 700 900 1000 025 2 10 100 200 300 400 500 700 900 1000 ====0.25

Fig. 6. The GPoW constructing time CV for target 0.25 to 1.

more time for backtracking in constructing incremental PowerTimestamp because the lat-
est nonce might replace a previous one and these nonces are dependent, causing cascading
replacement and large variance. Therefore, incremental PowerTimestamp is only suitable
for the aggressive model when m is small. Since SHA-256 is a trusted and popular stan-
dard for its good features, such as low collision and high determinism, optimizing for
randomness might not preserve other goodness. We would better not modify it to fit the
theoretical bound or lower the variance. How to generate nonces for more random hash
values without losing good features might be the only way out and is our future work.

3.3 Global Event Ordering

With the help of the synchronized NTP timestamp and GPoW as a unique indicator,
PowerTimestamp can support global event ordering. The question is how accurate it
can be. If faking is a concern, we cannot only count on local machines and FirstHop is
the best we can rely on by randomly choosing one from the FirstHop pool to verify for
further transmission. Since the information of PowerTimestamp is sealed in GPoW, the
problem left now is how to detect potential faking in local machines. After setup, all the
PowerTimestamp configuration in block header is fixed, except those for compression.
Once all valid nonces are found, the PowerTimestamp is sent to FirstHop right away;
otherwise, it is also a potential faking. If we can estimate the duration between setting
the timestamp of PowerTimestamp and arriving with the timestamp at the FirstHop, we
might be able to detect the faking or we limit the faking in the TimeError range.

The duration before transmission includes 4 elements of constant routines, hashing
for each trial, maintenance of the first m valid nonces, and insertion of the better nonce
sometimes to replace a previous valid nonce for aggressive GPoW. Suppose that the un-
known variables for the part of average time in the constant work for each element are X,
Y, Z, and P, respectively. For possible nonce compression, we exclude and assume that
the time spent can also be estimated at FirstHop. For s successful PowerTimestamps with
target t, the duration D, ,; is

(X+Ym+2Zn')s // for conservative GPoW.
(X+Ym+Zn+ P(tn—m)F (m)logm)s // for aggressive GPoW.

, where 7’ is how. many'trials_are done,_ including valid and invalid ones, and F(m) =
Y (A =N/ N@) =0t =yr = (7)) (t)!(1—1)"" is the CDF of the

12 CHIH-WEN HSUEH, YEN-SHUO CHEN

better nonces after m valid nonces are found. Because for cases with i > m valid nonces,
only the latest one, if not the largest, and the previous m — 1 ones are kept. We use 3
simultaneous linear equations with different m to solve the 3 unknowns for conservative
GPoW. Unfortunately, few can be solved, let alone the aggressive GPoW. The solved ones
still vary a lot because the time for constant work varies due to system load, interrupt, etc.
More research and improvement can be done to approximate solutions by range arith-
metic, but this is beyond the scope of this paper. However, we believe that the execution
time and error for a fixed amount of work should be bounded for any machine.

Suppose that there is a trusted database (or blockchain) supported by manufactur-
ers or peers with the mean and variance of constructing time for different configuration
of PowerTimestamps on different machines, the estimation becomes easy by lookup or
interpolation. Moreover, in the setup stage, several PowerTimestamps with the same con-
figuration can be precomputed continually and linked in the PreviousBlockHash field of
the block header in preparation and sent separately at the same time to FirstHop for esti-
mating the construction time and transmission time by execution again or analysis, even
if FirstHop is on a different kind of machine. The information should be inserted with
care, e.g. within certain errors, to ensure accuracy in the database for future references.
In the long run of maintenance, the database should be able to provide fewer and fewer
errors in time until bounded. With this faking protection mechanism, the TimeError can
be determined and global event ordering can be possible in the accuracy of TimeError if
the following event groups can be well defined for total ordering.

3.4 Event Groups

We do not have a global clock for all events with a definite time of occurrence to form
a total ordering such that all events in the system occur in the same order on all nodes.
Total ordering has no problem of transitivity by the imaginary global clock at any node.
In reality, we assume that the events need to arrive at some destination to do ordering for
comparison. We cannot support a comparison in the sky when the events have not yet
arrived. Therefore, it depends on the arrival time. That is, the ordering might be different
at different destinations unless we wait for existing events to arrive. Moreover, for any
mechanism to replace the global clock, there might be some adjustment in ordering. The
adjustment needs to follow the transitivity law for total ordering as well. However, in
reality, we might not always reject late events. Nevertheless, events might only need to
be compared in a few shots at one destination, and no ordering needs to be kept for good.
Therefore, the design of PowerTimestamp also needs to balance cost and performance.

A PowerTimestamp is embedded in an event to form a global event ordering such
that the events are ordered only after they arrive at some destination. If the order needs to
be all the same at different destinations, it can be done after existing events arrive. In fact,
we only need to wait for half of the longest round-trip delay, which is less than 1 second
conservatively, or just reject the event late for more than 1 second. Otherwise, we need to
reach a consensus such as blockchain for the arrival time at different destinations, which
is possible with more delay, but that is outside the scope of this paper. Now the problem
left is following the transitivity law. If the law can be followed, that means new events
will not change existing ordering, late events can also be accepted for total ordering at
one destination, or the late event is the first arrived with consensus at all destinations.

Events with a PowerTimestamp arriving at a destination form event groups and are

POWERTIMESTAMP: TOWARD GLOBAL EVENT ORDERING 13

ordered by event groups. An event group is formed with the events ordered by priority
if the main event and the others are overlapped, i.e. the TimeError range (timestamp-
TimeError, timestamp+TimeError) overlaps, excluding the ends. The main event of the
event group is the event with the earliest timestamp, the smallest TimeError, the highest
priority, and the highest identity in order. Using the earliest timestamp and the highest
priority is to follow the transitivity. Using the smallest TimeError is to reduce the size of
a group as much as possible for higher accuracy. The highest identity is the lowest hash
value of events with the same priority. The event groups are formed by the events in the
same order as well. Therefore, the main event might not have the highest priority in the
group. We assume that no hash value will be the same for different events. An event is
also an event group itself. The event groups are ordered by the main event. An event
is earlier if its event group is earlier, with higher priority, or with the same priority and
higher identity in a group. Therefore, it is a strict total ordering.

PowerTimestamp(timestamp, TimeError, GPoW): a, b, ¢

a
a(2,2,L) a 1:b<a, c<b, a<c 4{{b.a}{c} b
C
b(6,3,M) b . 2:b<a a<c, b>c
a
o(7,2,H) o, Faseod b g ahic by b
time ©

0 2 4 6 8 10
Fig. 7. Event groups.

As shown in Fig. 7, a, b, ¢ are PowerTimestamps with timestamp, TimeError, and
GPoW in a 3-tuple such as (2,2,L), (6,3,M) and (7,2,H), respectively, for some events,
where H, M and L stand for high, medium and low priority as a GPoW, the smaller value,
the higher priority. Note that the ends are not included. In the basic definition of Power-
Timestamp, PowerTimestamp x is earlier if the timestamp plus the sum of both TimeEr-
rors is smaller than the other timestamp of PowerTimestamp vy, that is, the timestamp is
smaller and the range is not overlapped, or the priority is higher, denoted as x < y. For
PowerTimestamps a, b, c, the relationships of each two are b < a, ¢ < b and a < c. Any
of the two relationships violate the transitivity law as in cases 1, 2, 3 in the figure. If we
form event groups, shown in braces in order and the main event is hatted, and compare by
event groups as in case 4, the transitivity problem can be solved. However, if an earlier
PowerTimestamp a arrives later than b,c is formed as in case 5, there would be different
orderings and the total ordering might be violated. Therefore, we need to wait for existing
events to arrive, but not future irrelevant events, and form event groups with the earliest
unformed event first. An event only needs to consider joining the previous event group or
forming a new one if there are no late events. If late events are allowed, the closest event
group is chosen to join before forming a new one if no existing events are changed in the
group because the main event is replaced. The distance from an event group follows the
same order as above for the main event, except that the earliest timestamp is replaced by
the shortest distance of timestamps. Then, the total ordering can be done in global event
ordering. Now, we are ready to determine the TimeError in the next section.

14 CHIH-WEN HSUEH, YEN-SHUO CHEN

4. Implementation Issues

After theoretical design and prototype development above for PowerTimestamp,
there are still issues to be addressed for real implementation.

4.1 Trust Indicator

The theoretical trust indicator (TT) bound introduced by GPoW is simplified to allow
easy understanding of the system and initializing the configuration. The real performance
will be different, especially since we found that SHA-256 is not random enough. By 100-
round average, as shown in Table 1, for a target value greater than 0.25 and n = 1,000,
conservative GPoW TI is higher than aggressive GPoW in general, and they are still close
to the theoretical bound after m > 500, let alone the randomness of SHA-256. No matter
the target value, the trust indicators of conservative GPoW and aggressive GPoW can
reach greater than 95% for m is greater than 200 and 500, respectively. Even in m = 10,
the conservative GPoW TI still has 80.6%. For n = 100, the trust indicators are lower
than n = 1000 with the same trend in terms of the same % none greater than 95%, and
the aggressive GPoW is even lower. However, if time is an issue, the trust indicator is
still not too bad with a few microseconds per GPoW. Changing n to 10,000 and 100,000,
respectively, the trend is similar and the indicators are more accurate in terms of the same
-, with slight variation. Both GPoW models can reach higher than 95% for m higher
than 200 and 700, respectively. To reach the high-trust indicator, m must be close to n.
The larger n, the higher the trust indicator. However, it also takes roughly 10 or 100
times that time when n = 1,000. If time is not a concern, reaching 99.9% is possible for
n > 100,000. The actual building time is the most significant in using PowerTimestamp.

Table 1. Lowest TI (%) for n = 1,000, 100-round average for target 0.25 to 1.

m 10 100 200 400 500 700 900 1,000
Conservative GPoW | 80.6 93.6 952 969 972 972 97.7 98.3
Aggressive GPoW 628 8777 90.8 947 955 969 975 982
Theoretical bound 68.6 905 937 961 96.8 979 989 999

4.2 TimeError

The TimeError is the key concept defined in the PowerTimestamp that represents the
time error of any two events based on the PowerTimestamp with respect to NTP servers.
Actually, it is the time error that sets the timestamp when constructing the correspond-
ing GPOW since the timestamp is sealed afterward before verification. Suppose that the
transmission, propagation, queueing, and processing time errors to transfer the same type
of event packets with the same type of PowerTimestamp to FirstHop can be ignored, or,
with the construction time error, these errors can be detected and controlled by FirstHop
within certain percentage of the construction time. The TimeError can be set by experi-
ence, such as 10% of the construction time plus the NTP time error on the local machine,
since the trust indicator can easily be higher than 90%. We assume that the NTP time

POWERTIMESTAMP: TOWARD GLOBAL EVENT ORDERING

Table 2. The GPoW constructing time(ms) and its TI(%) for target 0.5 to 1.

n=100, m 2 10 50 90
Conservative | Time | 0.003—0.002 0.014—0.006 0.064—0.030 0.059~0.052
GPoW TI -56.8~83.2 54.1~91.1 79.1~96.3 84.6~99.3
Aggressive Time | 0.068~0.058 0.070~0.060 0.071~0.060 0.063~0.061
GPoW TI 88.6~98.9 81.2~98.5 86.8~98.2 94.8~97.2

n=1,000, m 10 100 500 900
Conservative | Time | 0.012—0.006 0.119—0.059 0.557—0.293 0.565—0.521
GPoW TI 54.5~68.3 83.0~85.8 95.0~98.3 98.5~99.0
Aggressive Time | 0.580~0.573 0.607~0.595 0.637~0.592 0.646~0.616
GPoW TI 96.6~97.6 95.4~97.5 94.5~97.2 96.9~97.7

n=10,000, m 100 1,000 5,000 9,000
Conservative | Time | 0.119—0.059 1.143—0.586 5.867—2.898 5.587—5.254
GPoW TI 73.7~87.0 96.6~98.8 98.1~99.0 98.9~99.0
Aggressive Time | 5.737~5.709 6.401~5.937 6.603~6.064 6.467~6.365
GPoW TI 98.3~99.1 98.2~98.9 98.0~99.4 98.6~98.7

n=100,000, m 100 1,000 10,000 90,000
Conservative | Time | 0.119—0.059 1.153—0.579 11.68—5.871 57.08—53.57
GPoW TI 79.1~95.1 96.9~99.1 98.1~99.2 99.3~99.6
Aggressive Time | 57.37~57.16 58.29~57.78 62.97~61.06 66.17~64.37
GPoW TI 99.4~99.7 99.4~99.7 99.3~99.7 99.4~99.4

15

—:decreasing, ~: oscillating.

error of FirstHop is the same as that of the local machine, or that the error is negligible.
As shown in Table 2, we measure the construction time of the GPoW in a range for target
values of 0.5 to 1. The conservative GPoW time decreases monotonically in the range and
that of aggressive GPoW oscillates with slight variation, as shown in Fig. 5. The variation
for target values less than 0.5 might be too large and excluded to be a trust indicator. With
m = 2, it could be negative and untrustworthy. Therefore, we suggest using those greater
than or equal to 0.5. However, if we know the event order is not a concern and there is a
grace period longer than the TimeError summation of both sides, using small n and m to
construct the PowerTimestamp faster would be a good policy to save computing power.
Or just choose the type-0 PowerTimestamp, ignoring GPoW.

As shown in Table 3, we measure the time error in the 1,000-round average in WAN
and LAN through NTP 4. The positive value means that our time is faster. Since Power-
Timestamp is used more at few shots than in a long period of time, we used the original
mean and standard deviation (SD) instead of taking the absolute values. WAN time errors
are collected from regions supported in the NTP pool, tw.pool.ntp.org. The NTP pool is a
dynamic collection of networked computers that volunteer to provide highly accurate time
via the NTP to clients worldwide. The NTP pool automatically distributes NTP servers
from the pool, so the NTP servers obtained in the same region may vary each time. In the
LAN experiment, we had five computers (node0 to node4) in our lab with 100 Mb Ether-
net. We set node0 as the NTP server and the other four machines synchronized their time
based on node0. The results did not show a significant offset from nodel to node2, node3,

16 CHIH-WEN HSUEH, YEN-SHUO CHEN

Table 3. WAN and LAN time errors(ms).

l Region\ WAN offset H Mean \ Mean(abs) \ SD \ SD(abs) ‘

Global -3.387 4.787 23.544 | 23.300
Taiwan -2.320 2.966 29.373 | 29.314
Asia 8.082 15.737 41.321 | 39.052
North America -0.859 6.958 34.788 | 34.095
Europe 7.337 9.761 19.161 | 18.046

| LAN offset [[node2 [node3 | node4 |
| nodel [[-0.138 [0.133 | 0.167 |

and node4 due to the stability of the LAN. From the results, it can be concluded that the
TimeError can be determined deterministically in tens of milliseconds. 100-millisecond
TimeError would be reasonable for most cases in the 95% or higher confidence interval
where the verification can be achieved by multiple TimeErrors, such as the z score 2.58
for 99%. If NTP servers, local machines, and FirstHop can be in a LAN, TimeError can
be submillisecond for some n, m, t in combination. The tables can be stored in public and
updated periodically for lookup at destinations to decide the type of PowerTimestamp for
local machines to follow for comparison. Suppose that the NTP servers do not change fre-
quently; the errors can stabilize soon after all. We suggest using the 1024 polling interval
in the local machine to reduce jitter and save energy.

4.3 Priority Scheme and Rewarding

Bitcoin uses a constant block reward to encourage miners to maintain its operation.
The PoW mechanism results in computing power competition because the more com-
puting power, the more rewarding it is linearly. In addition, reward in general includes
processing and results so that linearity might not reflect the reality. Ideally, the estimabil-
ity of EPoW and GPoW for computing power helps to award non-linearly and reasonably,
but it is still possible to be abused by monopoly of computing power. Especially for Pow-
erTimestamp, it is more used in few shots than in a long period of time. High computing
power would make the result easier to manipulate. Although increasing n would bene-
fit users with high computing power, decreasing n would also lower the trust indicator
and benefit users with low computing power. It depends on how people value computing
power and trust to participate, maintain, and operate the whole system. Global event or-
dering provides a mechanism to sort things out, but it might not be necessary to bound
with rewarding. The ordering and rewarding can be decoupled. Inverting the priority
scheme of GPoW to make it greater value with higher priority might relax the problem,
but it might also discourage participation. We can even make one more hash on GPoW
on rewarding to make it irrelevant to ordering. Moreover, the priority schemes can even
be mixed with each other to fit the real world. Priority scheme O in the block header rep-
resents the largest value with the highest priority by comparing the priority value directly.
Priority scheme 1 represents the lowest value with the highest priority by comparing the
negated priority value. Priority scheme 2 represents a new irrelevant order by compar-

POWERTIMESTAMP: TOWARD GLOBAL EVENT ORDERING 17

ing the one-more-hashed priority value. Priority scheme 3 represents a mixed scheme by
comparing the weighted sum of other scheme values defined by the system in charge. The
system can test and adjust to find the best weights using the GPoW mathematical formu-
las and the time-driven design. Although the basic order is fixed, the priority scheme can
be adjusted periodically to fit other requirements, such as social needs.

5. CONCLUDING REMARKS

We propose a detailed PowerTimestamp design by NTP 4.0 and GPoW with a pro-
totype to support global event ordering and discuss implementation issues with solutions.
Global event ordering means that if we can wait for existing events to arrive or reject late
events at all destinations, total ordering can be performed with a time error of hundreds
of microseconds to hundreds of milliseconds for a confidence interval or trust indicator
higher than 95%. If there are late events to be accepted, the total ordering can still be
done at one destination or consensus for arrival times with more delay for all destinations.
If the network round-trip delay is less than 500 milliseconds, the total ordering of 95%
events can be done by waiting a second after any event arrives with a time error or faking
in 100 milliseconds. Although accuracy can be improved by improving the randomness
of the hashing function and a sophisticated tool is needed to friendly configure the sys-
tem to use PowerTimestamp and maintain FirstHop for security, PowerTimestamp is the
first solution for total ordering. This is a breakthrough in distributed systems that allow
synchronization to become decentralized, deterministic, and feasible by the occurrence of
events. We will continue on our future work and open source as soon as possible for any
possible cooperation and realization.

ACKNOWLEDGMENT

This research was funded in part by the National Science and Technology Council,
Taiwan, under the grant NSC 111-2221-E-002-124-MY?2 and NSTC 113-2634-F-002-
001-MBK.

REFERENCES

1. D. L. Mills, “Internet time synchronization: the network time protocol,” IEEE Trans-
actions on Communications, Vol. 39, no. 10, 1991, pp. 1482—1493.

2. L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” Com-
munications of the ACM, Vol. 21, no. 7, 1978, pp. 558—565.

3. C.-W. Hsueh and C.-T. Chin, “Epow: Solving blockchain problems economically,”
in Proc. of the 14th Conference of Advanced and Trusted Computing, 2017, pp. 1-8.

4. C.-W. Hsueh and C.-T. Chin, “Toward Trusted IoT by General Proof-of-Work,” Sen-
sors, Vol. 23, no. 1, 2022, p. 15.

5. S. Nakamoto. (2008) Bitcoin: A Peer-to-Peer Electronic Cash System. [Online].
Available: SSRN:http://dx.doi.org/10.2139/ssrn.3440802

18

10.

11.

CHIH-WEN HSUEH, YEN-SHUO CHEN

. C.-W. Hsueh, Estimable Proof-of-Work for Blockchain. Patent No. US 10,965,466

B2, March 30, 2021.

C.-W. Hsueh, METHOD AND COMPUTING DEVICE FOR PROOF-OF-WORK RE-
LATED TO BLOCK MINING. Patent No. R.O.C. 1841910, May 11, 2024.

Y. Cheng, Algorithmic Solutions and Applications for Robust Estimating with Scale-
contaminated Normal Error Function. Master’s Thesis, Department of Computer
Science and Information Engineering, National Taiwan University, July 2018.

D. Mills, “Improved algorithms for synchronizing computer network clocks,”
IEEE/ACM Transactions on Networking, Vol. 3, no. 3, 1995, pp. 245-254.
Wikipedia. (1999) Network Time Protocol. [Online]. Available:
https://en.wikipedia.org/wiki/Network_Time_Protocol

C.S., L. D, K. O,, and G. R., “Better bitmap performance with Roaring bitmaps,”
Software: Practice and Experience, Vol. 46, no. 5, 2015, pp. 709—719.

Author one Chih-Wen (Steven) Hsueh is an associate pro-
fessor at the Graduate Institute of Networking and Multimedia
and Department of Computer Science and Information Engineer-
ing at the National Taiwan University (NTUCSIE), R.O.C., since
2013, August, joined as an assistant professor in 2006 March.
His research interests include real-time systems, distributed sys-
tems, operating systems, and blockchain. He received his MS
degree in Computer Science from the University of Southern
California in 1994, June, and his Ph.D. in Information and Com-
puter Science from the University of California at Irvine in 1997,

December. He joined as an assistant professor at the Department of Computer Science
and Information Engineering at the National Chung Cheng University, R.O.C., in 1999,
August, and an associate research engineer at ASIIS, in 2005, August.

Author two CHEN, YEN-SHUO is currently a Ph.D. stu-
dent at the Graduate Institute of Networking and Multime-
dia, National Taiwan University. He graduated with a Master
and Bachelor degree from the Department of Biomechatronics
Engineering at the same university in August 2022 and June
2020. His current research focuses on distributed systems and
blockchain technologies.

