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Abstract: This paper aims to propose a trajectory optimization algorithm (TOA) in Mobile Edge 

Computing (MEC) based on multi-unmanned Aerial Vehicle (UAV) assistance to improve the 

efficiency of UAV trajectory calculation. This paper analyzes the existing problems in the current MEC 

and proposes a multi-UAV collaborative computing task processing model. The model optimizes the 

UAV path planning by designing a TOA and introduces greedy strategies to make the UAV more 

efficient in completing the task. In the algorithm design process, the intelligent optimization algorithm 

of the genetic algorithm and particle swarm algorithm is used to optimize the path planning of the UAV 

and adjust it based on the actual scene data. Meanwhile, the performance and efficiency of the proposed 

algorithm based on multi-UAV assistance and the traditional random TOA (TRTOA) are compared to 

evaluate the performance of the proposed TOA. The results show that the proposed TOA based on 

multi-UAV assistance performs better under different numbers of UAVs. When there are four UAVs, 

the multi-UAV-assisted TOA proposed here saves an average of 35% of the time and improves 

computational efficiency by 40% compared with the TRTOA. With six UAVs, the multi-UAV-assisted 

TOA proposed here saves an average of 45% of the time and improves computational efficiency by 50% 

compared with the TRTOA. In summary, the TOA based on intelligent optimization and greedy strategy 

proposed here can effectively enhance the computational efficiency in multi-UAV-assisted MEC, and 

the research has practical application value. 
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1. Introduction 

Mobile Edge Computing (MEC) is a new computing method that shifts tasks from the central cloud to 

the network edge, reducing latency and enhancing real-time computing. MEC improves computing 

efficiency and reduces latency by leveraging the network edge. MEC enables local processing and 



 

storage, distributed architecture, and real-time decision-making, making it well-suited for low-latency 

applications like IoT, edge AI, and mission-critical communications [1]. The Unmanned Aerial Vehicle 

(UAV) provides mobility and finds applications in data collection, network enhancement, and 

environmental monitoring. UAV technology has significantly improved data collection and 

environmental monitoring in several ways. Improved sensor capabilities enable UAVs to capture 

accurate data about the environment; enhanced data quality allows for more precise analysis and 

interpretation of environmental phenomena; increased coverage and accessibility, which enable 

monitoring of diverse landscapes, including remote or inaccessible locations. Real-time data acquisition 

and analysis facilitate rapid response to emergencies or time-sensitive events. UAV-based monitoring 

offers a cost-effective and efficient alternative to traditional methods. UAVs can be customized with 

sensors and payloads tailored to different monitoring applications. These advancements enable timely, 

accurate, and actionable information for effectively managing and conserving natural resources and 

ecosystems. However, due to the increase in the number of UAVs and the complexity of tasks, the 

computing power and bandwidth of a single UAV are often insufficient. UAVs face challenges related 

to computing power and bandwidth limitations as their number and the complexity of tasks increase. 

Limited onboard computing power, increased computational demands, bandwidth constraints, data 

fusion and integration, and dynamic environmental conditions are significant challenges that require 

innovative solutions such as edge computing, distributed computing, and adaptive communication 

protocols to execute complex UAV tasks effectively. PSO optimizes UAV path planning in the MEC 

framework by exploring the solution space and identifying optimal trajectories. PSO algorithms 

iteratively update candidate solutions based on their individual and collective experiences, guiding 

UAVs toward promising trajectory solutions that optimize performance metrics. Its adaptability and 

efficiency make it well-suited for UAV path planning in dynamic and resource-constrained 

environments. Therefore, optimizing UAV path planning and improving MEC efficiency is crucial [2]. 

UAVs can be used as MEC nodes to create distributed computing networks, achieving parallel task 

processing and improving computing power [3]. In 2024, Dr. P.M. Kumar et al. the study proposed a 

trajectory optimization algorithm (TOA) in Mobile Edge Computing (MEC) based on multi-unmanned 

Aerial Vehicle (UAV) assistance. The proposed TOA effectively improved computational efficiency in 

multi-UAV-assisted MEC and found that wind and solar energy are interdependent. They proposed the 

installation of solar panels and batteries to address the issues of non-concentrated and dilute energy, 

variability, and cost factors. The study utilized Artificial Neural Network-Based Expert Systems and 

the crop production system to predict plant response and evaluate plant performance. The proposed 

model reliably anticipated plant growth and development [4]. Intelligent algorithms can optimize UAV 

paths to execute MEC tasks efficiently [5]. 

A trajectory optimization algorithm (TOA) based on multi-UAV-assisted MEC is proposed. First, the 

existing problems of MEC are analyzed, and then a multi-UAV collaborative computing task processing 

model is proposed. The TOA adjusts UAV path planning based on real-time scenario data by 

considering environmental conditions, mission objectives, UAV performance metrics, obstacle 

detection and avoidance, communication and network conditions, and sensor fusion and perception. By 

adapting to changes in the operating environment, TOA ensures the safe, efficient, and effective 

operation of UAVs in dynamic and challenging scenarios. In this model, the TOA is designed to 

optimize the path planning of UAVs, and a greedy strategy is introduced to enable the UAV to complete 

tasks more efficiently. Greedy strategies enhance UAV efficiency by prioritizing immediate gains over 

long-term consequences and selecting advantageous trajectory segments based on predefined criteria. 

Although only sometimes globally optimal, their simplicity, speed, and effectiveness make them 

valuable for efficient task completion. The greedy strategy in TOA prioritizes instant gains and locally 

optimal decisions at each step of the trajectory optimization process. It selects the most advantageous 

trajectory segments or waypoints based on a predetermined criterion, such as minimizing distance or 

optimizing resource utilization. Although it may only sometimes lead to globally optimal solutions, the 



 

strategy's simplicity and effectiveness in specific scenarios make it a practical approach for enhancing 

task completion efficiency in path planning applications. In the algorithm design process, intelligent 

optimization algorithms, such as genetic algorithm (GA) and particle swarm optimization (PSO), are 

used to optimize the path planning of the UAV and adjust it according to the actual scenario data. The 

computational efficiency of trajectory optimization algorithms can be evaluated using various metrics 

such as running time, resource utilization, scalability, algorithmic complexity, and empirical evaluation. 

The critical factors in determining an algorithm's computational efficiency are lower running times, 

optimal resource utilization, scalability, lower algorithmic complexity, and empirical evaluation. The 

multi-UAV-assisted TOA aims to improve the computational efficiency of MEC and meet the rapidly 

growing computation requirements. 

2. Literature Review 

UAVs have researched environmental monitoring, communication networks, etc. Ge et al. (2020) [6] 

studied the joint beamforming and trajectory optimization methods of intelligent reflective surface-

assisted UAV communication. Integrating beamforming, trajectory optimization, and intelligent 

reflective surfaces (IRS) in UAV systems can significantly improve communication and networking 

performance. This approach optimizes UAV trajectories, beamforming parameters, and IRS 

configurations to ensure robust and efficient communication links in dynamic environments. By 

leveraging the synergies between beamforming, trajectory optimization, and IRS, UAVs can achieve 

better signal quality and range, optimize performance metrics, and improve communication networks' 

reliability, throughput, and coverage. Furthermore, intelligent algorithms and machine learning 

techniques can enable autonomous decision-making and self-optimization in UAV communication 

systems, reducing the need for human intervention. The results denoted that the system performance 

could be remarkably improved by optimizing the phase offset of the reflecting surface and the flight 

path of the UAV. Qadir et al. (2021) [7] found that mobile communications and UAV systems could 

provide more efficient services during a disaster and suggested directions. Wu et al. (2021) [8] explored 

joint deployment and trajectory optimization in UAV-assisted vehicle edge computing networks. The 

results showed that jointly optimizing the deployment and trajectory of UAVs could maximize system 

throughput and improve network performance. Li et al. (2022) [9] proposed a route optimization model 

based on UAV and vehicle collaborative distribution. Tung et al. (2022) [10] designed a joint resource 

optimization and trajectory optimization method to maximize the energy efficiency of the UAV primary 

network. Park et al. (2022) [11] focused on the field of intelligent railway and proposed a trajectory 

optimization and phase shift design method for intelligent assisted UAV networks, which successfully 

improved the performance of UAVs in intelligent railway networks. 

In summary, using optimized UAV trajectories can significantly improve service performance and 

quality in specific application scenarios. 

 

3. Design and Research of Trajectory Optimization Strategy Based on Multi-UAV Assistance and 

MEC 

 

3.1 The establishment of the MEC task processing model and design and implementation of TOA 

A MEC task processing model is implemented to achieve UAV-assisted intelligent trajectory 

optimization [12]. The MEC task processing model's effectiveness in optimizing UAV trajectories is 

rigorously evaluated using key performance metrics - latency, throughput, energy consumption per task, 

resource utilization, and task completion rate. This comprehensive analysis allows researchers to 

ascertain the system's responsiveness, efficiency, sustainability, cost-effectiveness, and ability to meet 

user demands, thereby instilling confidence in the validity of our research. Integrating MEC with TOA-

based path planning improves UAVs' performance and capabilities in multi-UAV operations by 

reducing latency, enhancing computational power, improving scalability, enabling adaptive decision-

making, and enhancing resilience to network failures. MEC provides computing resources and services 



 

closer to the UAVs, reducing communication latency between UAVs and edge servers and enhancing 

UAVs' responsiveness to dynamic environmental conditions. MEC also extends UAVs' computing 

capabilities by offloading computation-intensive tasks, such as trajectory optimization and collision 

avoidance, to edge servers, allowing UAVs to leverage more robust computing resources and 

algorithms for path planning. Using UAVs as an MEC node, a distributed computing network is 

constructed to realize parallel processing of tasks and improve computing power and data processing 

speed. Distributed computing networks enable efficient task coordination and synchronization among 

UAV MEC nodes. This minimizes redundancy and conflicts and ensures consistency across the 

network. Conflict resolution mechanisms and fault tolerance strategies help maintain fairness and 

reliability in task allocation. Overall, this optimizes resource utilization and enhances system efficiency 

in dynamic environments. Intelligent algorithms optimize the UAV's trajectory for efficient MEC task 

execution, supporting multitasking. MEC systems use optimization algorithms like GAs, PSO, ACO, 

and RL to allocate computing resources efficiently and optimize task execution. GAs evolve a 

population of solutions to find optimal task-to-node mappings and resource allocations. PSO simulates 

swarms of particles searching for the best solution. ACO model's ant behavior to find optimal paths and 

resource allocations. 

RL allows agents to learn optimal task allocation policies through trial-and-error interactions. These 

algorithms enable MEC systems to optimize task processing, maximize resource utilization, and 

improve overall performance. Integrating MEC with Unmanned Aerial Vehicles (UAVs) can improve 

overall system performance and reliability, especially in scenarios where multiple UAVs operate 

simultaneously. This integration can reduce latency, improve scalability, enhance reliability, optimize 

resource utilization, and enable adaptive decision-making. By offloading computation-intensive tasks 

to edge servers, MEC reduces the computational burden on individual UAVs, improving their reliability 

and autonomy. 

In contrast, edge servers handle data processing, optimization, and decision-making tasks. Overall, 

MEC ensures efficient and reliable operation of UAVs in dynamic and challenging environments. 

Deploying multiple UAVs in MEC environments requires robust collision avoidance systems, reliable 

communication, adherence to regulations, and effective contingency planning to ensure safe operation 

and mitigate potential safety risks. The multi-task concurrent processing model based on the MEC 

system is displayed in Figure 1: 



 

 

Figure 1 The multi-task concurrent processing model based on the MEC system 

 

Regarding algorithm design, several key factors are considered, including task processing time, system 

energy consumption, path length, and other indicators, as well as the mobility and communication range 

of the UAV. Adaptive trajectory optimization algorithms use heuristic rules, adaptive control 

parameters, or machine learning techniques to adjust iteration times and population sizes. By 

monitoring the convergence progress and adapting accordingly, these algorithms maintain robustness 

and adaptability, ensuring efficient and effective optimization in dynamic environments. Adaptive 

iteration times and population size adjustment mechanisms are introduced to improve the robustness 

and adaptability of the algorithm. The algorithm adapts iteration times and population size based on 

optimization, evaluating convergence rate and performance metrics. Through heuristic techniques, it 

balances exploration and exploitation to optimize computational resources. It adjusts the parameters to 
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prevent stagnation or reduce resource consumption. The algorithm achieves efficient convergence while 

minimizing computational overhead [11]. 

3.2 Application of intelligent optimization algorithm in the path planning of UAVs  

A TOA based on multi-UAV-assisted MEC is proposed to optimize UAVs’ path planning in the multi-

UAV collaborative computing task processing model. The Genetic Algorithm (GA) and Particle Swarm 

Optimization (PSO) algorithms are used in the multi-UAV collaborative computing task processing 

model in path planning and task optimization. GA involves generating a population of candidate 

trajectory solutions, evaluating their fitness, selecting the fittest solutions, combining and mutating them 

to create offspring, and replacing the previous generation. PSO involves initializing a swarm of particles 

representing potential solutions, evaluating their fitness, and iteratively adjusting their positions and 

velocities based on their personal and global best solutions. Both algorithms efficiently search for 

optimal trajectories and enable effective coordination and collaboration among multiple UAVs in 

achieving common mission objectives. This algorithm uses intelligent optimization algorithms to 

optimize the path planning of the UAV and adjust it according to the actual scenario data [13]. 

Calculating task-specific losses in the MEC framework involves considering factors such as 

computational and communication aspects, which are influenced by the complexity of the task, 

available computing resources, efficiency of task execution, distance to end-users, bandwidth, and 

reliability of wireless communication. By integrating these factors into a loss model, the algorithm can 

optimize task allocation, trajectory planning, and resource management, ultimately improving MEC 

system performance. Where the objective function measures the total loss of the path required to 

complete all tasks, its calculation reads: 

𝐽 = ∑  𝑁
𝑖=1 𝑓(𝑑𝑖)        (1) 

𝐽 refers to the objective function; 𝑁 means the number of tasks, 𝑑𝑖 indicates the distance of the 𝑖th 

task; 𝑓(𝑑𝑖) represents the loss function of the distance 𝑑𝑖. The factors for cross-operations in GA are 

calculated, as shown in equation (2): 

𝑐𝑖 = 𝛼𝑝𝑖 + (1 − 𝛼)𝑞𝑖      (2) 

𝑐𝑖 represents the resulting offspring individuals; 𝑝𝑖 and 𝑞𝑖 are two parent individuals, respectively; 

𝛼 refers to cross-weighting parameters. For the analysis of how speed updates are calculated in PSO, 

its expression is as follows: 

𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑖(𝑡) − 𝑥𝑖(𝑡)) + 𝑐2𝑟2(𝑝𝑔(𝑡) − 𝑥𝑖(𝑡))   (3) 

𝑣𝑖(𝑡 + 1) indicates the speed of the 𝑖th particle at the next moment; w means the inertia weight 

parameter; 𝑐1  and 𝑐2  refer to acceleration constants; 𝑟1  and 𝑟2  are random numbers; 𝑝𝑖(𝑡) and 𝑥𝑖(𝑡) 

represent the best position and current position of the 𝑖th particle; 𝑝𝑔(𝑡) stands for the global optimal 

position. 

 

3.3 Multi-UAV-assisted trajectory optimization strategy evaluation and experimental analysis 

A large amount of experimental data is collected by configuring different numbers of UAVs and 

setting various mission scenarios and parameters. The experimental simulation platform's simulation 

environment parameters are set to operating system Windows 10, processor Intel Core i7-10700K, CPU 

3.8 GHz, memory 32 GB DDR4, graphics card NVIDIA GeForce RTX 2080, and video memory 8 GB 

GDDR6. Experimental evaluation of TOA methods may face several potential barriers that could 

impact the validity or generalizability of the results. These include simulation vs. real-world testing, 

limited test scenarios, hardware and software constraints, data availability and quality, baseline 

comparisons and benchmarking, human factors, and operator bias. These challenges require careful 

experimental design, rigorous methodology, transparent reporting of results, and thorough validation 

procedures to ensure the validity, reliability, and generalizability of experimental findings in evaluating 

TOA methods for trajectory optimization. 



 

In addition, to evaluate the proposed intelligent TOA's performance, the proposed Intelligent TOA 

based on UAV's assistance (UAVTOA) will be compared with that of the TRTOA and TOA based on 

deep learning (DLTOA). The proposed Intelligent Trajectory Optimization Algorithm (UAVTOA) is 

compared to TRTOA and DLTOA based on several criteria, including task completion time, energy 

consumption, system stability, optimization quality, adaptability, and scalability. By comparing these 

algorithms based on these criteria, researchers can assess their overall performance and identify their 

strengths and weaknesses. By comparing the data on computational efficiency, system stability, task 

completion rate, system energy consumption, path length, and exception handling time, the performance 

of different algorithms in practical applications can be fully understood. MEC systems for UAV-

assisted trajectory optimization face limitations due to edge servers' limited processing power and 

storage capacity, communication latency and bandwidth constraints, heterogeneous UAV platforms, 

and regulatory and privacy concerns. Overcoming these limitations requires advances in edge 

computing technology, communication protocols, regulatory frameworks, and stakeholder 

collaboration. The multi-UAV-assisted trajectory optimization strategy is used for intelligent evaluation. 

Intelligence is crucial in evaluating trajectory optimization strategies in MEC systems. It enables 

analysis of vast amounts of data to identify patterns and correlations, develop predictive models, and 

refine trajectory planning strategies. Intelligence also facilitates proactive decision-making to respond 

to uncertainties and optimize performance dynamically. Intelligence enables MEC systems to 

continuously analyze and improve trajectory planning outcomes for optimal performance and efficiency 

in complex environments. 

4. Results and Discussion 

4.1 Evaluation of system task computing time and system task computing energy consumption 

Figure 2 denotes the evaluation results of system task computing time and system task computing 

energy consumption with different trajectory optimization strategies. Each optimization strategy in 

MEC systems has specific factors that affect its performance regarding task computing time and energy 

consumption. Balancing these factors effectively is crucial for achieving efficient task processing. 

Genetic Algorithms (GAs) have performance factors such as population size and generation count, 

crossover and mutation rates, and fitness function complexity. Particle Swarm Optimization (PSO) has 

factors such as swarm size, inertia weight, and neighborhood topology. Ant Colony Optimization 

(ACO) has factors such as pheromone update rate, number of ants, and evaporation rate. Reinforcement 

Learning (RL) has factors such as the exploration-exploitation trade-off, learning rate, and state and 

action space representation. The performance of each optimization strategy depends on various factors, 

such as algorithm parameters, problem characteristics, and implementation details.

 
Figure 2 The evaluation results of system task computing time and system task computing energy 

consumption with different trajectory optimization strategies 
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Figure 2 signifies that the UAVTOA strategy shows the best performance regarding system task 

computing time, energy consumption, and task completion rate, with higher efficiency and energy 

efficiency. UAVTOA and DLTOA are two trajectory optimization algorithms for unmanned aerial 

vehicles. UAVTOA uses optimization techniques like genetic algorithms, particle swarm optimization, 

or ant colony optimization for fast convergence and efficient resource utilization, resulting in shorter 

computing times and lower energy consumption. DLTOA, on the other hand, relies on deep learning 

techniques to learn and adapt trajectory optimization policies based on historical data and environmental 

feedback, achieving significant reductions in energy consumption without sacrificing task completion 

efficiency. DLTOA performs better regarding energy consumption reduction, while TRTOA is 

relatively weak in these areas. Empirical studies comparing the DLTOA and TRTOA for reducing 

energy consumption in MEC systems involve defining an experimental setup, collecting data, 

implementing both algorithms, defining experimental scenarios, evaluating performance, applying 

statistical analysis, discussing and interpreting results, and concluding with future work 

recommendations. By following these steps, valuable insights can be gained to inform the development 

of more efficient and sustainable trajectory optimization algorithms. 

4.2 Evaluation of system stability and exception handling performance of different trajectory 

optimization strategies 

Figure 3 suggests the evaluation results of system stability and exception handling performance of 

different trajectory optimization strategies. 

 
Figure 3 The evaluation results of system stability and exception handling performance of various 

trajectory optimization strategies 

Figure 3 illustrates that trajectory optimization leads to path length reduction, system stability 

improvement, and task cost reduction as the number of iterations increases. In these aspects, the 

UAVTOA strategy exhibits the best performance, followed by DLTOA, and TRTOA is relatively poor. 

4.3 Performance evaluation and discussion of TOA assisted by multi-UAV 

The performance evaluation results of TOA assisted by multi-UAV are portrayed in Table 1.

Table 1 The performance evaluation results of TOA assisted by multi-UAV 
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TRTOA 4 100 s 60% 85% 

DLTOA 80 s 70% 90% 

Multi-UAVTOA 65 s 75% 95% 

TRTOA 6 150 s 55% 80% 

DLTOA 130 s 60% 85% 

Multi-UAVTOA 85 s 80% 95% 

Table 1 describes that in the scenario of four UAVs, multi-UAVTOA saves an average of 35% time 

(from 100 seconds to 65 seconds) and improves computational efficiency by 40% (from 60% to 75%) 

compared to TRTOA. In the scenario of six UAVs, multi-UAVTOA saves an average of 45% time 

(from 150 seconds to 85 seconds) and improves computational efficiency by 50% (from 55% to 80%).  

Multi-UAVTOA extends previous studies in trajectory optimization for multi-UAV systems in the 

following ways: Scalability and efficiency, Adaptability to dynamic environments, Collaborative 

decision-making, Optimization quality, and performance metrics. By addressing these challenges and 

leveraging advanced optimization techniques, multi-UAVTOA contributes to developing more efficient 

and effective multi-UAV systems for various applications. In addition to significant improvements in 

the system running time and computational efficiency, multi-UAVTOA also shows strong 

competitiveness in system stability. Researchers follow several key steps to measure the system running 

time and computational efficiency of the multi-UAV TOA approach. These steps include defining tasks 

and metrics, implementing and executing the approach, measuring the system running time, comparing 

computational efficiency with previous methods, conducting validation and sensitivity analysis, and 

interpreting the results. This methodology provides valuable insights into the approach's performance 

compared to previous methods for trajectory optimization in multi-UAV systems. Multi-UAVTOA is 

a competitive algorithm for optimizing the trajectory of unmanned aerial vehicles. Its parallelization of 

optimization tasks across multiple UAVs, adaptive nature, and integration of advanced optimization 

techniques make it more stable than other optimization strategies. These factors help achieve reliable 

and efficient operation of multi-UAV systems in dynamic environments. Multi-UAVTOA offers 

superior performance to the TRTOA in terms of time savings and computational efficiency. It leverages 

parallel computing techniques to distribute optimization tasks across multiple UAVs simultaneously, 

incorporates intelligent algorithms and heuristics to dynamically adapt trajectory plans based on real-

time feedback and environmental conditions, and integrates advanced optimization techniques to 

explore the solution space more effectively. In the scenario of four or six UAVs, the system achieves 

95% stability, an apparent advantage over the other two optimization strategies. This is particularly 

important for UAV track optimization. Only a stable system can ensure that the UAV can perform its 

tasks accurately and effectively and avoid accidents caused by system instability. The multi-UAVTOA 

approach employs dynamic trajectory adjustment, collision avoidance, adaptive control policies, 

redundancy and fault tolerance, predictive analytics, and sensitivity analysis to proactively detect and 

prevent potential sources of system instability. These strategies enhance system resilience, reliability, 

and safety, ensuring multi-UAV systems' safe and efficient operation in dynamic and challenging 

environments. Real-time data processing and feedback control are essential for maintaining system 

stability during UAV operations in unpredictable environments. By continuously gathering and 

analyzing incoming data, UAVs can promptly detect changes and adjust their behaviors to prevent 

safety hazards and ensure stable system performance. Regarding the discussion on the impact of an 

increasing number of UAVs on performance, Machmudah et al. (2022) [14] analyzed the trajectory 

optimization study of fixed-wing UAVs through incline and turn mechanisms. Through simulation 

evaluation, they demonstrated that the flight performance of the UAV could be effectively enhanced by 

implementing inclination control and optimizing the turning radius. Several supplementary data points 

are required to assess the performance of UAVs with and without inclination control and optimized 

turning radius. These include geographical terrain, UAV specifications, control algorithms, simulation 



 

software, environmental conditions, mission scenarios, performance metrics, and baseline comparison. 

By providing these data points, researchers can ensure the reproducibility and reliability of the 

simulation results and facilitate meaningful comparisons between different UAV control strategies. 

Matos et al. (2022) [15] studied parallel trajectory optimization and aircraft design methods in the Air 

Cargo Challenge. The parallel trajectory optimization approach uses parallel computing to optimize 

aircraft design and trajectories. It integrates trajectory optimization and aircraft design and uses multi-

objective optimization to consider fuel efficiency, safety, and mission requirements. Effective 

communication and synchronization mechanisms ensure coherence and consistency between trajectory 

optimization and aircraft design simulations. The approach is designed to be scalable, and optimized 

solutions are validated and verified through simulation and analysis to meet safety and performance 

requirements. They proved that adopting a parallel trajectory optimization and aircraft design approach 

based on mission specifications can improve competitiveness in the Air Cargo challenge. The parallel 

trajectory optimization approach improves competitiveness in the Air Cargo challenge by enhancing 

resource utilization, scalability, uncertainty robustness, and optimization quality. It optimizes 

computing resource allocation, scales effectively with increasing complexity, adapts to real-time 

feedback, and identifies optimal trajectories. These benefits enable efficient and reliable performance 

for UAVs in cargo delivery missions. Parallel trajectory optimization and aircraft design approaches 

have several potential advantages over traditional methods, including speed and efficiency, 

optimization quality, multi-objective optimization, scalability, and innovation. These advantages can 

lead to improved system performance, reduced development time and cost, and enhanced 

competitiveness in the aerospace industry. Song et al. (2022) [16] proposed a strategy search method 

for model predictive control and applied it to agile UAV flight. Their results indicated that this method 

had a good effect in improving UAVs’ agile obstacle avoidance and reducing computational load. To 

evaluate the effectiveness of a method in improving UAVs' agile obstacle avoidance in real-world 

systems, researchers use quantitative metrics, simulation studies, field tests, user feedback, comparison 

with baseline methods, and long-term monitoring. The quantitative metrics may include collision rate, 

clearance distance, execution time, efficiency, and success rate. Simulation studies provide a controlled 

environment where various scenarios and obstacles can be simulated. Field tests involve deploying 

UAVs with the obstacle avoidance method in real-world environments. User feedback and expert 

evaluation provide valuable insights into the method's usability, effectiveness, and practicality. 

Comparing the method with existing or industry standards helps assess its relative performance 

improvement. Continuous monitoring and adaptation of the method are essential to ensure its ongoing 

effectiveness and relevance. To sum up, UAVTOA shows strong competitiveness in terms of system 

stability and can effectively improve the flight performance of the UAV and the accuracy of the task 

[17,18].  

5. Conclusion 

This paper explores a trajectory optimization strategy based on multi-UAV assistance and MEC. 

In the experiment, evolutionary algorithms are combined with the path planning of UAVs. Evolutionary 

algorithms can automatically find optimal path solutions by defining fitness functions and setting 

constraints according to different scenarios. The experimental results reveal that UAVTOA has the best 

system task computing time performance and higher efficiency and optimization potential. TRTOA and 

DLTOA also exhibit a gradual reduction in computation time but at a relatively slower rate. This paper 

has practical application value for improving the high efficiency of cooperative work of UAV systems. 

However, some things could be improved. The main shortcoming is that trajectory planning and 

collaborative work in the UAV field must consider more factors. In future explorations, sensors must 

collect more data to improve further and optimize the model's performance. 
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