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Abstract: The aim of this study is to explore the impact of artificial intelligence creations 
on intellectual property from the perspective of deep learning and proposes an efficient 
geometric localization method for distributed sensor networks. First, this study analyzes 
the impact of AI-generated content on intellectual property rights from the perspectives of 
copyright and patent systems. It then briefly introduces intellectual property protection 
methods for image semantic segmentation and examines backdoor mechanisms in deep 
learning. Additionally, the backdoor mechanism is applied to image semantic segmenta-
tion models, and an adversarial example generation method is used to construct a trigger 
set generation algorithm for the semantic segmentation model. The performance of the 
algorithm is validated through ablation experiments and fine-tuning attack experiments. 
The results indicate that the incorporation of the generated trigger set digital watermark 
exerts minimal impact on the performance of the original model. Concurrently, its Mean 
Intersection Over Union (MIOU) on the trigger set is notably high, reaching 94.01%. This 
implies that the trigger set generated by the algorithm has successfully established a robust 
association between the semantic segmentation model and the model owner. The MIOU 
value of the model post-fine-tuning attack remains consistent with that prior to the attack, 
demonstrating that the digital watermark embedded in the segmentation model by the trig-
ger set generation algorithm possesses stable robustness. The proposed protection method 
for the image semantic segmentation model offers novel approaches for the intellectual 
property protection of AI creations. 
 
Keywords: intellectual property; AI creation; image semantic segmentation; trigger set; 
fine-tuning attack 
 
 

1. INTRODUCTION 

1.1 Research Background and Motivations 

Artificial intelligence (AI) has garnered significant attention across various sectors. 
The rapid advancements in machine computing capabilities and learning algorithms have 
accelerated the development of a new generation of AI, surpassing human expectations. 
Selvadurai et al. (2020) explored the issue of copyright protection for AI-generated content 
and proposed utilizing blockchain technology to track and safeguard the ownership of AI 
creations [1]. Morrish (2021) examined the challenges associated with AI patent applica-
tions, highlighting the inadequacies of current patent laws in protecting AI innovations, 
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and recommended legal revisions to better accommodate advancements in AI technology 
[2]. Furthermore, the swift progress in Deep Neural Network (DNN) technology has led to 
substantial success in fields such as computer vision, machine translation, and speech 
recognition. Fkirin et al. (2022) investigated watermarking techniques for protecting DNN 
models and demonstrated the efficacy of digital watermarking in preventing model piracy 
[3]. However, high-performance DNN is developed at significant cost and holds substan-
tial commercial value, leading to model infringement by malicious actors. This rampant 
piracy severely damages the interests of model owners, making the protection of the intel-
lectual property (IP) of these models imperative [4, 5]. 

This study is dedicated to innovative exploration in the field of IP protection for deep 
learning (DL) models, moving beyond the mere repetition of existing watermarking tech-
niques. It introduces a backdoor mechanism and proposes a novel digital watermark pro-
tection method, which offers unique advantages in safeguarding IP rights. By integrating 
the backdoor mechanism with the image semantic segmentation model, this study effec-
tively establishes a connection between the model and its owner, thereby achieving robust 
protection for DL models. Empirical results demonstrate the effectiveness and robustness 
of the proposed digital watermark protection method, providing a feasible solution for DL 
model IP protection. Furthermore, this study addresses IP protection issues from a broader 
perspective, encompassing aspects such as copyright and patent systems. The inclusion of 
novel elements, such as image semantic segmentation models, enhances the depth and 
comprehensiveness of the research. This comprehensive approach ensures that the study is 
not confined to traditional watermarking techniques but considers various facets of IP pro-
tection, offering new ideas and methods for research in this domain. Lastly, the findings 
of this study have significant practical implications for addressing the challenges of IP 
protection in contemporary AI creations. With the widespread application of DL in the AI 
field, new challenges have emerged for IP protection, and the proposed digital watermark 
protection method provides a viable solution to these challenges. This study offers valuable 
references and insights for related fields, contributing to the development and application 
of IP protection technologies. 

1.2 Research Objectives 

The aim of this study is to explore the impact of IP protection on AI-generated content 
within DL models. The specific research objectives include: 

1. Analyze the impact of AI-generated content on copyright and patent systems, to 
gain a deeper understanding of the status and challenges of these creations within the ex-
isting IP legal framework. 

2. Investigate IP protection methods in the field of image semantic segmentation, par-
ticularly by employing a backdoor mechanism to safeguard DL models. 

3. Utilize adversarial example generation techniques to construct trigger set digital 
watermarks, in order to verify their effectiveness and robustness in protecting segmenta-
tion models. 

4. Provide new theoretical and practical approaches to IP protection for AI-generated 
content through experiments and analysis, and offer theoretical support and technical guid-
ance for research and applications in related fields. 

These objectives aim to address the new challenges of IP protection posed by AI-
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generated content through innovative methods and to provide a comprehensive perspective 
and in-depth analysis for research in this field.  

2. LITERATURE REVIEW 
Scholars have conducted extensive research on the IP protection of DL models. Xue 

et al. (2021) investigated existing IP protection methods for the DNN from the perspectives 
of scenarios, mechanisms, capacities, types, functions, and target models. Additionally, 
they analyzed potential attacks on DNN-based IP protection methods, focusing on model 
modification, evasive attacks, and active attacks. They proposed a systematic evaluation 
method for DNN-based IP protection, considering basic functional indicators, anti-attack 
indicators, and custom indicators for various application scenarios [6]. While their study 
provided a comprehensive investigation and analysis of existing IP protection efforts, it 
primarily focused on scenarios, mechanisms, and capabilities, rather than delving into spe-
cific technical details or innovative aspects. This approach lacks in-depth exploration and 
empirical evaluation of specific technical solutions. Liang et al. (2020) combined mapping 
functions and deep reinforcement learning technology to preprocess the ownership infor-
mation of IP circuit resources, proposing a fast virtual IP watermarking detection algorithm 
based on deep reinforcement learning. Experimental results demonstrated that the pro-
posed algorithm effectively improved watermark detection speed, reduced resource over-
head, and exhibited excellent security performance [7]. However, their experiment did not 
thoroughly validate and evaluate the applicability of the algorithm in real-world applica-
tion scenarios. Moreover, their study was confined to the domain of IP watermark detection 
and did not address the broader issue of DL model IP protection. Zhang et al. (2022) pro-
posed a new model watermarking framework to protect deep networks trained for low-
level computer vision or image processing tasks. They designed a deep hidden watermark-
ing mechanism and demonstrated the robustness of the proposed framework through ex-
periments, which resisted attacks from different network structures and target functions 
[8]. While they demonstrated the robustness of the proposed framework, they did not thor-
oughly test its performance across different application scenarios, nor did they conduct a 
comparative analysis with other related studies to validate its advantages and uniqueness. 
Additionally, previous studies also had some limitations. For instance, Wu et al. (2020) 
proposed a novel digital watermarking framework applicable to the output images of the 
DNN, ensuring that any image produced by the watermarking neural network contained 
specific watermarks [9]. Li et al. (2022) introduced a novel ownership verification scheme 
named federated DNN (FedDNN), which allowed private watermarks to be embedded and 
verified to claim legitimate IPs of federated learning models without revealing private 
training data or private watermark information [10]. Zuo (2024) investigated the ethical 
risks of machine writing in the field of knowledge production and the deconstruction of 
the existing IP system, noting that technological innovation disrupted the existing IP bal-
ance mechanism and that machine writing became a new force in knowledge production 
[11]. However, the research scope of Wu et al. and Zuo was limited to specific federated 
learning scenarios and did not include in-depth comparisons and evaluations of other IP 
protection methods. In summary, although previous research has made some progress in 
protecting the IP rights of DL models, there remain shortcomings, such as insufficient ex-
ploration of specific technical solutions, empirical evaluations, and applicability tests 
across different scenarios. Amiri et al. (2024) introduced a novel algorithm called Hippo-
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potamus Optimization (HO), inspired by the natural behavior of hippos and based on in-
novative stochastic techniques. The HO algorithm demonstrated exceptional performance 
across multiple benchmark functions, showcasing the innovative application of metaheu-
ristic methods. It effectively balances exploration and exploitation, akin to the application 
of DL models in IP protection discussed here. Particularly in DL models, the innovation 
and efficiency of protective algorithms are crucial. The HO algorithm, with its ability to 
balance exploration and exploitation, offers new solutions for addressing complex engi-
neering design challenges, which is closely related to the protection of IP in AI creations 
[12]. Mehrabi Hashjin et al. (2024) investigated a hybrid classifier that integrates DNN 
with Type-III fuzzy systems. This innovative approach demonstrated superior performance 
in decision-making and optimized the system's rule parameters using the Improved Chaos 
Game Optimization (ICGO) algorithm. The ICGO algorithm has shown outstanding per-
formance across various benchmark functions and engineering problems. This method is 
closely aligned with one of the key objectives of this study: the application of DL models 
in IP protection. By enhancing the accuracy and performance of classifiers, the ICGO al-
gorithm provides a more precise and effective protection mechanism for AI creations, res-
onating with the protective methods explored in this study [13]. 

This study innovatively explores the protection of IP rights of DL models, demon-
strating distinct advantages and innovations compared to previous research. Firstly, this 
study focuses on the impact of AI creation on IP rights, particularly within the context of 
DL models. This emphasis makes the study highly targeted and practical, as the application 
of DL in AI is becoming increasingly widespread, presenting new challenges to IP protec-
tion. Unlike other scholars' research, this study comprehensively addresses the impact of 
AI creation on IP rights from a broader perspective, including discussions on copyright 
and patent systems. Furthermore, it introduces image semantic segmentation models and 
backdoor mechanisms in DL, providing a more in-depth and comprehensive research per-
spective. This study proposes a novel digital watermark protection method that utilizes the 
backdoor mechanism of DL models for IP protection. By integrating the backdoor mech-
anism into the image semantic segmentation model and employing the generated trigger 
set digital watermark, it successfully establishes a connection between the model and its 
owner. Compared to traditional digital watermarking techniques, this method is more cov-
ert and robust, effectively safeguarding IP rights. Rigorous experimental verification con-
firms the effectiveness and robustness of the proposed digital watermark protection method, 
showcasing significant innovation and practicality in protecting the IP rights of DL models. 

This study provides a more comprehensive and in-depth research perspective com-
pared to other relevant studies, offering valuable references and guidance for addressing 
the current challenges of IP protection in AI creation. It begins by analyzing the impact of 
AI creations on IP and its implications for copyright and patent systems. The study then 
explores IP protection methods for image semantic segmentation, creatively applying the 
backdoor mechanism of DL to the semantic segmentation model. Additionally, it estab-
lishes a trigger set generation algorithm for the semantic segmentation model using adver-
sarial example generation techniques and verifies the algorithm's effectiveness through ex-
periments. The discussion on IP protection methods for image semantic segmentation 
models based on DL contributes significantly to the IP protection of AI creations. 
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3. RESEARCH METHODOLOGY 

3.1 Impact of AI creation on IP 

AI creation, a term derived from AI, encompasses literary and artistic works, technical 
solutions, and new industrial designs generated by AI [14]. It has significantly influenced 
IP systems, particularly in terms of copyright and patent law.  

Regarding the copyright system, AI creation impacts copyrightability, ownership 
rights, and the scope of copyright protection. Under China's copyright law, copyrightable 
works are original intellectual creations that can be expressed in tangible forms in literature, 
art, and science [15]. There is contention over denying high-quality AI-generated works 
copyright protection solely because they lack human authorship, while granting copyright 
to lower-quality works created by humans. This contradicts the copyright system's purpose, 
potentially dampening enthusiasm among AI technology investors and developers and im-
peding industrial innovation and progress [16, 17]. However, AI generates content similar 
to works through passive machine learning, dependent on original data or corpora. AI cre-
ations do not attain the creativity and intellectual prowess of human subjective thought, 
often falling short of the minimum creativity threshold required for copyright protection 
[18]. In terms of ownership rights, a primary dispute concerns whether AI itself can auton-
omously qualify as a subject under the copyright system. Proponents argue that the IP 
framework should recognize AI's substantial contributions and grant it legal personality 
and rights. Opponents contend that AI lacks economic incentives to participate effectively 
in legal systems and cannot autonomously exercise rights, fulfill obligations, or bear legal 
responsibilities as a distinct legal entity [19, 20]. Concerning the scope of copyright pro-
tection, granting copyright to AI creations complicates distinguishing between personal 
and property rights [21]. Moreover, China's law stipulates a copyright protection period 
extending from the creation's completion until 50 years after the creator's death, a timeline 
incongruent with AI's indefinite operational capability due to its absence of a natural 
lifespan. 

The patentability of AI creations, ownership of patent rights, patent infringement, and 
related issues remain contentious within the patent system. The fundamental objective of 
the patent system is to safeguard the legitimate interests of patent holders against infringe-
ment [22]. In patent law, an inventor typically refers to a natural person or legal entity, 
excluding machines or intelligent devices. Therefore, AI lacks legal subject status, and its 
derived technical solutions are generally considered non-patentable. Nonetheless, some 
scholars argue that if an AI-generated technical solution meets the patentability criteria, 
including novelty, inventive step, and industrial applicability, it should qualify for patent 
protection without additional requirements due to its AI origin [23, 24]. Similarly to issues 
concerning copyright ownership, disputes over patent rights for AI creations have 
prompted discussions on various distribution models for related interests. Advocates sug-
gest that AI involved in designing technical solutions should be recognized as an inde-
pendent inventor, with patent rights accruing to the AI itself, managed by its owner or 
investor. Opponents contend that AI-generated innovations invariably involve human in-
tervention and planning, with developers and users driving commercialization efforts, 
thereby precluding AI from holding rights or fulfilling obligations independently [25, 26]. 
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Concerning patent infringement, AI's robust information gathering and analytical capabil-
ities enable it to identify subtle differences between new and existing inventions more ef-
ficiently. This capability increases the risk of generating imitation or minor variations that 
may lead to a proliferation of low-quality patents [27]. 

3.2 Image semantic segmentation model and its IP protection technology 

The core objective of image semantic segmentation involves meticulously partition-
ing various regions within an image. Typically, DL algorithms like convolutional neural 
networks are employed for classification purposes. Evaluation metrics for assessing the 
performance of image semantic segmentation models include Pixel Accuracy (PA), Inter-
section Over Union (IOU), Mean Pixel Accuracy (MPA), and Mean Intersection Over Un-
ion (MIOU) [28]. Assuming there are N+1 categories in the segmentation task, this entails 
calculating the number of pixels belonging to class a but predicted as class b using Equa-
tions (1)-(5): 

PA =
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𝑊 denotes the count of pixels truly belonging to class 𝑎 and correctly predicted as 
class 𝑎. 𝑊 denotes the count of pixels belonging to class 𝑎 but predicted as class 𝑏. PA 
signifies the ratio of true positive pixels to the total predicted pixels, indicating the model's 
classification accuracy. 𝐼𝑂𝑈 represents the ratio of correctly predicted pixels 𝑊 to the 
total number of pixels predicted as class 𝑎 or actually belonging to class 𝑎. MPA denotes 
the average PA across all classes, while MIOU signifies the average IOU across all classes. 

To safeguard DL models, such as image semantic segmentation, from illicit redistri-
bution and to protect researchers' interests, it is imperative to imprint the model with a 
unique identifier to create a watermark that aids in the recognition of its creator. Digital 
watermarking technology integrated with DNN-based IP protection must seamlessly em-
bed the watermark into the model without compromising its original performance. Addi-
tionally, robustness of the digital watermark is crucial to prevent removal by malicious 
actors utilizing various attack methods. Current attack methods commonly include evasion, 
fine-tuning, and pruning [29]. Among these, fine-tuning is the most prevalent method em-
ployed by researchers, requiring minimal computational resources and training data to 
transition the model from one task to another. Four primary fine-tuning strategies currently 
utilized are: Fine-Tune Last Layer of the model (FTLL), Fine-Tune All Layer parameters 
in the model (FTAL), Re-Train Last Layer of the model (RTLL), and Re-Train All Layer 
parameters (RTAL) [30]. These strategies aim to circumvent ownership verification or 
tamper with the model's digital watermark to facilitate model theft. 
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3.3 Analysis of the backdoor mechanism of the DL model 

DL stands as the predominant technology within the field of AI, with DNN serving 
as the primary model choice among researchers. However, the presence of backdoors 
within DNNs is often overlooked. The functionality of a DNN in specific scenarios heavily 
relies on its training data [31]. Once a backdoor is integrated into the deep model, detecting 
it becomes challenging. There is an increasing demand for DNN models, leading to a trend 
of over-parameterization. Consequently, an abundance of parameters enhances the model's 
fitting performance, enabling it to even learn from anomalous data [32]. One notable in-
stance of such data includes those associated with erroneous tags. When the model en-
counters this specific set of incorrect data, it triggers latent behaviors embedded within the 
model, resulting in erroneous predictions—akin to activating the model's backdoor. This 
particular set of data is referred to as the trigger set. Figure 1 illustrates the operational 
workflow of embedding a backdoor into a model [33]. 

Original training set

Trigger set

Training set input Model training Model output

Original model Model with back door

 
Fig. 1. Operation flow of embedding back door into DNN. 

Figure 1 depicts a procedure that commences with the selection or design of specific 
trigger data. These data are incorporated into the model during training, enabling the model 
to exhibit predetermined abnormal behavior upon encountering them. During the training 
phase, these trigger data are included in the training dataset, allowing the model to learn to 
activate the backdoor mechanism when confronted with such data. The integration of the 
backdoor is typically concealed, rendering detection challenging. Therefore, careful con-
sideration is necessary regarding the stealth of the backdoor and the specificity of activa-
tion conditions during its design phase. Subsequently, once the model is deployed and 
utilized for operational tasks, any input meeting the trigger conditions will activate the 
backdoor, leading the model to produce manipulated outcomes. During testing, the trigger 
set can be employed to initiate the backdoor mechanism for verifying its existence. Figure 
2 illustrates this process [34]. 
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Original test set

Trigger set

Back door detection

Model with back door

Original test and 
corresponding correct 

label

Trigger set given label

Test set Test model Test result

Back door detection 
result

 
Fig. 2. Backdoor detection process in DNN. 

Figure 2 illustrates a structured process characterized by the following stages: Initially, 
a set of test data must be prepared or acquired, encompassing normal input data alongside 
potential trigger data. Subsequently, these data are fed into the model, and the model's 
responses are monitored. Deviations in the model's response to specific input data, indica-
tive of unexpected or abnormal behavior, may suggest activation of a backdoor. This 
prompts further analysis, such as scrutinizing the model's decision-making processes or 
identifying discrepancies in outputs, to confirm the presence of a backdoor. Upon confir-
mation, remedial actions can be implemented, such as model retraining or bolstering secu-
rity measures, crucial for fortifying the model's security and reliability. The backdoor flaw 
in DNN models, when strategically leveraged, can serve as a mechanism for establishing 
IP protection and realizing advantages. By employing a designated trigger set, the model 
can be activated to produce desired outcomes as envisioned by its creator, forging a direct 
association between the model and its proprietor. Integrating the backdoor mechanism into 
the image semantic segmentation model allows the creation of a digital watermark, thereby 
safeguarding the IP of the semantic segmentation model. 

3.4 Trigger set generation algorithm for semantic segmentation model 

The method of generating adversarial examples involves embedding the model own-
er's information into a normal image through subtle noise, accompanied by a specific mask 
designated as the trigger set. The sequential process is outlined as follows [35-37]. 

Initially, the deeplab-V3+ segmentation model, trained on the Pattern Analysis, Sta-
tistical Modelling and Computational Learning Visual Object Classes (PASCAL VOC) 
dataset, is selected for implementation. This model proficiently identifies 21 types of ob-
jects (20 specific objects plus background), denoted as Q=21. Let A represent the input 
image. In an image, there exist K objects that the model accurately segments, defined as 
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𝑅 = {𝑟ଵ, 𝑟ଶ, ⋯ , 𝑟}, where 𝐾 ≤ 𝑄, and each object rk corresponds to a real label 𝑡 with 
𝑘 ∈ {1,2,⋯ , 𝑄}, encompassing all category labels 𝑇 = {𝑡ଵ, 𝑡ଶ, ⋯ , 𝑡}. The deeplab-V3+ 
image semantic segmentation model correctly identifies the target in image A, yielding 
𝑌(𝐴, 𝑟) = 𝑡 as the result. To generate an adversarial example, it is crucial to induce the 
model to classify the pixel category in the image as 𝑡

ᇱ ≠ 𝑡, where ℎ ≠ 𝑘. The model's 
output is represented by Equation (5): 

𝑌(A+v,wℎ) = 𝑡ℎ
′  (5) 

In Equation (5), A denotes the input image, and v signifies the perturbation ac-
quired through iterative backpropagation. wℎ represents the specified textual pattern, and 
𝑡ℎ

′  denotes the predicted class of the given textual pattern. By adding v to the input image 
A, the model's output result becomes 𝑌(A+v,wℎ). 

During model training, the loss function is defined as Equation (6): 

𝐹௧ = ∑ 𝐹௦[𝑌(𝐴 + 𝑣, 𝑟), 𝑡] + 𝜑ଵ

ୀଵ 𝐹௦[𝑌(𝐴 + 𝑣,𝑤ℎ), 𝑡ℎ

′ ] (6) 

In Equation (6), the loss function of the original semantic segmentation model is 𝐹௦, 
and no adversarial example is obtained. 𝐾 represents the number of objects in the image 
that the model can correctly segment, and 𝑌(𝐴 + 𝑣, 𝑟) denotes the segmentation result 
of the object 𝑟 in image 𝐴. 𝐹௧ is the loss function used when generating the trigger 
set, which combines the original loss and the loss of the trigger set. 

The first half of the loss function is the loss function of the calculated iterated image 
(𝐴 + 𝑣) and the original real label, and the second half is the loss function of the iterated 
image (𝐴 + 𝑣)  and the given text pattern mask and category. The iterative image 
(𝐴 + 𝑣) achieves the desired effect by minimizing 𝐹௧, that is, the loss function sup-
presses the confidence of the original real label mask and increases its confidence with the 
given label mask. 

Then, the gradient descent method is employed for optimization. 𝐴 obtained from 
the model after n iterations is the addition of n disturbances 𝑣. At this time, if the image 
𝐴 passes through the segmentation network, the output result will be the previously given 
label mask [38]. After each iteration, the disturbance obtained by gradient calculation is 
shown in Equation (7): 

𝑣 = 𝛻{∑ 𝐹௦[𝑌(𝐴, 𝑟), 𝑡] + 𝜑ଵ

ୀଵ ∑ 𝐹௦

ு
ୀଵ [𝑌(𝐴, 𝑤ℎ), 𝑡ℎ

′ ]} (7) 

In Equation (7), 𝑣 represents the perturbation after the 𝑛-th iteration. In the whole 
process, the normalization operation is often conducted first and then added to the image 
to avoid the instability of the disturbed data. Equation (8) is a normalization operation. 

𝑣 =
௩

‖௩‖∞
 (8) 

Moreover, a hyperparameter 𝛾 is provided to minimize the disturbance added each 
time. After multiplying by 𝑣, it is added to image 𝐴. The specific operation is shown 
in Equation (9): 

𝐴ାଵ = 𝐴 + 𝛾 ∗ 𝑣 (9) 
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In Equation (9), 𝐴ାଵ represents the image after the application of the perturbation, 
and 𝛾 is a parameter used to control the magnitude of the perturbation added in each iter-
ation. The pixels of the final converted image need to be controlled at [0,255] [39]. 

4. EXPERIMENTAL DESIGN AND PERFORMANCE EVALUATION 

4.1 Datasets Collection 

The experiment utilizes the deeplab-V3+ image semantic segmentation model, ap-
plied to the PASCAL VOC 2012 dataset. This dataset comprises 20 categories of images, 
predominantly featuring people, animals, vehicles, and furniture. For model training, 1464 
images from this dataset are allocated, each with identical labeling. The trigger set used in 
this study is also derived from this dataset. 

4.2 Experimental Environment 

The experimental setup operates on a high-performance computing server equipped 
with multiple NVIDIA RTX 2080 Ti GPUs, delivering ample computational capability for 
DL model training and testing. The server runs on Linux Ubuntu 18.04 LTS, ensuring 
software environment stability and compatibility. Development and experimentation em-
ploy Python 3.8, TensorFlow 2.0, alongside essential scientific computing libraries such 
as NumPy and SciPy. For effective visualization of experimental outcomes related to 
model backdoor mechanisms, Matplotlib and Seaborn data visualization tools are em-
ployed. Experimental datasets are stored on high-speed solid-state drives to expedite data 
retrieval and ensure seamless experiment execution. 

4.3 Parameters Setting 

Parameter configurations adhere to standard practices in DL, with adjustments tai-
lored to experimental objectives. The DL models employ a batch size of 32 and utilize the 
Adam optimizer with an initial learning rate set at 0.001, incorporating a learning rate de-
cay strategy for enhanced training optimization. Model training spans 100 epochs to facil-
itate comprehensive learning and mitigate overfitting. The trigger set generation algorithm 
employs appropriate hyperparameters to regulate perturbation magnitude, ensuring effec-
tive triggering of backdoor mechanisms with minimal impact on original model perfor-
mance. All experiments maintain consistent parameter settings to ensure result compara-
bility. Furthermore, the study evaluates model robustness by simulating diverse attack 
methods such as fine-tuning and pruning attacks. Corresponding attack parameters are con-
figured to assess the efficacy of digital watermarking technology. 

4.4 Performance Evaluation 

4.4.1 Performance evaluation of segmentation model after embedding watermark 

After generating the trigger set using the proposed trigger set generation algorithm 
and ensuring it meets the specified criteria, the trigger set is blended proportionally with 
the original PASCAL VOC 2012 dataset to create a new dataset. Subsequently, this new 
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dataset is fed back into the deeplab-V3+ segmentation model for training. The MIOU 
serves as the experimental evaluation metric. During the mixing process of the original 
data and trigger set, the model's training difficulty varies with different mixing proportions, 
consequently affecting the final model performance. Therefore, experiments are conducted 
using various mixing proportions: 0%, 10%, 20%, 30%, 40%, and 50% trigger set propor-
tions. Figure 3 illustrates the experimental outcomes. 
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 Single-pattern single-category+original dataset
 Single-pattern single-category+trigger set
 Multi-pattern multi-category+original dataset
 Multi-pattern multi-category+trigger set
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%
)
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Fig. 3. Performance of training models with different mixed proportion trigger sets. 
 
In Figure 3, the performance of the model across varying proportions of trigger set 

mixtures is analyzed. Two primary scenarios of trigger set compositions are investigated: 
single-pattern single-category and multi-pattern multi-category. Each scenario compares 
the model's performance when trained with the original dataset alone and when augmented 
with the trigger set. For the scenario where the trigger set proportion is 0 (no trigger set 
mixture), both the single-pattern single-category and multi-pattern multi-category models 
achieve similar performance on the original dataset, approximately 79% and 78.9% accu-
racy, respectively. However, upon introduction of the trigger set, distinct trends emerge. 
As the proportion of trigger set increases, the model's performance on the original dataset 
shows a slight decline from 79.1% to 78.7%, with fluctuations generally around 78.5%. 
Concurrently, there is a notable enhancement in the model's performance on the trigger set 
itself, rising from 93% to 95%. This underscores the trigger set's positive impact on the 
model's ability to handle specific data subsets. Similarly, in the multi-pattern multi-cate-
gory scenario, while the performance on the original dataset experiences a slight decrease 
from 78.7% to 78.4% with increasing trigger set proportion, the improvement in trigger 
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set performance is more pronounced, escalating from 75.8% to 89.9%. This indicates sub-
stantial enhancement in the model's capability to recognize specific categories when aug-
mented with additional trigger set data. In summary, regardless of the trigger set's pattern 
and category composition, integrating trigger set data during model training significantly 
enhances the model's performance on the trigger set itself. Although there is a marginal 
decline in performance on the original dataset, the overall impact remains minimal. This 
demonstrates that judiciously mixing trigger set data can effectively bolster the model's 
ability to discern specific data categories while maintaining satisfactory performance on 
general data. 

To evaluate the model's generalization capability, experiments are conducted on three 
distinct public datasets: PASCAL VOC 2012, COCO, and Cityscapes. The performance 
of the model on these different datasets is presented in Table 1. The model demonstrates 
high performance across diverse datasets, indicating robust generalization ability. 

Table 1: Performance of the Model on Different Datasets 

Dataset Precision (%) Recall (%) F1 score (%) 

PASCAL VOC 2012 78.9 85.2 81.9 

COCO 75.6 81.4 78.4 

Cityscapes 80.2 86.3 83.2 
 
4.4.2 Ablation experiment 

To further validate the superiority of the trigger set generated by the trigger set generation 
algorithm compared to using the original training data directly as the trigger set, an ablation 
experiment is conducted at a mixing proportion of 35%. Figure 4 illustrates the effect of digital 
watermarking using a single-pattern single-category trigger set on model performance, com-
paring two types of trigger sets. 
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Fig. 4. Model performance comparison of the single-pattern single-category trigger set digital wa-

termarking under two trigger sets. 
 

In Figure 4, the efficacy of a single-pattern single-category trigger set digital watermark is 
assessed under two distinct trigger set conditions. Initially, the baseline performance of the 
original semantic segmentation model on the original test dataset is 78.82%, providing a refer-
ence for evaluating changes in model performance under varied conditions. When utilizing un-
processed images as the trigger set, the model's performance on the original test dataset de-
creases significantly to 70.72%, further declining to 61.74% on the trigger set itself. This indi-
cates that using unprocessed images as the trigger set not only diminishes the model's perfor-
mance on general data but also results in poor recognition on the specific trigger set, suggesting 
inadequate learning of trigger set characteristics. Conversely, employing algorithmically gen-
erated trigger sets yields a marginal reduction in model performance on the original test dataset 
to 78.80%, maintaining performance levels comparable to the original model. Notably, the 
model's performance on the trigger set substantially improves to 94.01%. This underscores the 
algorithmically generated trigger sets' capability to enhance recognition accuracy significantly 
on specific data subsets. In summary, compared to using unprocessed images, algorithmically 
generated trigger sets notably elevate the model's performance on specific trigger sets while 
minimally impacting its performance on the original test dataset. This highlights the effective-
ness of the algorithmically generated trigger set digital watermark method in bolstering the 
model's capability to identify specific data categories while preserving its original performance, 
thereby crucially safeguarding the model's intellectual property. 

Figure 5 examines the impact of digital watermarking with multiple patterns and categories 
on the model's performance under two trigger set conditions. 
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Fig. 5. Model performance comparison of the multi-pattern multi-category trigger set digital water-

marking in two trigger sets. 
 

In Figure 5, the efficacy of a multi-pattern multi-category trigger set digital watermark is 
evaluated under two distinct trigger set conditions. Initially, the original semantic segmentation 
model achieves a performance of 78.82% on the original test dataset, serving as the baseline 
for performance comparison. When utilizing unprocessed images as the trigger set, the model's 
performance on the original test dataset decreases slightly to 73.79%, while its performance on 
the trigger set itself drastically declines to 9.78%. This significant performance decrease indi-
cates that using unprocessed images as the trigger set results in poor recognition on the specific 
dataset, highlighting the model's inability to effectively identify trigger set characteristics. Con-
versely, employing algorithmically generated trigger sets results in only a minor decrease in 
model performance on the original test dataset to 78.81%, maintaining performance levels com-
parable to the original model. Notably, the model's performance on the trigger set improves 
significantly to 87.42%. This underscores the algorithmically generated trigger sets' capacity to 
enhance the model's ability to recognize specific data categories. In summary, algorithmically 
generated multi-pattern multi-category trigger set digital watermarking preserves the model's 
performance on general datasets while substantially enhancing its recognition accuracy on spe-
cific trigger sets. This approach effectively strengthens the model's intellectual property protec-
tion while ensuring high performance across diverse input scenarios. 

 
4.4.3 Experiment against fine-tuning attack 

To verify the robustness of the digital watermark, the original training dataset without 
mixing the trigger set is employed to conduct four types of fine-tuning attacks (FTLL, 
FTAL, RTLL, and RTAL) on the segmentation model embedded with the digital water-
mark. The fine-tuning duration is set to one-third of the original training period. Figures 6 
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and 7 illustrate the model and watermark performance following the four fine-tuning at-
tacks on the segmentation model using single-pattern single-category and multi-pattern 
multi-category trigger set digital watermarking, respectively. 
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Fig. 6. Segmentation model and watermark performance of single-pattern single-category trigger set 

digital watermark after fine-tuning attack. 
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Fig. 7. Segmentation model and watermark performance of multi-pattern multi-category trigger set 

digital watermark after fine-tuning attack. 
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Figure 6 evaluates the performance of the single-pattern single-category trigger set 
digital watermarking segmentation model following fine-tuning attacks. Fine-tuning at-
tacks are common methods aimed at modifying a model's behavior by retraining some or 
all network layers, potentially impacting model ownership verification or attempts to re-
move digital watermarks. Across four distinct fine-tuning attack modes, the model's per-
formance on the original test set shows slight fluctuations while remaining stable, achiev-
ing performance metrics ranging from 77.78% to 78.55%. This indicates that the model 
maintains relatively consistent performance on general datasets despite fine-tuning at-
tacks.Meanwhile, on the trigger set, the model demonstrates robust performance, with 
MIOU values ranging from 93.71% to 93.98%. This underscores the model's capability to 
retain high accuracy in recognizing specific trigger sets even after undergoing fine-tuning 
attacks. These findings highlight the strong resilience of digital watermarks against com-
mon fine-tuning attack methods when applied to trigger sets. In summary, the employed 
digital watermarking technique effectively preserves model intellectual property integrity 
following fine-tuning attacks. It ensures the model can accurately identify predetermined 
features specified by the model owner under specific conditions, thereby safeguarding the 
model owner's rights. 

Figure 7 assesses the performance of the multi-pattern multi-category trigger set dig-
ital watermarking segmentation model following various fine-tuning attack methods. 
These attacks, including Fine-tuning Last Layer (FTLL), Fine-tuning All Layers (FTAL), 
Re-training Last Layer (RTLL), and Re-training All Layers (RTAL), aim to modify the 
model's behavior by adjusting specific network layers. Under FTLL and FTAL attack 
modes, the model maintains consistent performance on the original test set, achieving 
78.61%, indicating stable handling of general data under these conditions. On the trigger 
set, there is a slight performance decrease, but it remains robust at 87.42%, demonstrating 
the digital watermark's resilience under these attack scenarios. However, under RTLL at-
tack mode, the model's performance on the original test set slightly decreases to 77.91%, 
with a more noticeable decline to 86.45% on the trigger set. The RTAL attack mode further 
reduces the model's performance on the original test set to 77.78%, with the trigger set 
performance decreasing to 86.30%. These findings suggest that RTLL and RTAL attacks 
exert a more significant impact on model performance, particularly on the trigger set, 
thereby compromising the robustness of the digital watermark to some extent. In summary, 
the multi-pattern multi-category trigger set digital watermarking demonstrates high stabil-
ity under FTLL and FTAL attacks. However, there is a notable decline in model perfor-
mance on both the original test set and trigger set under RTLL and RTAL attacks. This 
underscores the vulnerability of these attack methods to model ownership verification and 
digital watermark protection. Nevertheless, the digital watermark maintains effective pro-
tection of model intellectual property, with the performance on the trigger set remaining 
relatively strong. 

Assuming the attacker possesses an equivalent trigger set generated in a similar man-
ner, Figure 8 illustrates the performance of the single-pattern single-category trigger set 
digital watermarking segmentation model on the original test set, the original trigger set, 
and the attacker's new trigger set after RTLL and RTAL fine-tuning attacks. Figure 9 pre-
sents the performance of the multi-pattern multi-category trigger set digital watermarking 
segmentation model across these three datasets. 
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Fig. 8. Performance of single-pattern single-category model on three datasets. 
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Fig. 9. Performance of the multi-pattern multi-category model on three datasets. 

 

Figure 8 examines the performance of a single-pattern single-category model across 
three datasets before and after RTLL attacks. Prior to the attacks, the model achieves 78.6% 
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accuracy on the original dataset and 93.4% on the original trigger set, while its performance 
on the new trigger set is notably low at 4.8%. This indicates robust recognition capabilities 
for the original data and trigger set, but poor recognition of the new trigger set without 
RTLL attacks. Following RTLL attacks, the model's performance slightly decreases to 
77.8% on the original dataset and 92.1% on the original trigger set. Notably, performance 
on the new trigger set significantly improves to 91.7%. This enhancement suggests that 
RTLL attacks markedly improve the model's ability to recognize the new trigger set, nearly 
matching its performance on the original trigger set. Similar trends are observed in the 
analysis before and after RTAL attacks. Prior to RTAL attacks, the model achieves 78.8% 
accuracy on the original dataset, 93.5% on the original trigger set, and 4.5% on the new 
trigger set. After RTAL attacks, performance decreases to 77.6% on the original dataset 
and 91.9% on the original trigger set, while improving to 91.5% on the new trigger set. 
Overall, while RTLL and RTAL attacks affect the model's performance on the original 
dataset and trigger set to some extent, the key observation is the substantial improvement 
in recognizing the new trigger set under these attacks. This highlights that attackers using 
such fine-tuning methods can effectively influence the model's responses to specific trigger 
set data, potentially compromising model security and intellectual property protection. 
Thus, these findings underscore the importance of developing robust protection strategies 
for models facing fine-tuning attacks. 

Figure 9 examines the performance of a multi-pattern multi-category model across 
three datasets before and after RTLL attacks. Prior to the RTLL attack, the model achieves 
78.6% accuracy on the original test set, 87.4% on the original trigger set, and a mere 4.9% 
on the new trigger set. This indicates strong recognition capabilities for the original data 
and trigger sets, but significant weakness in recognizing the new trigger set without RTLL 
attacks. Following the RTLL attack, the model's performance slightly decreases to 77.91% 
on the original test set and 87.1% on the original trigger set. Notably, performance on the 
new trigger set improves significantly to 87%. This enhancement suggests that the RTLL 
attack substantially improves the model's ability to recognize the new trigger set, nearly 
matching its performance on the original trigger set. Similar trends are observed in RTAL 
attack analysis. Before RTAL attacks, the model achieves 78.8% accuracy on the original 
test set, 87.5% on the original trigger set, and only 4.8% on the new trigger set. After RTAL 
attacks, the model's performance decreases slightly to 77.78% on the original test set and 
86.21% on the original trigger set, while improving to 86.1% on the new trigger set. In 
summary, RTLL and RTAL attacks have some impact on the model's performance on the 
original test and trigger sets, resulting in minor performance decreases. However, these 
attacks significantly enhance the model's ability to recognize the new trigger set, elevating 
recognition accuracy from negligible to a level comparable to the original trigger set. These 
findings suggest that attackers can manipulate the model's behavior through fine-tuning 
attacks to respond effectively to trigger sets that are initially unrecognized, posing potential 
threats to model security and intellectual property protection. Therefore, further research 
and reinforcement of model security measures are crucial to mitigate such attacks. 

To assess the model's robustness against various attack methods, experiments simu-
lated multiple attack scenarios including model replacement attacks, noise injection attacks, 
and model reverse engineering attacks. Table 2 shows the performance variations of the 
model under these different attacks. Despite experiencing some performance decline when 
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subjected to attacks, the model demonstrates relatively minor decreases, indicating a de-
gree of robustness. Furthermore, the model's accuracy, recall rate, and F1 score exhibit 
fluctuations within 1% during extended operation, demonstrating its strong stability. 

Table 2: Performance Variations of the Model Under Various Attacks 

Attack type Change in preci-
sion (%)  

Change in re-
call (%) 

Change in F1 
score (%) 

Model replacement at-
tack 

-2.5 -3.1 -2.8 

Noise injection attack -1.9 -2.4 -2.1 

Model reverse engi-
neering attack 

-4.7 -5.3 -5.0 

 

4.4.4 Experiment against pruning attack 

To comprehensively evaluate the robustness of the digital watermark, this study ex-
tends beyond fine-tuning attacks to include pruning attacks on the semantic segmentation 
model containing the digital watermark. Pruning attacks aim to disrupt the watermark by 
selectively removing weights or neurons from the model while attempting to maintain the 
original model performance. Two pruning strategies are selected for evaluation: weight 
pruning and neuron pruning, applied respectively to segmentation models equipped with 
single-pattern single-category and multi-pattern multi-category trigger set digital water-
marks. Weight pruning involves setting a threshold and removing connections with 
weights below this threshold. The study conducts weight pruning at various proportions, 
including 10%, 20%, 30%, 40%, and 50% pruning ratios. After pruning, the model's per-
formance on both the original test set and the trigger set is assessed. Figure 10 illustrates 
the performance evaluation outcomes of the model under the pruning attack. 
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(a)

(b)

 
Fig. 10. Model performance evaluation results under pruning attack(a): Weight pruning; (b): Neuron 

pruning. 

Figure 10 analyzes the evaluation results of the model after pruning attacks, including 
weight pruning and neuron pruning. Pruning attacks aim to disrupt digital watermarks by 
removing some weights or neurons from the model while attempting to maintain its origi-
nal performance as much as possible. For weight pruning, at a pruning ratio of 0.1, the 
model's MIOU decreases slightly from 0.775 on the original test set to 0.892, and from 
0.892 to 0.885 on the trigger set. The data indicates that even at a 10% pruning ratio, the 
model's performance drop is not significant. As the pruning ratio increases, the perfor-
mance on both the original test set and the trigger set gradually decreases. When the prun-
ing ratio reaches 0.5, the MIOU on the original test set drops to 0.701 and to 0.828 on the 
trigger set. Despite the performance decrease, the model's performance on the trigger set 
remains relatively high even at higher pruning ratios. Similarly, neuron pruning results 
mirror weight pruning. At a 10% pruning ratio, the MIOU on the original test set decreases 
from 0.775 to 0.768, and from 0.892 to 0.889 on the trigger set. When the pruning ratio 
increases to 50%, the MIOU drops to 0.692 on the original test set and to 0.819 on the 
trigger set. Compared to weight pruning, neuron pruning has a slightly larger impact on 
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the model's performance, but even at high pruning ratios, the MIOU on the trigger set 
remains relatively high. 

Overall, regardless of whether it is weight pruning or neuron pruning, as the pruning 
ratio increases, the model's performance on the original test set and trigger set shows a 
decreasing trend. However, even at higher pruning ratios, the model's performance on the 
trigger set remains relatively high, demonstrating the robustness of the digital watermark. 
This suggests that the adopted digital watermarking technique effectively withstands prun-
ing attacks, thereby protecting the model's IP. Nevertheless, pruning attacks still have some 
impact on model performance, necessitating a balance between pruning ratio and model 
security in practical applications. 

4.5 Discussion 

This study investigates the implications of AI-driven creativity on intellectual prop-
erty protection through the proposition of a methodology employing DL models. Firstly, 
it examines the impact of AI creativity on copyright and patent systems, particularly within 
the context of DL model applications. Subsequently, the study introduces IP protection 
techniques for image semantic segmentation and explores backdoor mechanisms in DL 
models, specifically applied to image semantic segmentation models. Research findings 
indicate that embedding digital watermarks into datasets effectively safeguards model IP 
with minimal performance degradation, while demonstrating resilience against fine-tuning 
and pruning attacks. Related academic literature underscores the focus on IP protection, 
DL model security, and applications of digital watermarking technology. In the realm of 
IP protection, scholars have addressed strategies for safeguarding innovative achievements 
amidst rapid advancements in AI and machine learning technologies. For instance, Bam-
akan et al. (2022) discussed the adaptability and challenges of IP laws in digital environ-
ments, emphasizing strategies within legal frameworks to accommodate new technologies 
[40]. Similarly, they highlighted the protection of AI-created works under copyright and 
patent laws. In terms of DL model security, extensive research examined vulnerabilities 
and protective measures. Liu et al. (2021) introduced adversarial examples, illustrating 
how slight modifications could lead DL models to misclassify inputs, thereby exposing 
vulnerabilities to unknown inputs [41]. Their insights on adversarial examples signifi-
cantly informed this study's exploration of backdoor mechanisms and the deployment of 
digital watermarking technologies, particularly in designing protective strategies consid-
ering model vulnerabilities and attack vectors. Furthermore, regarding digital watermark-
ing technology applications, numerous studies focused on its implementation to authenti-
cate and protect the ownership of digital content. Jebreel et al. (2021), for example, re-
searched embedding digital watermarks in DL models to mitigate issues related to model 
misuse and unauthorized usage [42]. They underscored the potential and efficacy of digital 
watermarking technology in safeguarding intellectual property, akin to the method pro-
posed for digital watermarking in image semantic segmentation models. Building upon 
prior scholarly works, this study contributes significantly in several dimensions. Firstly, it 
integrates the backdoor mechanism with digital watermarking technology to propose an 
innovative method for protecting intellectual property in image semantic segmentation 
models. By embedding specific algorithms for trigger set generation into datasets, the 
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study achieves digital watermark embedding in models, ensuring traceability to the origi-
nal owner even when utilized without authorization. This approach not only adheres to 
legal requirements for intellectual property protection but also addresses the security and 
reliability needs of DL models in practical applications. Furthermore, the study validates 
the efficacy and resilience of the proposed method through comprehensive experiments. 
Experimental results demonstrate that semantic segmentation models embedded with dig-
ital watermarks maintain stable performance against fine-tuning and pruning attacks, ef-
fectively resisting unauthorized dataset usage while retaining high accuracy in recognizing 
the original dataset. These empirical findings not only validate the method's technical fea-
sibility but also provide empirical evidence for future research endeavors. Nevertheless, 
the study identifies potential areas for enhancement and limitations. While the proposed 
method performs well under specific experimental conditions, its scalability and robust-
ness across large-scale and diverse datasets warrant further validation. Additionally, 
achieving a balance between the impact of digital watermarking on model performance 
and its protective benefits constitutes a crucial avenue for future research. By integrating 
research on DL model security with the application of digital watermarking technology, 
this study introduces an innovative method for protecting intellectual property. It contrib-
utes new insights and empirical evidence to the realm of intellectual property protection 
for AI creations. Future research could expand upon this method's applicability to other 
types of DL models and diverse application scenarios, thereby enhancing its efficacy and 
reliability in practical settings. 

5. CONCLUSION 

5.1 Research Contribution 

To explore methods for protecting intellectual property related to AI creations, this 
study examines the impact of AI innovations on IP and analyzes IP protection strategies 
for image semantic segmentation algorithms. Furthermore, it utilizes the backdoor mech-
anism and adversarial example generation to develop an algorithm for generating trigger 
sets in image semantic segmentation. Comparative experiments validate the efficacy of 
this algorithm, yielding the following conclusions: (1) Integrating the trigger set into the 
original test dataset enhances the model's performance. Specifically, the MIOU value of 
the model with trigger sets comprising single patterns and single categories reaches up to 
95%. (2) Regardless of the mode of the trigger set's digital watermark, the algorithmically 
generated trigger sets minimally impact the performance of the original model. Moreover, 
their MIOU values remain high on the trigger set, at 94.01% and 87.42% respectively, 
indicating a strong association between the semantic segmentation model and its owner. 
(3) In fine-tuning attack experiments, the digital watermark embedded in the segmentation 
model by the trigger set generation algorithm exhibits stable robustness. The MIOU value 
of the model shows negligible impact post-attack, maintaining performance levels compa-
rable to those before the attack. 

5.2 Future Works and Research Limitations 

However, the study identifies research limitations. The generation phase of the trigger 
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set requires integration of information from the entire image, necessitating substantial ef-
fort and time. Future research could explore integrating characteristic information of the 
model owner into salient areas of the image for localized attacks, potentially optimizing 
the efficiency of trigger set generation. 
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