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Abstract

Learning representative user and item representations is the key to build-
ing e↵ective recommender systems. However, mainstream studies empha-
size node-level embeddings when constructing models, thereby overlooking
the importance of interaction between nodes. Recent work has developed
an interaction-level model, treating user-item interactions as optimization
triplets rather than optimizing users and items individually. Nevertheless,
the current interaction-level model has limited usage, as it was initially de-
signed for single-behavior recommendation only. To address this limitation,
we propose unified interaction-level preference ranking (UnifiedIPR), a uni-
fied interaction-level framework for multi-behavior recommendation, expand-
ing upon previous work on interaction-level recommendation. Specifically,
UnifiedIPR incorporates multi-behavioral information into the modeling pro-
cess by learning user-specific and item-specific behavior embeddings for each
type of behavior. The proposed method not only models multi-behavioral
information in a more fine-grained way but also enables recommendations
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for di↵erent behaviors by leveraging the designated behavior embeddings
for users and items. Note that single-behavior recommendation is a par-
ticular case of multi-behavior recommendation; by setting the number of
behaviors to one, UnifiedIPR also e↵ectively provides recommendations for
single-behavior tasks. Comprehensive experiments on ten public benchmark
datasets demonstrate the e↵ectiveness and e�ciency of UnifiedIPR for both
single-behavior and multi-behavior recommendation.

Keywords: recommender system, multi-behavior, single-behavior,
preference ranking, representation learning

1. Introduction

With the rapid expansion of internet services, recommender systems have
become a convenient tool for reducing user information overload and im-
proving the user experience. Among various recommendation tasks, a pop-
ular approach to delivering practical recommendations is to learn the vector
space of user and item embeddings. Such a node-level method brings item
nodes closer to the user node in the vector space if the user prefers those
items strongly. Research focusing on modeling recommendation tasks at the
node level has thrived in the past decade. The success of these studies in
academia and industry has prompted researchers to apply machine learning
algorithms to various kinds of recommendation tasks. One notable research
branch is multi-behavior recommendation, which leverages multiple behav-
iors in e-commerce platforms, such as click, add to cart, and purchase, to
provide more accurate recommendations. These studies go beyond using a
single behavior; they thoroughly explore information from multiple behaviors
to learn the node-level vector space.

However, instead of characterizing the preferences of users and items
with a node-level model, the interaction-level model [1] captures the simi-
larity between user-item interactions, providing a more natural and intuitive
way to distill useful information from data. Inspired by this idea, we pro-
pose unified interaction-level preference ranking (UnifiedIPR), a lightweight,
interaction-level embedding learning framework for various recommendation
tasks. In contrast to mainstream studies that treat nodes as basic training
units, UnifiedIPR expands previous work [1], treating interactions as the pri-
mary training unit. This approach models the similarity between user-item
interactions more naturally under a pairwise ranking framework. Further-
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more, the most recent interaction-level method has limited usage because it
utilizes only single-behavior data. To alleviate this issue, we base UnifiedIPR
on multi-behavior recommendation, considering recommendation with only
one behavior as a particular case. The resultant framework is more flexi-
ble and capable of handling both recommendation tasks. Specifically, if two
users interact with the same (or a di↵erent) item under the same behavior,
these interactions are clustered in the embedding space. Moreover, in the
proposed framework, an interaction embedding (describing the relation be-
tween a user and an item under a specific behavior) comprises the associated
user and item embeddings and the behavior embeddings corresponding to
the user and the item. In this way, we exploit user and item preferences in a
more fine-grained manner. Additionally, we present a simple yet e↵ective ap-
proach to incorporating global behavior information to address the sparsity
of less-frequent behaviors. Unlike many end-to-end recommendation models,
UnifiedIPR generates a set of user and item embeddings and user and item
behavior embeddings for recommendation. In practice, many calculations
are completed o✏ine or approximated by nearest-neighbor search. Notably,
UnifiedIPR is a variation of Bayesian personalized ranking [2]. Thus our
method boasts more e�cient training than state-of-the-art deep learning-
based methods. To summarize, the main contributions of this work are as
follows:

• We propose unified interaction-level preference ranking (UnifiedIPR), which
learns fine-grained behavior embeddings for single-behavior and multi-
behavior recommendation.

• We conduct extensive experiments on ten real-world datasets: six for
single-behavior recommendation and four for multi-behavior recommen-
dation. The experimental results show that the proposed method is supe-
rior to other methods in predicting various recommendation tasks using a
single unified model.

• We present an e↵ective, e�cient implementation with faster training time
than recent state-of-the-art methods.1

1The source code will be available online at a GitHub repository upon publication.
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2. Related Work

Much work has been done on recommendation systems, from conventional
single-behavior recommendation to recent multi-behavior recommendation.
Brief discussions follow.
Single-behavior recommendation: Single-behavior recommendation is
the most common and extensively researched type of recommender sys-
tem. Specifically, most single-behavior recommendation scenarios consist
of a sparse matrix, as a user interacts with only a few items. A popular
solution is collaborative filtering [3, 4, 5, 2, 6], which calculates the simi-
larity of the given users or items and then filters out items unlikely to be
favored by the user based on the similarity function. Recently, in lieue of
collaborative filtering methods, many researchers represent users and items
as vectors [7, 8, 9, 10, 11], using their embeddings to provide more accurate
recommendations. For example, PinSage [7] combines random walks and
a graph convolution network to generate item embeddings, whereas Light-
GCN [8] simplifies the GCN design, resulting in a more concise recommen-
dation model. Some studies in turn use side information such as user reviews
to address sparsity [12, 13, 14] and enhance recommendation performance.
However, these are limited to leveraging a single type of behavioral data. If
multiple behaviors exist in the dataset, they leave other informative behav-
ioral data unexplored or unutilized.
Multi-behavior recommendation: Researchers have begun to better lever-
age multi-behavior data by considering di↵erent types of behavioral data
when training models. Even so, most pioneering works treat a single behav-
ior as the target behavior and optimize the model based on that behavior
only [15, 16, 17, 18, 19]. For example, MBGCN [17] applies graph neural
networks to learn user and item representations by optimizing the target
behavior; upon recommendation, items are ranked for each user based on
their similarity scores calculated with their representations against the user
representation. More recently, some studies have applied multi-task learn-
ing to learn user and item embeddings as well as behavior embeddings for
multi-behavior recommendation [20, 21, 22], where these di↵erent embed-
dings are jointly embedded into the modeling process, after which the user,
item, and behavior embeddings are aggregated for prediction. Such designs
enable recommendations with a unified model for di↵erent user behaviors.
For example, GHCF [21] leverages graph neural networks to aggregate in-
formation concerning users, items, and behaviors to achieve state-of-the-art
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performance.

3. Problem Formulation

In real-world scenarios, users of online information systems interact with
items in many ways. Take IMDb for an example: a user can interact with a
movie by rating it. This situation, namely the single-behavior task, contains
only one type of behavior: rating. Another example is the social website
Reddit: users interact with a post by clicking, pushing, sharing, replying,
and creating. This situation, namely the multi-behavior task, contains mul-
tiple types of behavior: click, push, share, reply, and create. In this study,
we design a unified, interaction-level embedding learning framework to ex-
ploit better user and item relations for single-behavior and multi-behavior
recommendation.

Definition 1 (User-item Interaction Graph). Let U , I, and R denote
the set of users, items, and relations, respectively. A user-item interaction
graph is an indirect bipartite graph defined as G(V , E , ), where  (·) is an
edge-type mapping function  : E ! R, V and E denote the sets of all nodes
(i.e., V = U [ I) and all edges in the graph, respectively, and (u, i) 2 E
denotes an edge between a user u 2 U and an item i 2 I.

Given the user-item interaction graph G(V , E , ) defined in Definition 1,
our goal is to learn an embedding matrix ⇥ 2 R(n+m)⇥k⇥d, where n = |U |,
m = |I|, k = |R|, and d denotes the embedding size. For each user u (or
each item i), the model generates its personalized user embedding denoted
as ✓u (or item embedding denoted as ✓i, respectively). Additionally, asso-
ciated with each user (or item) is a relation embedding for each relation
ri 2 R, denoted as ✓riu (or ✓rii , respectively). Specifically, the relation can
be either single-behavior (e.g., ratings) or multi-behavior (e.g., view, add to
cart, or purchase). In the single-behavior task, k = |R| = 1, whereas in
the multi-behavior task, k = |R| > 1. It is expected that with our unified
learning framework, the learned embedding matrix ⇥ correctly encodes user-
item interactions for recommendations. Furthermore, the proposed model
enables us to recommend w.r.t. single or multiple behaviors by leveraging
the designated behavior embeddings for users and items.

5



Figure 1: Overview of proposed UnifiedIPR framework

4. Methodology

To better exploit user and item relations for di↵erent recommendation
tasks, we propose unified interaction-level preference ranking (UnifiedIPR), a
unified embedding learning framework for single-behavior and multi-behavior
recommendation (see Figure 1 for an overview of the framework). In this
section, we first detail embedding learning for the proposed UnifiedIPR in
Sections 4.1 and 4.2, after which we present a strategy to sample interaction
triplets for optimization in Section 4.3. Then, we summarize the method
with the procedure shown in Algorithm 1. Finally, we detail the scoring
functions used for recommending items in Section 4.6.

4.1. Interaction-level Preference Ranking

The proposed UnifiedIPR models user and item interactions in a unified
framework, generating a universal embedding matrix ⇥ for recommenda-
tion. We consider this a universal framework as the proposed model enables
us to make the recommendation w.r.t. di↵erent recommendation tasks via
the learned universal embedding matrix ⇥. In the mainstream literature
on recommender systems, node embeddings are used to capture relations
between users and items via matrix factorization and derivative techniques
(e.g., [23, 8, 24, 2, 25, 26]). Such methods, however, typically focus on mod-
eling user and item nodes instead of the relations between and within various
user behaviors; thus, they do not adequately leverage interactions of single-
behavior and multi-behavior data.

We address this problem with UnifiedIPR, a pairwise interaction-level
ranking algorithm for modeling the preferences of users and items. Inspired
by [1], which changes the main idea of ranking-based recommendation algo-
rithms from node-level [2] to interaction-level modeling and clusters similar
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user-item interactions in a self-supervised manner, we extend their work and
further construct behavior embeddings for all users and items with di↵erent
behaviors to facilitate the various recommendations.

Let H be the set containing all user-item interactions from G(V , E , ),
where each element hr

ui 2 H denotes a user-item interaction in which user u
interacts with item i with relation r. Given an interaction hr

ui , we define a
basic training unit (also known as an interaction-level triplet) of the proposed
UnifiedIPR as

(hr
ui , h

r+

u+i+ , h
r�

u�i�), (1)

along with the relation hr+

u+i+ �hr
ui
hr�

u�i� (see the second panel from the left

in Figure 1). This relation denotes that the positive interaction hr+

u+i+ is
“more alike” to hr

ui than the negative interaction hr�

u�i� . Note that in this
framework, hr+

u+i+ and hr�

u�i� are built artificially regarding hr
ui and do not

necessarily appear in the graph G(V , E , ); thus, they can be freely defined
to correspond to di↵erent application scenarios. For general single-behavior
and multi-behavior recommendation, we describe in Section 4.3 the proposed
strategy to sample such triplets for optimization.

Given the triplet definition in Eq. (1), we then construct training data
DH : H⇥H+

hr
ui
⇥H�

hr
ui

as

DH:=
n⇣

hr
ui , h

r+

u+i+ , h
r�

u�i�

⌘���hr
ui 2 H^

hr+

u+i+ 2 H+
hr
ui
^ hr�

u�i� 2 H�

hr
ui

o
, (2)

where H+
hr
ui

(H�

hr
ui
) denotes the set of positive interactions (that of negative

interactions, respectively) w.r.t. hr
ui .

4.2. Embedding Matrix Learning

The pioneering work on interaction-level preference ranking [2] focuses
on single-behavior recommendation, utilizing user and item embeddings to
model di↵erent user-item ratings. Nevertheless, the learning algorithm they
propose is di�cult to generalize for both single-behavior and multi-behavior
recommendation. To this end, in addition to the original user and item
embedding (i.e., ✓u and ✓i), we further incorporate behavior embeddings for
users and items to model di↵erent types of user-item interactions, resulting
in (✓u, ✓ru, ✓i, ✓

r
i ) for each user-item interaction. Thus (✓u, ✓ru) can be treated

as a user u with his/her behavioral preference, whereas (✓i, ✓ri ) denotes an
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item i with its behavior characteristics. For example, daily necessities are
more frequently purchased than luxury goods; in our design, this is modeled
properly via behavior embeddings for items.

Next, given an interaction hr
ui (or a pseudo interaction hr+

u+i+ or hr�

u�i�),
we define its embedding as hr

ui := f(✓u, ✓ru, ✓i, ✓
r
i ), where f(·) is an arbitrary

function to combine the user, item, and behavior embeddings. In this paper,
as in [8], we adopt the addition operator as our aggregator, resulting in

hr
ui = ✓u + ✓ru + ✓i + ✓ri . (3)

Note that single-behavior recommendation can be considered a special case
of multi-behavior recommendation, wherein there is no need to learn ✓ru and
✓ri to di↵erentiate between di↵erent behaviors. Therefore, we set ✓ru and ✓ri
to
�!
0 in this case, resulting in the simplification of hr

ui = ✓u + ✓i.
With DH, our objective is to find an embedding matrix ⇥ that maximizes

the likelihood function from observed user-item interactions:

OUnifiedIPR =
Y

t2DH

p

✓
hr�

u�i� �hr
ui
hr+

u+i+

����⇥
◆
, (4)

where t = (hr
ui , h

r+

u+i+ , h
r�

u�i�). Furthermore, with the definition of the inter-
action embeddings in Eq. (3), the individual probability that an interaction
hr+

u+i+ is more similar to hr
ui than hr�

u�i� is defined as

p

✓
hr�

u�i� �hr
ui
hr+

u+i+

����⇥
◆

= �

✓⌧
hr
ui ,h

r+

u+i+ � hr�

u�i�

�◆
, (5)

where �(·) denotes the sigmoid function and h·, ·i denotes the dot product
between two vectors.

With Eqs. (3)–(5), we formulate the maximum posterior estimator to
derive the optimization criterion for the proposed UnifiedIPR as

UnifiedIPR-OPT := ln p(⇥| �hr
ui
) / ln p

�
�hr

ui
|⇥
�
p (⇥)

= ln
Y

t2DH

p
⇣
hr�

u�i� �hr
ui
hr+

u+i+

⌘
p(⇥)

=
X

t2DH

ln �(hhr
ui ,h

r+

u+i+ � hr�

u�i�i)� �⇥||⇥||2, (6)

where �⇥ is a model-specific regularization parameter.
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To explore the advantages of such behavioral-based interaction triplets,
we further decompose the interaction embedding hr

ui into two components
eru and eri for analysis, where eru := ✓u + ✓ru and eri := ✓i + ✓ri (see Eq. (3)).
Then, the likelihood in Eq. (5) can be rewritten as

�

✓⌧
eru + eri ,

⇣
er

+

u+ + er
+

i+

⌘
�
⇣
er

�

u� + er
�

i�

⌘�◆

= �

✓⌧
eru,

⇣
er

+

u+ � er
�

u�

⌘
+
⇣
er

+

i+ � er
�

i�

⌘�

+

⌧
eri ,

⇣
er

+

u+ � er
�

u�

⌘
+
⇣
er

+

i+ � er
�

i�

⌘�◆
. (7)

The above likelihood in Eq. (7) can be decomposed into four components:

1.
⌦
eru, e

r+

u+�er
�

u�

↵
: Models user interaction similarity to user u with relation r

regarding users u+ with relation r+ and u� with relation r�.

2.
⌦
eru, e

r+

i+ � er
�

i�

↵
: Models item interaction preference ranking between item

i+ with relation r+ and i� with relation r� for user u with relation r.

3.
⌦
eri , e

r+

u+ � er
�

u�

↵
: Models user interaction preference ranking between user

u+ with relation r+ and u� with relation r� for item i with relation r.

4.
⌦
eri , e

r+

i+ �er
�

i�

↵
: Models item interaction similarity to item i with relation r

regarding items i+ with relation r+ and i� with relation r�.

The above components correspond to 1 to 4 in the rightmost panel of
Figure 1. Moreover, for 1 (or 4), the model tends to cluster users (items)
that involve similar interactions with items (users) in the embedding space;
as for 2 and 3, the model tends to cluster users and items that involve similar
interactions with each other in the embedding space. Such a design not only
enables fine-grained modeling for di↵erent types of user-item interactions but
also naturally yields a powerful representation matrix ⇥ that is suitable for
various behavioral recommendation tasks.

4.3. Sampling Strategy

Recall that the positive interaction hr+

u+i+ and the negative equivalent
hr�

u�i� in a triplet given hr
ui defined in Eq. (1) can be freely defined to cor-

respond to di↵erent application scenarios. We list two strategies for two
di↵erent cases: single-behavior recommendation and multi-behavior recom-
mendation. The details are shown below.
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For single-behavior recommendation, we follow previous work [1] in sam-
pling such triplets to construct the training data DH in Eq. (2). Specifically,
for an interaction hr

ui in G(V , E , ), this is the set of positive interactions:

H+
hr
ui
:=

n
hr+

u+i+

�� (u+, i+), (u, i+) 2 E ^  (u, i+) = r+ = r
o
. (8)

For general multi-behavior recommendation, we propose a strategy to sample
such triplets. For an interaction hr

ui in G(V , E , ), this is the set of pseudo
positive interactions:

H+
hr
ui
:=

n
hr+

u+i+

�� (u, i+), (u+, i) 2 E ^

r+ = r ^ r+ 2  (u, i+) ^ r+ 2  (u+, i)
 
. (9)

We illustrate this sampling strategy with Figure 1 (see the leftmost panel
of the figure). Given an interaction between user u and item i with a spe-
cific relation r (the solid line between two black nodes), i.e., hr

ui , we sample
a positive interaction hr+

u+i+ constructed by a sampled positive item i+ and
a sampled positive user u+ with relation r (both nodes are orange). Note
that the positive item is a neighbor of u, but the positive user is a neighbor
of i (i+) for single-behavior (multi-behavior) recommendation. In this sam-
pling strategy, the positive interaction for multi-behavior recommendation is
a “pseudo” relation, as the sampled (u+) and (i+) may lack any interaction.
For the negative interaction hr�

u�i� 2 H�

hr
ui
, for simplicity, we randomly se-

lect an interaction from all interactions in G(V , E , ) (i.e., H) to construct
H�

hr
ui
. Since single-behavior recommendation has only one behavior, di↵erent

relations r imply di↵erent behavior magnitudes (e.g. rating 5 or rating 3),
whereas di↵erent relations r of multi-behavior recommendation imply dif-
ferent behaviors (e.g. purchase or add to cart). We leave more complicated
settings for future work.

4.4. Optimization

With the training dataDH in Eq. (2) and the objective function in Eq. (6),
we optimize the embedding matrix as

⇥ ⇥+ ↵

✓
@PMi-OPT

@⇥

◆
, (10)

where ↵ is the learning rate. Specifically, for each given interaction hr
ui 2 H,

we randomly sample a positive interaction hr+

u+i+ 2 H+
hr
ui

defined in Eq. (8)
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or (9) and a negative interaction hr�

u�i� 2 H. The resulting interaction-level
triplet (hr

ui , h
r+

u+i+ , h
r�

u�i�) 2 DH is adopted to update the model parameter
matrix ⇥ with this gradient:

@PMi-OPT

@⇥
=

@

@⇥
ln �(x̂)� �⇥

@

@⇥
||⇥||2

_ e�x̂

1 + e�x̂

@

@⇥
x̂� �⇥⇥, (11)

where x̂ :=
⌦
eru + eri , (e

r+

u+ + er
+

i+ )� (er
�

u� + er
�

i� )
↵
.

Additionally, we follow [26, 23, 27] by utilizing asynchronous stochastic
gradient descent (ASGD) [28] to e�ciently update parameter matrix ⇥ in a
parallel manner. Algorithm 1 details the complete model training procedure.

Algorithm 1 Training with proposed UnifiedIPR framework
Inputs: G(V , E , ), N iterations
Output: ⇥
1: Randomly initialize ⇥
2: H all user-item interactions from G(V , E , )
3: for e = 1 to N do
4: Draw user-item interaction hr

ui from H
5: Construct positive interaction set H+

hr
ui

6: Construct negative interaction set H�

hr
ui

7: Draw positive interaction hr+

u+i+ 2 H+
hr
ui

8: Draw negative interaction hr�

u�i� 2 H�

hr
ui

9: Update ⇥ with Eqs. (10)–(11)
10: end for

4.5. Global Behavior Embedding for Multi-behavior Recommendation

To fully leverage multi-behavior information and account for the sparsity
of less frequent behaviors, we additionally incorporate global behavior infor-
mation in the multi-behavior user-item interaction graph G(V , E , ). That is,
if there exist ` di↵erent types of behavior in a multi-behavior recommendation
dataset, we additionally create a pseudo behavior, namely the global behav-
ior rg, resulting in |R| = ` + 1 = k types of behaviors in the graph. Specifi-
cally, for any edge (u, i) between a user u and an item i in E , rg 2  ((u, i)).
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Table 1: Single-behavior dataset statistics

Dataset Users Items Interactions Sparsity

MovieLens-1M 6,040 3,706 1,000,188 95.5316%
AMZ I-S 11,039 5,328 123,312 99.7903%
AMZ PS 236,966 42,529 3,357,320 99.9667%

AMZ CP-A 157,186 48,178 1,805,498 99.9762%
AMZ VG 55,219 17,404 796,122 99.9172%
AMZ DM 16,563 11,777 271,648 99.8607%

Table 2: Multi-behavior dataset statistics

Dataset Users Items Views Carts Purchases

Beibei 21,716 7,977 2,412,586 642,622 304,576
Taobao 48,749 39,493 1,548,126 193,747 259,747

Ecommerce 55,608 48,547 1,945,122 1,860,450 905,847
Rees46 20,399 31,972 112,652 48,313 47,368

In other words, there exists a global relation between user u and item i if u
has interacted with i with any of the relations r 2 {r|r 2 R ^ r 6= rg}. The
experimental results in Section 6 show the e↵ectiveness of such a design.

4.6. Scoring Function

Algorithm 1 yields the embedding matrix ⇥ 2 R(n+m)⇥k⇥d. The learned
⇥ enables us to make single-behavior or multi-behavior recommendations.
Specifically, for single-behavior recommendation at the inference stage, for
each user u, we calculate the scores considering all items as ŷrui = ✓u ·
✓i. Likewise, for any target behavior r 2 {r|r 2 R ^ r 6= rg} in multi-
behavior recommendation, the scoring function is ŷrui =

�
✓u + ✓ru

�� ✓u + ✓rgu
�
·�

✓i + ✓ri
�� ✓i + ✓rgi

�
, where a

��b denotes the concatenation of vectors a and b,
and rg 2 R is the global behavior (see Section 4.5). The items to be recom-
mended are then obtained by ranking the items based on the score for each
user.

5. Experiments

Here, we describe experiments conducted on several public datasets to
demonstrate the e↵ectiveness of the proposed UnifiedIPR framework. The
experiments include two tasks: single-behavior recommendation and multi-
behavior recommendation.
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5.1. Datasets and Preprocessing

5.1.1. Single-behavior recommendation
We conducted experiments on six real-world datasets to evaluate the

single-behavior recommendation algorithm of UnifiedIPR, including MovieLens-
1M and five Amazon datasets [29]: Amazon Industrial and Scientific (AMZ
I-C), Amazon Pet Supplies (AMZ PS), Amazon Cell Phones and Accessories
(AMZ CP-A), Amazon Video Games (AMZ VG), and Amazon Digital Mu-
sic (AMZ DM). We randomly split 80% of the interactions for training. The
remaining interactions are the test data for evaluation. The statistics of all
datasets are summarized in Table 1.

5.1.2. Multi-behavior recommendation
We conducted experiments on four public recommendation datasets to

evaluate the UnifiedIPR multi-behavior recommendation algorithm. All data-
sets contain three common types of e-commerce behaviors, as summarized
in Table 2. For Beibei, Taobao, and E-commerce, we followed the settings
in [21], which filters out users and items with fewer than five purchase inter-
actions. For the smaller Rees46 dataset, we filtered out users with fewer than
two purchase interactions. For each dataset, we took each user’s last purchase
record as the test data for the purchase recommendation evaluation. We also
took each user’s last cart and view records as the test data for the cart and
view behavior evaluations, respectively, for both Rees46 and Ecommerce. As
Beibei and Taobao did not include timestamps for each interaction, we could
not split the dataset for other behaviors such as view and cart; therefore, for
these, we evaluated the recommendation performance only for the purchase
behavior, which is available in the original datasets.

5.2. Baselines

To demonstrate the e↵ectiveness of the UnifiedIPR framework, we com-
pared it with several baseline methods. These baselines can be categorized
into two groups: 1) single-behavior models that utilize only single-behavior
data, and 2) multi-behavior models that consider all types of behavioral data
in the training process.

5.2.1. Single-behavior models
• MF [30]: a widely used pairwise learning framework that considers
node-level triplets for model training via a square loss objective func-
tion.
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• MFBPR [2]: an MF method with the Bayesian personalized ranking
(BPR) loss function for optimization.

• NCF [24]: a general version of MF that replaces the inner product
with a neural architecture on the latent features of users and items.

• NGCF [25]: a recommendation framework that exploits the user-item
graph structure by injecting the collaborative signal into the embedding
process.

• LightGCN [8]: a simplified architecture of the graph neural network
(GNN) from NGCF that usually achieves state-of-the-art performance
for single-behavior recommendation.

• CDAE [31]: a deep learning-based model that formulates top-N rec-
ommendations with denoising auto-encoder frameworks.

• DeepICF [32]: item-based collaborative filtering that models higher-
order relationships among items using nonlinear neural networks.

5.2.2. Multi-behavior models
• MC-BPR [18]: a multi-behavior recommendation algorithm that as-
sumes an importance order between di↵erent behaviors and extends
BPR [2] by building sampling pairs with a type of positive behavior
and a type of weaker behavior.

• NMTR [33]: a neural model that involves joint optimization based
on the multi-task learning framework, where the optimization on each
behavior is treated as a task.

• MBGCN [17]: a graph convolutional network (GCN) that learns the
strengths of di↵erent behaviors by the user-item propagation layer and
the item-item propagation layer.

• EHCF [20]: a non-sampling transfer learning solution model good for
modeling both single- and multi-behavior data.

• GHCF [21]: a GCN-based model that jointly embeds user, item, and
behavior representations for multi-behavior modeling, which also uti-
lizes non-sampling optimization as in [20] to improve performance.

For simplicity, we conducted experiments only on two single-behavior
models (MFBPR and LightGCN) for the multi-behavior task. This approach
neglects other behavioral data during the training process. We re-trained
single-behavior models for each type of behavior and evaluated the perfor-
mance based on the corresponding model. For multi-behavior models, note

14



the following: 1) as MC-BPR models only the importance order between dif-
ferent behaviors and does not provide behavior-dependent recommendation,
we use the same recommended list for di↵erent behavior evaluation; 2) as
MBGCN utilizes the target behavior to optimize the loss function, we had to
re-train the model for di↵erent behaviors by changing the target behavior for
di↵erent behavior evaluation; 3) as NMTR, EHCF, and GHCF predict for
each behavior via their multi-task learning frameworks, there was no need
to re-train the model; thus evaluation for di↵erent behaviors leveraged the
learned behavior embeddings.

5.3. Experimental Settings

5.3.1. Single-behavior recommendation
We followed the settings in [1] to evaluate the performance of the ranking

list. The dimension d of the embedding vectors of all the baselines and the
proposed model was set to 100. We set the L2 regularization coe�cient �
and learning rate ↵ to 0.001 and 0.025, respectively, and used a grid search
over di↵erent settings, selecting the hyperparameters that yielded the best
performance. To evaluate the performance of the ranking list, we adopted
two common metrics for top-N recommendation: recall (Recall@N) and nor-
malized discount cumulative gain (NDCG@N) with N = 1, 3, 10 in our
experiments. We used a smaller N to test the first-glance recommendation
performance. Larger values of N are for “continuous scrolling” recommen-
dations.

5.3.2. Multi-behavior recommendation
For multi-behavior recommendation, we set dimension d of the embed-

ding vectors of all the baselines and the proposed model to 128. Other
hyperparameters were the same as the settings in the single-behavior recom-
mendation. We initialized the hyperparameters for the baselines and used
a grid search over di↵erent settings per the corresponding papers, selecting
the hyperparameters that yielded the best performance. For each method,
the final reported results were calculated by averaging the results over five
repetitions. Following [2] and [34], we treated all items that the user had
not interacted with as negative for each user in the test set under the target
behavior. Then, we used each method to generate a ranking list for each user
with the user’s preference scores over all the items, except for the positive
ones in the training set of the target behavior. We adopted Recall@N and
NDCG@N and set N = 10, 50, 100.
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5.4. Experimental Results

In this section, we compare the proposed UnifiedIPR framework with
several baselines for single-behavior and multi-behavior recommendation, as
shown in Tables 3–6. The best results are in boldface; the best-performing
method among all the baselines is indicated by “†”; “Improv. (%)” indicates
the percentage improvement of the proposed model w.r.t. the best-performing
baselines. Below we separately discuss the results for the three prediction
tasks.

Table 3: Overall single-behavior recommendation performance

MovieLens-1M AMZ I-S

Recall NDCG Recall NDCG

@1 @3 @10 @1 @3 @10 @1 @3 @10 @1 @3 @10

MF 0.0131 0.0353 0.1036 0.3035 0.2869 0.2717 0.0476 0.0476 0.1104 0.0776 0.0721 0.0861
MFBPR 0.0203 0.0515 0.1280 0.4260 0.3917 0.3453 †0.0501 †0.1147 0.1147 †0.0816 0.0752 0.0903
CDAE 0.0215 0.0571 0.1492 0.4296 0.4046 0.3652 0.0413 0.0701 0.1166 0.0674 0.0677 0.0855
LightGCN 0.0216 0.0547 0.1326 0.4548 0.4152 0.3552 0.0494 0.0837 †0.1371 0.0803 †0.0803 †0.1006
DeepICF †0.0256 †0.0635 †0.1520 †0.4960 †0.4492 †0.3903 0.0366 0.0598 0.0958 0.0593 0.0584 0.0721

UnifiedIPR 0.0262 0.0650 0.1550 0.5003 0.4531 0.3896 0.0536 0.0814 0.1255 0.0874 0.0812 0.0981

Improv. (%) 2.34% 2.36% 1.97% 0.87% 0.87% -0.18% 6.99% -29.03% -8.46% 7.11% 1.12% -2.49%

AMZ PS AMZ VG

Recall NDCG Recall NDCG

@1 @3 @10 @1 @3 @10 @1 @3 @10 @1 @3 @10

MF 0.0093 0.0202 0.0449 0.0162 0.0188 0.0285 0.0150 0.0348 0.0799 0.0287 0.0333 0.0507
MFBPR †0.0462 †0.0634 0.0862 †0.0808 †0.0676 †0.0754 †0.0204 0.0426 0.0897 0.0386 0.0416 0.0595
CDAE 0.0095 0.0188 0.0438 0.0171 0.0182 0.0279 0.0151 0.0372 0.0864 †0.0393 0.0348 0.0538
LightGCN 0.0274 0.0484 †0.0891 0.0496 0.0483 0.0639 0.0196 †0.0449 †0.1051 0.0392 †0.0437 †0.0664
DeepICF 0.0083 0.0146 0.0325 0.0152 0.0147 0.0217 0.0081 0.0205 0.0534 0.0165 0.0199 0.0320

UnifiedIPR 0.0452 0.0692 0.1047 0.0808 0.0721 0.0847 0.0272 0.0569 0.1151 0.0519 0.0559 0.0777

Improv. (%) -2.16% 9.15% 17.51% 00.00% 6.66% 12.33% 33.33% 26.73% 9.51% 32.06% 27.92% 17.02%

AMZ DM AMZ CP-A

Recall NDCG Recall NDCG

@1 @3 @10 @1 @3 @10 @1 @3 @10 @1 @3 @10

MF 0.0204 0.0416 0.0768 0.0396 0.0419 0.0546 0.0095 0.0207 0.0438 0.0158 0.0186 0.0276
MFBPR †0.0277 0.0495 0.0869 †0.0507 0.0506 0.0639 †0.0244 0.0360 0.0546 †0.0398 †0.0362 0.0431
CDAE 0.0186 0.0377 0.0783 0.0340 0.0372 0.0526 0.0072 0.0169 0.0384 0.0125 0.0150 0.0234
LightGCN 0.0253 †0.0513 †0.0991 0.0491 †0.0513 †0.0688 0.0189 †0.0382 †0.0766 0.0323 0.0354 †0.0503
DeepICF 0.0188 0.0379 0.0719 0.0349 0.0375 0.0500 OOM OOM OOM OOM OOM OOM

UnifiedIPR 0.0332 0.0568 0.1001 0.0623 0.0599 0.0748 0.0285 0.0462 0.0787 0.0474 0.0454 0.0578

Improv. (%) 19.86% 10.72% 1.01% 22.88% 16.76% 8.72% 16.80% 20.94% 2.74% 19.10% 25.41% 14.91%
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5.4.1. Single-behavior recommendation
Table 3 shows the results of UnifiedIPR compared to several single-

behavior baselines. The findings are listed below and are consistent with
previous research [1].

• The proposed UnifiedIPR algorithm yields the best results across most
of the datasets. This proves the e↵ectiveness of our framework.

• The improvement percentages of UnifiedIPR are better for positions
k=1 compared to positions like k=10, which indicates that interaction-
level modeling is remarkably good at first-glance recommendation.

5.4.2. Multi-behavior recommendation
We compared UnifiedIPR with several single-behavior and multi-behavior

baselines for recommendation tasks w.r.t. di↵erent behaviors, including pur-
chase, cart, and view prediction, as shown in Tables 4–6.

Table 4: Overall purchase recommendation performance

Beibei Taobao

Recall NDCG Recall NDCG

@10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100

MFBPR 0.0355 0.1276 0.2264 0.0182 0.0374 0.0533 0.0342 0.0664 0.0824 0.0204 0.0274 0.0300
LightGCN 0.0444 0.1339 0.1984 0.0212 0.0404 0.0501 0.0438 0.0819 0.1001 0.0258 0.0342 0.0371
MCBPR 0.0488 0.1969 0.3228 0.0226 0.0540 0.0743 0.0713 0.1190 0.1423 0.0383 0.0488 0.0526
NMTR 0.0414 0.2708 0.4534 0.0172 0.0651 0.0947 0.0803 0.1308 0.1666 0.0411 0.0523 0.0581
MBGCN 0.0582 0.3319 0.4823 0.0294 0.1506 0.171 0.1092 0.1854 0.2465 0.0553 0.0788 0.0802
EHCF 0.2424 0.4149 0.5009 0.1365 0.1748 0.1887 0.1175 0.2387 0.3108 0.0667 0.0931 0.1048
GHCF †0.2912 †0.4595 †0.5395 †0.1569 †0.1947 †0.2077 †0.1359 †0.2833 †0.3676 †0.0768 †0.1090 †0.1226
UnifiedIPR 0.2387 0.5596 0.6514 0.1173 0.1957 0.2102 0.2187 0.5270 0.6287 0.1087 0.1765 0.1932

Improv. (%) -21.99% 21.78% 20.74% -33.76% 0.51% 1.20% 60.93% 86.02% 71.03% 41.53% 61.93% 57.59%

Ecommerce Rees46

Recall NDCG Recall NDCG

@10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100

MFBPR 0.0571 0.1269 0.1737 0.0320 0.0471 0.0547 0.0876 0.2201 0.2972 0.0473 0.0759 0.0883
LightGCN 0.0651 0.1853 0.2608 0.0332 0.0538 0.0660 0.1656 0.1864 0.3925 0.0914 0.1143 0.1371
MCBPR 0.0792 0.2070 0.2919 0.0407 0.0683 0.0820 0.1743 0.3087 0.3598 0.0837 0.1139 0.1222
NMTR 0.0691 0.2359 0.3543 0.0355 0.0630 0.0821 0.1724 0.3160 0.3759 0.0825 0.1141 0.1238
MBGCN 0.0657 0.1942 0.2790 0.0345 0.0591 0.0729 0.1783 0.3469 0.4199 0.0990 0.1365 0.1483
EHCF 0.1659 0.3881 0.5123 0.0907 0.1390 0.1592 0.3563 0.5624 0.6223 0.2161 0.2623 0.2720
GHCF †0.2330 †0.4351 †0.5347 †0.1375 †0.1819 †0.1981 †0.3945 †0.5749 †0.6255 †0.2410 †0.2818 †0.2901
UnifiedIPR 0.2621 0.5532 0.6861 0.1447 0.2086 0.2302 0.4118 0.6070 0.6620 0.2569 0.3010 0.3099

Improv. (%) 12.49% 27.14% 28.31% 5.24% 14.68% 16.20% 4.39% 5.58% 5.84% 6.60% 6.81% 6.83%

Purchase recommendation
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This is the typical recommendation task evaluated in most studies on
multi-behavior recommender systems. Table 4 tabulates the results on the
four datasets; below are the findings.

• Our algorithm consistently outperforms all baselines over the four data-
sets except for Recall@10 and NDCG@10 on the Beibei dataset, which
justifies the e↵ectiveness of our model.

• All multi-behavior models outperform the two single-behavior models,
which attests the e↵ectiveness of leveraging multiple types of behavioral
data. This is consistent with previous findings [21, 20].

• GHCF is the strongest baseline of the compared methods. Neverthe-
less, the proposed multi-behavior algorithm still yields significant im-
provements on all four datasets (e.g., ranging from 5.58% to 86.02%
improvement in terms of Recall@50).

Table 5: Overall cart recommendation performance

Ecommerce Rees46

Recall NDCG Recall NDCG

@10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100

MFBPR 0.0285 0.0697 0.1004 0.0153 0.0242 0.0291 0.1058 0.2587 0.3291 0.0577 0.0913 0.1027
LightGCN 0.0606 0.1245 0.2261 0.0324 0.0485 0.0644 0.2027 0.3453 0.4167 0.1226 0.1540 0.1656
MCBPR 0.0644 0.1702 0.2457 0.0407 0.0683 0.0820 0.1431 0.2631 0.3148 0.0685 0.0951 0.1035
NMTR 0.0744 0.1498 0.1951 0.0393 0.0558 0.0632 0.1718 0.3143 0.3736 0.0823 0.1137 0.1233
MBGCN 0.0708 0.1369 0.1894 0.0355 0.0521 0.0620 0.2257 0.4001 0.4846 0.1363 0.2029 0.2253
EHCF 0.0247 0.0743 0.1126 0.0121 0.0227 0.0289 0.3217 0.5339 0.5945 0.1896 0.2370 0.2469
GHCF †0.0889 †0.2129 †0.2938 †0.0479 †0.0747 †0.0878 †0.3616 †0.5459 †0.5977 †0.2092 †0.2510 †0.2594
UnifiedIPR 0.1494 0.3592 0.4780 0.0803 0.1259 0.1451 0.4089 0.6004 0.6565 0.2516 0.2948 0.3039

Improv. (%) 68.05% 68.72% 62.70% 67.64% 68.54% 65.26% 13.08% 9.98% 9.84% 20.27% 17.45% 17.15%

Table 6: Overall view recommendation performance

Ecommerce Rees46

Recall NDCG Recall NDCG

@10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100

MFBPR 0.0257 0.0630 0.0890 0.0152 0.0232 0.0274 0.1964 0.3775 0.4647 0.1094 0.1491 0.1632
LightGCN 0.0560 0.1432 0.2025 0.0230 0.0487 0.0583 0.2294 0.3845 0.4510 0.1365 0.1708 0.1816
MCBPR 0.0433 0.1141 0.1649 0.0225 0.0378 0.0460 0.1449 0.2707 0.3234 0.0849 0.1125 0.1211
NMTR 0.0368 0.1161 0.1881 0.0189 0.0357 0.0473 0.1625 0.3007 0.3575 0.0779 0.1085 0.1176
MBGCN 0.0425 0.1298 0.1930 0.0296 0.0438 0.0531 0.1960 0.3953 †0.4804 0.1035 0.1472 0.1610
EHCF 0.0314 0.0975 0.1482 0.0155 0.0296 0.0378 †0.2137 †0.4101 0.4773 0.1132 †0.1567 †0.1676
GHCF †0.0766 †0.1796 †0.2465 †0.0411 †0.0634 †0.0742 0.2120 0.3939 0.4553 †0.1137 0.1543 0.1643

UnifiedIPR 0.1015 0.2481 0.3337 0.0547 0.0866 0.1005 0.2863 0.4722 0.5366 0.1806 0.2220 0.2325

Improv. (%) 32.51% 38.14% 35.38% 33.09% 36.59% 35.44% 33.97% 12.14% 11.70% 58.31% 41.67% 38.72%
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(a) Purchase (b) Cart (c) View
Figure 2: Ablation studies on global behavior embeddings

Cart and view recommendation
To verify the e↵ectiveness of our model for recommendation regarding

di↵erent behaviors, we further evaluated cart and view recommendations,
tasks that are often overlooked and thus not evaluated in most literature.
We report the results conducted on the Ecommerce and Rees46 datasets, as
shown in Tables 5 and 6, from which we itemize the following findings.

• The proposed multi-behavior algorithm significantly outperforms all
baselines over the two datasets in terms of all metrics, demonstrating
its ability to predict not only the “target behavior” but also other
behaviors compared to state-of-the-art methods.

• GHCF remains the strongest baseline, indicating the superiority of this
state-of-the-art GNN-based model for multi-behavior recommendation.

Overall, the multi-behavior algorithm of UnifiedIPR shows the e↵ective-
ness of leveraging interaction as training units and incorporating fine-grained
behavior embeddings of users and items to learn a unified embedding ma-
trix for multi-behavior recommendation. These results demonstrate notable
performance improvements over all three prediction tasks compared to state-
of-the-art multi-behavior recommendation approaches.

6. Discussion

In this section, we study the e↵ectiveness of the global behavior embed-
dings, as well as the sensitivity of hyperparameters �⇥ and ↵. We discuss
only the impact of multi-behavior recommendation, as single-behavior rec-
ommendation has already been studied in the literature [1].
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Figure 3: Sensitivity analysis of �⇥

Figure 4: Sensitivity analysis of ↵

6.1. Ablation Studies on Global Behavior Embeddings

To understand the impact of our mechanism for global behavior embed-
dings, we additionally considered two variants of the proposed model: Uni-
fiedIPR (w/o global) and UnifiedIPR (w/ global), which disables and enables
the global behavior rg in G(V , E , ), respectively (see Section 4.5). Moreover,
both variants apply ŷrui = (✓u + ✓ru) · (✓i + ✓ri ) as the scoring function to esti-
mate the likelihood that user u interacts with item i under behavior r. (Note
that the above score function is di↵erent from that used in the original Uni-
fiedIPR in Section 4.6, which additionally concatenates the global behavior
embeddings when calculating the scores.)

As shown in Figure 2, adding global behavioral information indeed yields
better performance for all types of recommendation tasks (see the bars rep-
resenting the results of UnifiedIPR (w/ global) and UnifiedIPR). Moreover,
UnifiedIPR is shown to consistently outperform UnifiedIPR (w/ global),
which demonstrates that including global behavior embeddings in the scoring
function further benefits performance and thus yields superior results.

6.2. Sensitivity Analysis on Hyperparameters

Due to space limitations, we only report the hyperparameter analysis
on the purchase prediction results in Figures 3 and 4; predictions on other
behaviors exhibit similar phenomena. For the L2 regularization parameter
�⇥, all datasets perform relatively poorly when �⇥ = 0 and show the best
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performance when �⇥ = 0.001. For the learning rate parameter ↵, ↵ = 0.025
yields the best results for all datasets.

6.3. Computational E�ciency Comparison

Figure 5: Training time

We used E-commerce, the largest
dataset, to compare the compu-
tational e�ciency among di↵erent
models. Figure 5 plots the train-
ing time of the proposed model and
the seven compared methods.2 As
shown in the figure, the proposed
UnifiedIPR requires approximately
600 seconds to complete the train-
ing process, which is much faster
than all models except BPR. Note
also that deep learning-based mod-
els NMTR and EHCF require more
training time to achieve satisfactory
performance than GNN-based models MBGCN and GHCF. Moreover, while
BPR, MCBPR, and UnifiedIPR use only CPU computations, other mod-
els use GPU computations. Such results demonstrate the lightweight nature
and computational e�ciency of the proposed embedding learning framework,
which is thus more practical than other advanced methods.

7. Conclusion

We propose unified interaction-level preference ranking (UnifiedIPR), a
unified interaction-based pairwise ranking embedding framework for single-
behavior and multi-behavior embedding learning. UnifiedIPR samples and
constructs interaction triples, leveraging a pairwise ranking algorithm to cap-
ture user and item preferences under each behavior based on interaction sim-
ilarity. Its e↵ectiveness and e�ciency are demonstrated through extensive
experiments and analysis. Notably, this framework is highly flexible and can
be easily adapted to other recommendation tasks with minimal modification.
We plan to investigate the performance of more recommendation tasks, such
as incorporating metadata from users and items.

2Values reported in the figure vary when di↵erent implementations are applied.
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