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Abstract 

This paper explores the Principal Component Analysis (PCA) technology used for data analysis and 

dimensionality reduction to improve the shortcomings of current visualization technology and the 

mining ability of existing technologies for practical data. Firstly, PCA's fundamental principles and 

applications in data mining and its specific application modes in icon visualization are introduced. In 

terms of icon visualization, PCA-based methods can convert high-dimensional data into two- or three-

dimensional graphical forms, making the structure and patterns of the dataset more intuitive and visible. 

This visualization helps discover features like clusters, outliers, and data distribution in the dataset, 

helping users better understand the intrinsic structure and potential associations. This paper proposes 

an active learning method based on uncertainty visualization, which aims to assist users in sample 

selection by visualizing the results. Experiments are conducted on WINE, Auto-MPJ, and WDBC 

datasets. The results show that in most cases, the result of multi-label optimization corresponds to a 

more minor mean square deviation of the data than the result of regular splitting. On the WDBC dataset, 

when the abstract cluster is 10, the mean square deviation of the data is only 0.094. Thus, multi-label 

optimization can automatically remove unnecessary labels based on energy from the initial label set. 

The research results have a specific reference value for applying and expanding the PCA method in 

icon visualization. 
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Introduction 

In today's information age, the scale and complexity of data are increasing, making Data Mining (DM) 

a critical task [1-3]. Data from various sources, including time series, geographical, transactional, 

behavioural, scientific, social, and operational, may all be analyzed using data mining techniques. 

Understanding patterns and trends through this technique facilitates strategic decision-making in social 

media, business, finance, healthcare, and industrial processes. DM is discovering useful information 

and patterns in large amounts of data. It can help people uncover the hidden patterns behind data and 

provide valuable insights and guidance to decision-makers [4,5]. DM is discovering underlying patterns, 

associations, and information from large-scale data sets. In DM, data visualization is an essential tool 

that can display complex data in a graphical form to help users better understand and discover patterns, 

trends, and anomalies in the data. Intelligent data analytics automatically discovers patterns, 

correlations, and trends in data by applying artificial intelligence and machine learning techniques to 

provide insights and precise predictions. Among the many methods of DM, icon visualization is a 

powerful tool that can present data to users in an intuitive and easy-to-understand way so that they can 

better understand the internal structure and characteristics of data [6-8]. Using techniques like PCA, t-

SNE, and UMAP, reducing dimensions, effectively aggregating data, enabling hierarchical 

visualization, managing data efficiently, utilizing parallel computing, incorporating interactive 
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visualization techniques, optimizing rendering, designing a responsive user interface, and continuously 

monitoring and optimizing performance are some ways to improve icon visualization for large datasets. 

Principal Component Analysis (PCA) is a commonly used data dimensionality reduction technique in 

icon visualization. PCA uses a linear transformation to transform raw data into a new set of orthogonal 

variables called principal components. Principal components capture the direction of the most 

significant variance in the data and convert it into a new coordinate system. A mathematical technique 

called principal component analysis (PCA) determines which variables in a data set have the highest 

variation and computes their principal components. Minimizing dimensionality and extracting 

important characteristics entails standardization, covariance matrix computation, eigenvalue and 

eigenvector calculation, sorting, principal component selection, and transformation. As a result, PCA 

can reduce high-dimensional data to lower dimensions while retaining as much information as possible 

from the original data. A procedure that keeps the primary information while decreasing the 

dimensionality of high-dimensional data. Data must be standardized, the covariance matrix must be 

calculated, the covariance matrix must be broken down, the top k eigenvectors must be chosen, and the 

data must be transformed into a new k-dimensional space. In DM, high-dimensional data can be mapped 

to low-dimensional spaces while retaining the primary information in the data by applying PCA. The 

dimensionality of the data can be reduced by reducing dimensionality, and the complexity of the data 

can be simplified to help visual presentation. One of the goals of DM is to discover patterns and trends 

in data to reveal underlying information. Data can be mapped into two- or three-dimensional space to 

better observe the structure and distribution of data and discover hidden patterns and associations by 

combining PCA and icon visualization. PCA improves data mining visualization, especially for 

applications using icon visualization. It improves icon visualization, distils important patterns from 

complicated data, and simplifies it. As a result, data analysis and exploration have become more 

efficient and natural. 

Icon visualization is an intuitive and effective way to visualize data. It makes data easier to understand 

and analyze using icons, graphics, and symbols. The application of icon visualization in DM can help 

users better identify patterns and trends in data, discover correlations between data, and spot abnormal 

values and outliers. Data tends to be high-dimensional in many fields, such as biology, finance, and 

social networks. It contains many features and attributes. Visualizing and analyzing high-dimensional 

data is a challenging task, and PCA can help reduce the dimensionality of the data and provide better 

visualizations. With the continuous advancement of computer technology and the development of 

visualization tools, more and more DM and analysis software have begun to integrate PCA-based icon 

visualization functions. These tools provide a user-friendly interface and interactive operation, making 

DM tasks more convenient and efficient. Data mining operations are automated using various 

techniques, including AutoML, scripting, template-based approaches, interactive platforms, 

parameterization scripts, MLOps tools, pre-built libraries, parameter tweaking tools, and interactive 

notebooks to ensure efficiency and user flexibility. 

Visualization and visual analysis have become essential research directions in data visualization to 

support decision-makers in better understanding the uncertainty in data and enable them to use data 

more effectively to make decisions. Decision-makers can more clearly perceive bias and the degree of 

uncertainty in the data by presenting uncertainty in intuitive charts, graphs, or interactive visualization 

tools. This visualization helps them identify potential data issues, assess the risks of their decisions, and 

take appropriate action to mitigate the impact of uncertainty. Here, after sorting out the PCA-based icon 

visualization technology, an active learning method based on uncertainty visualization is proposed, 
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which aims to assist users in sample selection by visualizing the results. This paper expects to provide 

interactive data exploration support for large-scale data. 

The rest of the paper is structured as follows: Section 2 describes the literature review; Section 3 

illustrates the materials and methods, including the PCA method for DM dimensionality reduction 

processing; Section 4 shows the Results and discusses them; and Section 5 summarizes the study's 

conclusion along with its future scope. 

Literature review 

The research on PCA-based chart visualization has attracted widespread attention. Many researchers 

have analyzed it, especially in practical applications, and proposed many applicable methods and 

models. 

Wang (2020) et al. proposed that PCA-based icon visualization could better reflect the intrinsic structure 

and essential characteristics of data, helping users understand data more comprehensively [9]. 

Intelligent data analysis technology can also combine dimensionality reduction data with other machine 

learning algorithms to achieve deeper DM and prediction. Using methods like PCA, dimensionality 

may be diffused to improve interpretability, decrease complexity, minimize noise, prevent overfitting, 

improve visualization, strengthen clustering and classification, conserve storage, and generate new 

features. This methodology streamlines data analysis, enhances efficiency, and facilitates improved data 

administration. Pouamoun (2021) et al. discovered more hidden patterns and associations by feeding 

PCA dimensionality reduction data into classification, clustering, or regression models to provide more 

accurate guidance for decision-makers [10-12]. Zhao (2022) et al. believed that through PCA 

dimensionality reduction, the dimensionality of the dataset could be reduced to simplify the analysis 

and interpretation of the data. High-dimensional data was often difficult to visualize, while reduced 

dimensionality data could be more easily presented in two- or three-dimensional space to help users 

better understand the data [13]. Ranjan et al. (2022) argued that PCA could extract the main features in 

the data and visualize these features. This was important for discovering patterns, clusters, and outliers 

in data. PCA-based icon visualization could also help users find potential relationships and interactions 

in the data, facilitating a deeper understanding of the data [14-16]. The study by Bovkir et al. (2021) 

compared multiple dimensionality reduction techniques, including PCA, for visualizing the effects of 

high-dimensional data. Through experimental comparison, the application effect of PCA in icon 

visualization was shown [17,18]. A paper by Zhang et al. proposed a method for data dimensionality 

reduction and icon visualization using PCA and applied it to interactive data visualization. The 

visualization of reduced dimensionality data was demonstrated using icon types, such as scatterplots 

and parallel coordinate plots, and interactive control and analysis functions were provided [19-21]. Yu's 

(2023) paper introduced a PCA-based dimensionality reduction technique called t-stochastic Neighbor 

Embedding (SNE). 

T-SNE mapped high-dimensional data into two- or three-dimensional space by preserving the similarity 

relationship between data samples to achieve visual display [22,23]. To represent data points, manage 

heavy-tailed distributions, balance local and global structure, use the Barnes-Hut approximation for 

scalability, and perform iterative embedding optimization, t-SNE employs stochastic neighbour 

embedding with t-distribution. Piippo et al.(2022) proposed a PCA-based evolutionary computation 

method for visualizing high-dimensional data. They combined PCA and genetic algorithms to visually 

display data by optimizing the projected coordinates of the data [24-26]. Tuarob (2021) et al. proposed 

a projection-based PCA method for interactive visualization of high-dimensional data. Data was 
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mapped to two-dimensional space through projection and reprojection techniques, and interactive 

exploration and analysis capabilities were provided to help users discover patterns and trends in the 

data [27,28]. A paper by Fu (2020) et al. introduced an icon visualization method based on PCA and 

variable-level information to explore and analyze high-dimensional data. A visualization framework 

was proposed to visually present hierarchical details in data and provide interactive exploration 

capabilities [29-32]. The research offers an e-healthcare risk prediction system for health big data 

centred around licensed medical practitioners and powered by a heterogeneous network. It enhances 

prediction accuracy, monogenic score, density accuracy, execution time, and overall efficiency by 73.98% 

[33]. The usage of solar and wind energy to generate power is covered in the article, along with topics 

including cost, variability, and non-concentrated and diluted energy. It forecasts how plants react to 

temperature, light intensity, and humidity using crop production systems and artificial neural network-

based expert systems [34]. Table 1 shows the critical components analysis of the literature review: 

Table 1: Critical analysis component of the literature review 

References Method Results Limitations 

[9] In this paper, a 

comprehensive 

similarity life 

prediction method is 

proposed for analyzing 

rolling bearings using 

multi-dimensional 

feature fusion 

The multi-dimensional 

feature prediction 

algorithm improves the 

accuracy and 

reliability of predicting 

rolling bearing life, 

supporting better 

predictive maintenance 

and health 

management. 

This method's 

limitations include the 

need for extensive 

full-life tests to 

improve prediction 

accuracy and the focus 

on time-domain 

features, which 

restricts the depth of 

data analysis. 

[13] This paper developed a 

MATLAB® coding 

basis and integrated 

method, 'Ana', for data 

visualizations and 

statistical analysis 

The code efficiently 

prints high-quality 

figures up to 150 or 

300 dpi, providing 

enough contrast to 

differentiate the omics 

dataset. It is 

compatible with 

Windows and MacOS 

operating systems and 

is quick and efficient 

for publication and 

presentation. 

However, this paper 

does not offer 

appropriate code 

annotations for 

undergraduate and 

postgraduate students 

to learn the coding 

basis of statistical data 

analysis.  

[14] The Sequence Graph 

Transform (SGT) is 

introduced as a feature 

embedding function 

that can capture a 

range of short- to long-

term dependencies 

In sequence clustering 

and classification, 

SGT outperforms 

existing methods such 

as sequence/string 

Kernels and LSTM, 

delivering higher 

accuracy with reduced 

The proposed model is 

complex to implement, 

computationally 

intensive, sensitive to 

data variations, and 

can be prone to 

overfitting. It is also 

limited to non-
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without adding to the 

computational load. 

computational 

demands. 

sequential data and 

presents challenges in 

interpreting its 

features. 

[17] This study investigates 

big data visualization 

methods in smart cities 

by analyzing GIS-

integrated dashboard 

examples and 

developing an open-

source GIS-based 

dashboard with 

Apache Superset. 

Data visualization 

uncovers the 

relationships between 

data, creating flexible 

and innovative 

connections between 

human perception and 

computer systems for 

enhanced 

understanding. 

The primary 

challenges in 

visualizing big data in 

this study are missing 

data and visual noise. 

[21] CancerMIRNome was 

developed to support 

the mining of miRNA 

expression data from 

the Cancer Genome 

Atlas and extensive 

profiling studies. 

The data analysis and 

visualization modules 

will significantly 

enhance the use of 

valuable resources and 

advance the practical 

application of miRNA 

biomarkers in cancer 

research. 

This study has 

limitations, including 

potential integration 

challenges, user 

interface issues and 

technical constraints.  

[22] This study employs 

cheminformatics and 

machine learning 

techniques to explore 

the chemical space, 

scaffolds, structure-

activity relationships, 

and landscape of 

human androgen 

receptor (AR) 

antagonists. 

The study's findings 

offer new insights and 

recommendations for 

hit identification and 

lead optimization in 

the development of 

novel AR antagonists. 

The study uses data 

from the ChEMBL 

database, which may 

be incomplete due to 

missing records of 

some assays and 

experiments. This 

leads to gaps in 

valuable data like 

additional scaffolds. 

Research on PCA-based icon visualization applications includes data dimensionality reduction, 

anomaly detection, and data clustering and classification. It provides a rich theoretical and practical 

foundation that can be used to apply PCA and icon visualization techniques in DM tasks effectively. 

Materials and Methods 

PCA method for DM dimensionality reduction processing 

Dimensionality reduction processing in data intelligence analysis is a commonly used technique to 

reduce the dimensionality of a high-dimensional data set while preserving the primary information in 

the data. In data intelligence analysis, dimensionality reduction reduces multicollinearity and identifies 

essential characteristics to simplify complicated datasets and enhance computing efficiency, model 

performance, visualization, and insights. PCA maps the original data to a new feature space through a 
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linear transformation that enables the latest features to explain most of the variance in the data [35]. 

PCA improves efficiency, simplifies visualization, and highlights important patterns to improve data 

intelligence compared to conventional techniques. It concentrates on high-variance directions, 

minimizes noise, and simplifies complicated data. PCA improves scalability, lowers computing burden, 

and facilitates interpretation for more extensive datasets. 

Suppose a set of points {𝑥1, 𝑥2. . . 𝑥𝑛} is given in the space of 𝑅𝑑. PCA aims to find a projection matrix 

𝑊 = [𝑤1, 𝑤2. . . 𝑤𝑚] that can reflect the difference of the original spatial data to the greatest extent. 

Assuming the data has been decentralized, PCA can be expressed as a minimal reconstruction error 

model of Eq. (1). 

𝑚𝑖𝑛
𝑊

𝑒(𝑥𝑖)   𝑠. 𝑡. 𝑊𝑇𝑊 = 𝐼                                        (1) 

𝑒(𝑥𝑖) = ∑ ‖𝑥𝑖 − 𝑊𝑊𝑇𝑥𝑖‖2
2𝑛

𝑖=1                                        (2) 

One approach to improve the PCA's robustness is to change the ℓ2 norm in the PCA function to the ℓ1 

norm as a distance metric [36-38]. Numerous methods, such as sparse PCA, regularised PCA, 

incremental PCA, robust data preprocessing, kernel PCA, robust PCA (RPCA), and assembling PCA, 

can enhance principal component analysis (PCA). These techniques improve PCA's performance and 

reliability by tackling the data's outliers, noise, and non-normality. The idea of reconstruction error 

minimization is to calculate the reconstruction error using the ℓ1 norm as a distance metric, and the 

model for solving the projection direction can be expressed as: 

𝑚𝑖𝑛
𝑊

∑ ‖𝑥𝑖 − 𝑊𝑊𝑇𝑥𝑖‖1
𝑛
𝑖=1                                        (3) 

PCA with reconstruction error minimization improves data intelligence by simplifying complicated 

data, reducing noise and recognizing critical patterns, improving icon visualization and ease of 

understanding, and reducing computing burden. Furthermore, feature extraction, anomaly detection, 

noise reduction, data compression, and visualization are improvements. The idea of variance 

maximization is to change the ℓ2 norm of mean squared to 𝓉𝒽ℯ ℓ1 norm based on PCA. The model of 

Eq. (4) can calculate the principal component direction. 

𝑚𝑖𝑛
𝑊

∑ ‖𝑊𝑇𝑥𝑖‖1
𝑛
𝑖=1                                           (4) 

These two lines of thinking are often interrelated. The ℓ1 norm-based reconstruction error minimization 

and variance maximization modeling in PCA have the problem of criterion inequality, while Angle 

PCA can take advantage of information hidden in the dataset. The equation for determining principal 

components by Angle PCA can be expressed as: 

𝑚𝑎𝑥
𝑊

∑
‖𝑊𝑇𝑥𝑖‖

2

1

‖𝑥𝑖−𝑊𝑊𝑇𝑥𝑖‖
2

1
𝑛
𝑖=1                                           (5) 

In Eq. (5), each term can be thought of as a cotangent term of the angle between the ith data projection 

variance and the reconstruction error, which is expressed as: 
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‖𝑊𝑇𝑥𝑖‖
2

1

‖𝑥𝑖−𝑊𝑊𝑇𝑥𝑖‖
2

1 = 𝑐𝑜𝑡 𝛼𝑖                                          (6) 

PCA based on the ℓ2,𝑝 norm preserves the rotational invariance of PCA, and its objective function can 

be defined as: 

𝑚𝑖𝑛
𝑊

∑ ‖𝑥𝑖 − 𝑊𝑊𝑇𝑥𝑖‖2
𝑝𝑛

𝑖=1                                           (7) 

In Eq. (7), the value of p is (0,2), and the value of p can be changed according to the actual situation. 

PCA is one of the representatives of global dimensionality reduction technology. Local preservation 

projection (LPP), as one of the most commonly used local dimension reduction techniques, can 

maintain the local structural characteristics of data [39,40]. LPP must first construct an initial adjacency 

graph 𝑀 = {𝑋, 𝑆}𝑀 = {𝑋, 𝑆}. S refers to the similarity matrix, and its Gaussian kernel function is 

defined as: 

𝑠𝑖𝑗 = {
𝑒𝑥𝑝 (−‖𝑥𝑖 − 𝑥𝑗‖

2

2
/2𝜎2) , 𝑥𝑖 ∈ 𝑁𝑘(𝑥𝑗) ∨ 𝑥𝑗 ∈ 𝑁𝑘(𝑥𝑖)

0                                  ,𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                          (8) 

In Eq. (8), 𝑁𝑘(𝑥𝑗) represents the k nearest neighbours of 𝑥𝑗 . 𝜎 is a Gaussian kernel parameter. The 

objective function of LPP is: 

𝑚𝑖𝑛
𝑊

∑ ‖𝑊𝑇𝑥𝑖 − 𝑊𝑇𝑥𝑗‖
2

2
𝑠𝑖𝑗

𝑛
𝑖,𝑗=1                                          (9) 

From a simple mathematical derivation, Eq. (10) can be obtained.  

𝑚𝑖𝑛
𝑊

𝑇𝑟(𝑊𝑇𝑋𝐿𝑋𝑇𝑊)

𝑇𝑟(𝑊𝑇𝑋𝐷𝑋𝑇𝑊)
                                         (10) 

In Eq. (10), D is the similarity matrix S degree matrix, and L is the Tulaplacian matrix. 

In intelligent data analysis, PCA technology can reduce the dimensionality of data. Additionally, the 

importance of the newly solved "principal element" vector is sorted. The most important part of the 

front is taken, and the latter dimension is omitted, which can achieve dimensionality reduction to 

simplify the model or compress the data [41-43]. The PCA logic block diagram is shown in Figure 1. 



 8 

 

Figure 1: PCA logic block diagram 

In Figure 1 above, PCA technology first standardizes the data to ensure each feature has the same scale 

in the dimensionality reduction of the data set. The core of this technology is to calculate the covariance 

matrix between features, then get the eigenvalues and corresponding eigenvectors by eigenvalue 

decomposition of the covariance matrix, arrange the eigenvalues in descending order, and discard the 

values with minor variance. Finally, the principal components are selected and projected according to 

the requirements, and the visualization of dimensionality reduction data is realized. 

PCA-based icon visualization technology 

In DM, icon-based multi-dimensional visualization techniques are a standard method. Its core idea is 

to use icons to represent multi-dimensional data and express multiple data dimensions through visual 

features, such as icons' size, length, shape, and colour [44]. The goals of icon-based multi-dimensional 

visualization techniques in research are to simplify complex structures, communicate meaningful data 

attributes, show data patterns intuitively, enable interactive exploration, adapt to particular application 

domains, prioritize visual appeal, and guarantee effective dataset handling. By facilitating 

generalization, strengthening interpretability, lowering noise, and boosting model resilience, 

dimensionality reduction approaches like PCA and t-SNE enhance machine learning models. 

Additionally, reducing the need for storage allows larger datasets to be processed and analyzed more 

quickly without depleting system capacity. Compared with other multi-dimensional data visualization 

methods, the icon-based visualization technique suits datasets with few dimensions and unique 

attributes [45-47]. In icon visualization, PCA decreases dimensionality using the following methods: 
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preprocessing high-dimensional data, computing covariance matrix, decomposing eigenvectors, 

choosing top eigenvectors, projecting data onto principle component subspace, and interpreting 

visualization for insights. For datasets with intricate structures and categorical features, icon-based 

visualization provides a visually appealing and semantically relevant data interpretation method. It 

enables interactive exploration, lowers dimensions, draws attention to patterns, strengthens narrative 

and communication, and makes qualitative and comparative analysis easier. The data visualization 

flowchart is shown in Figure 2. The icon visualization used in PCA technology has limitations, 

including subjectivity, loss of detail, interpretation challenges, restricted linear correlations, trouble 

with categorical data, outliers, limited scalability, variance overemphasis, preprocessing reliance, and 

missing values. 

 

Figure 2: Data visualization process 

In Figure 2 above, the PCA method realizes the dimensionality reduction operation of high-dimensional 

data based on PCA icon visualization, and the data dimensionality reduction results are presented in 

charts. Icon visualizations can represent multiple dimensions of gene expression data, revealing patterns 

of interactions between genes and biological processes [48]. This intuitive visualization makes the data 

analysis process easier and more efficient while facilitating the discovery of potential correlations and 

trends in the data. 

In mathematics, PCA finds a projection direction so that the data projection in this direction has the 

most significant variance, called the first principal component. The explained variance ratio measures 

the variance explained by each principal component, and the variance explained by a group of principal 

components is represented by the cumulative variance explained, which helps determine how many 

trends are necessary to minimize dimensionality. Then, PCA proceeds to look for another projection 

direction orthogonal to the first principal component so that the projection of the data in that direction 

has the second largest variance, and this direction is called the second principal component. By analogy, 

PCA can find a set of orthogonal principal components irrelevant to the original data. 
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conversion 
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The original data matrix A is Z-score processed to obtain the normalized matrix Z. 

𝑍𝑖𝑗 =
𝑥𝑖𝑗−𝑥𝑗

𝜎𝑗
, 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑀                                         (11) 

𝑥𝑗 =
∑ 𝑥𝑖𝑗

𝑁
𝑖=1

𝑁
                                                 (12) 

𝜎𝑗 = √∑ (𝑥𝑖𝑗−𝑥𝑗)
2𝑁

𝑖=1

𝑁−1
                                              (13) 

In Eq. (11)-Eq. (13), 𝑥𝑖𝑗  represents the observation. ⬚𝑋𝑗  and 𝜎𝑗  represent the mean and standard 

deviation at row j, respectively. 

Find the correlation coefficient matrix R for the preprocessed matrix Z. PCA uses the correlation 

coefficient matrix R for several tasks, including measuring linear connections, standardizing variables, 

breaking down eigenvalues, determining maximum variance directions, decreasing dimensionality, and 

understanding data structures. It is essential to PCA since it guarantees equal analysis contribution. 

𝑅 = [𝑟𝑖𝑗]
𝑝

𝑥𝑝 = (

𝑟11   ...   𝑟1𝑝

. . .
𝑟𝑝1   ...   𝑟𝑝𝑝

)                                          (14) 

𝑟𝑖𝑗 =
∑ 𝑍𝑘𝑖𝑍𝑘𝑗

𝑁−1
                                                  (15) 

In Eq. (14)-Eq. (15), 𝑟𝑖𝑗 is the correlation coefficient. 

The component of the characteristic variable is the weight, and the principal component is expressed 

as: 

𝑃𝑖 = 𝛾𝑖1𝑍1 + 𝛾𝑖2𝑍2 + 𝛾𝑖3𝑍3+. . . +𝛾𝑖𝑝𝑍𝑝                                    (16) 

In Eq. (16), 𝛾𝑖 is a feature vector. 

Active learning based on data uncertainty visualization 

Active learning is an iterative learning process. The learning algorithm selects the most valuable data 

samples for labelling based on the current model performance to improve the model's performance in 

traditional active learning. Active learning chooses the most illuminating data samples for labelling, 

which maximizes the learning process. To iteratively improve model performance with the most 

miniature labelling work, it prioritizes samples when the model needs clarification or more confidence 

in its predictions. The selection of data samples is usually based on the predictive uncertainty of the 

model. However, in DM, the uncertainty of the model alone may not accurately reflect the uncertainty 

of the actual data. The active learning process based on data visualization is given in Figure 3. 
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Figure 3: Active learning process based on data visualization 

In Figure 3 above, active learning based on data uncertainty visualization firstly uses the initial limited 

labelled data set to train the model, predicts the unlabelled samples on the trained model, and calculates 

the uncertainty measure of each sample. Decision-making during sample selection is aided by 

uncertainty visualization, which helps comprehend data ambiguity. Error bars and heatmaps are 

techniques that prioritize high-uncertainty data and increase the trustworthiness of data-driven 

conclusions. Then, the uncertainty measurement is visualized together with the sample data. The 

uncertainty of the sample is usually displayed by scatter plot, heat map, histogram, and so on, and the 

sample is selected directionally. Finally, the samples are labelled, and the newly labelled samples are 

merged with the original limited data set. The model is retrained and iterated continuously to visualize 

the data uncertainty of active learning. However, for datasets with different data distributions, 

evaluating the appropriate parameters for each dataset is challenging in effectively assisting the active 

learning process. Sample imbalance, feature distribution, non-stationarity, complicated data structures, 

computational complexity, traditional evaluation metrics, generalization, and domain-specific concerns 

make it difficult to evaluate active learning parameters across various datasets. Intuitive visualization 

improves comprehension of complicated datasets by offering interactive exploration, drill-down 

capabilities, real-time manipulation, contextual information, user-centric design, and iterative analysis 

for well-informed decision-making. Scatterplots are an essential and indispensable technique for 

visualizing multi-dimensional data. When performing multi-dimensional data analysis, reducing the 

dimensionality or mapping the data to variables is often necessary. With a clear understanding of the 

data distribution, users can make intuitive and efficient sample selections. Diversity representation is 

ensured by active learning techniques such as reinforcement learning, density-based sampling, diversity 

sampling, QBC, expected model change, uncertainty sampling, margin sampling, hybrid methods, 

transfer learning, and meta-learning approaches. These techniques also increase the accuracy and 

efficiency of sample selection. To achieve this, the usual entropy method is used to estimate the 

uncertainty of each data point. 

𝑈𝑥 = − ∑ 𝑃(𝑦𝑖|𝑥) 𝑙𝑜𝑔 𝑃 (𝑦𝑖|𝑥)𝑖                                     (17) 

In Eq. (17), x is a high-dimensional data point, and y is the possible label of x. 𝑃(𝑦𝑖|𝑥) represents the 

probability that x will be given the label 𝑦𝑖. 
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The uncertainty of each pixel can be estimated according to Eq. (18). 

𝑈𝑝 =
∑ 𝐾𝐻(𝑥,𝑝)𝑈𝑥𝑥∈𝑁𝑃

∑ 𝐾𝐻(𝑥,𝑝)+𝛿𝑥∈𝑁𝑃

                                    (18) 

In Eq. (18), 𝑁𝑃  represents the set of K-nearest data points for pixel p. 𝐾𝐻  represents an adaptive 

Gaussian kernel function with an initial bandwidth of H. 

Design of experiments 

Qualitative and quantitative comparative verification methods are adopted to verify the effectiveness of 

the multi-label optimization clustering method in data abstraction in DM. In data mining, multi-label 

optimization clustering makes datasets with many features more accessible to understand, boosts 

abstraction, and promotes predictive modelling. It facilitates adaptable analysis and decision-making 

and provides insightful information for uses such as customized suggestions and client segmentation. 

The efficiency of clustering is assessed using both qualitative and quantitative techniques. While 

quantitative approaches employ statistical statistics and objective metrics, qualitative methods depend 

on subjective judgment and visual examination. While both approaches give information on the 

interpretability and coherence of clusters, quantitative approaches are more scalable and provide 

objective judgments. Several criteria must be considered when choosing the best technological stack 

for multi-label optimization clustering, including the algorithm's complexity, scalability, programming 

language, parallel processing, seamless integration, visualization, compatibility with the deployment 

environment, and community support.  

For the experiment, datasets WINE, Auto-MPJ, and WDBC are frequently used in machine learning 

and statistical analysis due to their diverse characteristics and wide range of uses in various fields. Their 

significance is seen in Principal Component Analysis (PCA) and icon visualization technology. 

The WINE dataset is a widely recognized dataset frequently utilized in classification and regression 

tasks, specifically within machine learning. It comprises 13 chemical characteristics, such as alcohol 

content, malic acid, and phenols, linked to three distinct wine types (varietals). By analyzing these 

chemical characteristics, wines can be classified into different varietals, which is crucial for ensuring 

quality and verifying authenticity. PCA can decrease the dimensions of a dataset, helping researchers 

pinpoint the key characteristics that impact wine categorization. PCA converts the data with many 

dimensions into a two- or three-dimensional space, making it easier to visualize and understand the 

connections between various types of wine. 

Auto-MPJ Dataset: The Auto-MPJ dataset includes necessary measurements of car performance like 

horsepower, weight, acceleration, and other factors that assess the effectiveness and efficiency of 

different car models. Both manufacturers and consumers find value in this dataset, enabling them to 

evaluate and compare various car models. Using PCA helps simplify the dataset, allowing for easier 

detection of outliers and unique car models through performance metrics. This procedure provides car 

buyers and manufacturers to make educated choices by emphasizing the essential characteristics 

identified in PCA. 

The WDBC Dataset, also known as the Wisconsin Diagnostic Breast Cancer Dataset, is a frequently 

used biomedical tool for diagnosing breast cancer. It includes 30 characteristics obtained from digital 

images of breast tumour fine needle aspirates (FNA), such as radius, texture, smoothness, and symmetry. 
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This dataset is essential for detecting and distinguishing between benign and malignant breast masses 

in the early stages. Because of its wide range of functions, utilizing Principal Component Analysis 

(PCA) is advantageous for decreasing dimensionality and streamlining data visualization and 

interpretation. PCA helps improve diagnostic models by focusing on the most significant features, 

resulting in increased efficiency and effectiveness. 

PCA can boost the efficiency of machine learning models by decreasing the dimensionality, resulting 

in faster performance. Reducing dimensionality makes it faster and easier to analyze and interpret 

complex datasets. PCA maintains important data patterns, saving critical information and removing 

unwanted noise. It also allows for complex data to be transformed into 2D or 3D visualizations, making 

it easier to see the relationships within the data. Focusing on the most essential characteristics, PCA 

enhances the comprehension and insights gained from data, resulting in improved decision-making and 

the generation of valuable insights. In conclusion, PCA can improve performance, decrease 

dimensionality, and increase the comprehension and visualization of intricate multi-dimensional data, 

leading to better-informed decisions and insights in various industries like healthcare, automotive, and 

oenology. The experiment uses C++/Qt for related development, and the experimental environment is 

carried out on a single machine. 

Table 2: Information on the dataset used for the experiment 

Dataset Data type Number of 

records 

Dimension Projection method 

WINE  Numerical 178 14 Multi-Dimensional 

Scaling (MDS) 

Auto-MPJ Numerical 290 8 t-SNE 

WDBC Numerical 569 31 MDS 

Results and Discussion 

Multi-dimensional data clustering results 

The Wine dataset is selected and projected onto the scatterplot using the MDS method in this experiment. 

Figures 4 and 5 show the results of the projection. As the α value increases, the number of clusters 

decreases. When the α value is zero, many small clusters appear in the plot. However, as the α value 

rises, the small clusters fade away, and the result is more inclined to produce larger clusters. In practical 

applications, the selection of parameter α can be adjusted according to the actual needs of users. 
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Figure 4: Abstract clustering results of data when α=0 

 

Figure 5: Abstract clustering results of data when α=10 

In Figures 4 and 5 above, when α=0, four clusters appear on the projection scatter diagram, and each 

cluster has 4~6 data points, but with the adjustment of parameter α. When α=10, the number of clusters 

becomes three, each with 3~6 data points. Local linear embedding (LLE) minimizes distortion while 

maintaining local links between data points. It is resilient to noise, minimizes distortion, maximizes 

goal functions, promotes sparse representations, captures nonlinear structures, and requires parameter 

optimization for the best possible structure preservation. The data points and characteristics have not 

changed, but the number of clusters reflects the reduced data dimension. In this paper, the value of 

parameter α is finally determined to be 10 for subsequent analysis. 

Data abstraction quality results 

Data abstraction quality tests are performed on Auto-MPJ, WDBC, and WINE datasets. The data 

abstract quality results and the specific experimental results are shown in Figure 6 ~ Figure 8. In most 

cases, the result of multi-label optimization corresponds to a more minor mean square deviation of the 

data than the result of regular splitting. On the WDBC dataset, when the abstract cluster is 10, the mean 

square deviation of the data is only 0.094. 
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Figure 6: Data abstract quality halo results on the Auto-MPJ dataset 

In Figure 6 above, on the Auto-MPJ dataset, the mean square error of multi-label optimization, regular 

segmentation, and hierarchical clustering all show a downward trend with increased clusters and 

stabilize at a small value. The mean square error of hierarchical clustering, regular segmentation, and 

multi-label optimization stabilizes at a minimal value as the number of clusters increases. The study 

offers icon visualization with a final error of 0.0637 that uses the PCA technique for precise data mining 

of car performance. On this data set, the icon visualization based on PCA technology proposed in this 

paper has the best performance and the most accurate results in data mining of automobile performance, 

and the final data mean square error is stable at 0.0637.  
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Figure 7: Data abstract quality halo results on the WDBC dataset 

In Figure 7 above, among the 30 different feature recognition and visualization realization processes of 

breast tumour samples on the WDBC data set, the errors of regular segmentation and multi-label 

optimization are relatively small when the previous model training (the number of clusters is less than 

30). Compared to traditional splitting, the multi-label optimization technique yields a decreased mean 

square deviation of the data. The WDBC dataset's mean square deviation is just 0.094 when the abstract 

cluster is 10. Only the hierarchical clustering method based on PCA technology designed in this paper 

can reduce the mean square error of data to zero with a limited number of clusters. Biomedical analysis, 

consumer segmentation, picture identification, environmental monitoring, and financial risk assessment 

are just a few sectors that employ PCA and hierarchical clustering technologies to analyze data and 

make decisions more effectively. This is mainly because the method designed in this paper can realize 

automatic learning and optimization iteration and has obvious advantages in error avoidance. The 

capacity of a machine learning system to learn and adapt on its own, picking up information from its 

surroundings and making judgments, is known as autonomous learning. Decision-making and dynamic 

behaviour in uncertain situations are made possible by unsupervised, self-supervised, and reinforcement 

learning methods. Automated Education and Enhancement Machine learning models and algorithms 

are optimized by iterative testing and improvement, known as iteration. It streamlines the model-

building process and speeds up innovation by identifying the optimal configurations for a particular job 

using automated machine learning, neural architecture search, and hyperparameter tuning methods. 
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Figure 8: Data abstract quality halo results on the WINE dataset 

In Figure 8 above, when α=10, both multi-label optimization and hierarchical clustering can eventually 

reduce the mean square error of data to about 0.7 in the training process on WINE data sets, but the 

hierarchical clustering method with autonomous learning ability can realize icon visualization faster 

and more stably in the training process. Multi-label optimization yields outcomes that are less than 

conventional splitting in terms of the data's mean square deviation. The suggested strategy improves 

the data abstraction quality for the WINE dataset, which comprises 13 distinct chemical properties. 

Table 3 below shows the performance test data of the PCA-based algorithm proposed in this paper in 

the actual icon visualization application process: 

Table 3: Performance test of PCA-based algorithm in an icon visualization application 

index 
Cluster number 

10 20 30 40 50 60 70 80 

Explanation variance 

percentage (%) 
0.26 0.19 0.17 0.14 0.1 0.93 0.89 0.87 

Page response time 

(ms) 
3257 1987 1469 987 953 862 797 785 

CPU utilization rate 

(%) 
29% 35% 41% 37% 33% 36% 39% 40% 

In Table 3 above, the icon visualization algorithm based on PCA proposed in this paper explains the 

differences. With the increase of clusters, under the protection of the autonomous learning function, the 
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percentage of disagreements gradually decreases and finally stabilizes at 0.87, which can effectively 

prevent data loss. The page response time finally stabilizes at around 800ms, with a faster response. 

The CPU utilization rate finally stabilizes within 40%, and the equipment occupation is regular. As 

shown in Table 4, five experts are invited to rate the icon visualization algorithm based on PCA in five 

aspects: the degree of function realization, the ability of autonomous learning, the response speed of 

the system, the retention of features, and the comprehensive experience of use: 

Table 4: Evaluation score of icon visualization application based on PCA in the data mining field 

Index 
Score 

Average 
Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 

The degree of function 

realization 
8 9 7 8 9 8.2 

The ability of 

autonomous learning 
9 7 9 8 7 8 

The response speed of 

the system 
8 8 8 7 7 7.6 

The retention of 

features 
7 8 7 9 8 7.8 

The comprehensive 

experience of use 
8 7 7 8 8 7.6 

In Table 4 above, the score is designed to be 1-10, and the decimal point is not taken, indicating that 

the satisfaction degree is low to high. After the experts' scoring, the comprehensive score of icon 

visualization based on PCA proposed in this paper reaches 7.6, and the satisfaction degree is high. The 

score of overall function realization is the highest, at 8.2. In the field of data mining, the function of this 

algorithm is relatively complete in the application process, and it can realize data dimension reduction 

processing. 

The results clearly show that multi-label optimization corresponds to a data mean square deviation that 

is smaller than the result of regular splitting in most cases. In the case of a small number of clusters, the 

results of multi-label optimization are also better than the results of hierarchical clustering. However, 

hierarchical clustering results provide a better-quality data abstraction when the number of clusters is 

large. 

Discussion 

Parsania et al. proposed an intuitive and user-friendly gene expression data analysis and visualization 

platform. It was designed to help laboratory scientists with little or no computer programming 

knowledge to achieve independent bioinformatics analysis and generate publication-ready data [49]. 

Yang et al. classified the astronomical literature and designed six sets of spectral datasets from data 

characteristics, quality, and volume to test the performance of the PCA visualization algorithm [50]. 

Zhou (2023) et al. proposed an origin-end-experience orthogonal function to discover important 

spatiotemporal flow patterns while maintaining a paired connection between the start and end points 

[51]. Here, the number of clusters gradually decreases with the increase of α values in multi-dimensional 

clustering. When the α value is zero, many tiny clusters occur. According to the needs, adjust the value 

of the parameter α. On the WDBC dataset, when the abstract cluster is 10, the mean square deviation 
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of the data is only 0.094. PCA-based chart visualization applications have significant advantages in 

evaluating data point uncertainty and the practical selection of samples. 

In this field of data mining, compared with the traditional icon visualization method, the icon 

visualization based on PCA technology proposed in this paper can effectively achieve the goals of data 

dimension reduction, correlation elimination, visualization effect display, and noise filtering in the 

application process. It has effectively solved the problems of dimension limitation, information loss, 

visual deformation, and structural adaptation in the traditional methods. Moreover, regarding CPU 

occupation, data loss rate, and response time, icon visualization based on PCA has apparent advantages, 

among which the response time is finally stable at 800ms, which can achieve the goal of being fast and 

efficient, further illustrating the superiority of the research algorithm. The icon visualization based on 

PCA proposed in this paper is helpful to deeply understand the principle and characteristics of 

dimension reduction technology, to understand better and show the structure, pattern, and association 

of data, to help analysts intuitively understand the characteristics and structure of data, to improve the 

algorithm performance of data mining, to help realize data compression and storage, and to lay the 

foundation for the research of more complex dimension reduction and data visualization methods. 

Conclusions 

Here, the application of PCA-based icon visualization in DM is deeply explored, and an active learning 

method based on uncertainty visualization is proposed. PCA transforms high-dimensional data into 

low-dimensional data by projecting and transforming data while retaining as much important 

information as possible from the original data. This visualization method provides a better 

understanding of the dataset's intrinsic structure and potential associations, improving DM's 

effectiveness and accuracy. Users can visually assess the uncertainty of data points and make efficient 

sample selections by visualizing the results. Experimental results verify the effectiveness of the 

proposed method on WINE, Auto-MPJ, and WDBC datasets. 

In conclusion, this study comprehensively studies and explores the application of PCA-based icon 

visualization, which provides valuable expansion and improvement ideas for visualization technology 

in DM. Future research can explore more datasets and application scenarios further and combine other 

algorithms and technologies to improve the application effect of PCA-based icon visualization in data 

intelligence analysis. 
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