
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 38, XXX-XXX (2022)

DOI: 10.6688/JISE.20220X_38(X).00XX

1

LBRS：A Reinforcement Learning approach to Mixed Flow

Scheduling in Data Center Networks*

XING-YAN ZHANG1,2*

1 College of Computer, Hubei University of Education, Wuhan 430205, China

2 Hubei Co-Innovation Center of Basic Education Information Technology Services, Hubei University of

Education, Wuhan 430205, China

E-mail: {Zhangxy}@hue.edu.cn

Abstract: Deploying enterprise-level applications on cloud servers helps saving delivery

and management costs in data centers. These applications generate lots of flows between

servers within the data center. Efficient flow transmission between the servers can im-

prove the utilization of data centers and has become a research hotspot in both academia

and industry. However, the different requirement from these complex composed flows is

the main obstacle for efficient flow scheduling for DCN.

In this study, a Link-state-based Bandwidth-Reservation Scheme (LBRS) is proposed

to reduce the performance loss caused by the performance requirement of these mixed

flows. Firstly, the bandwidth reservation mechanism is set to limit the occupancy of

link bandwidth by elephant flows, thereby ensuring the transmission performance of

mice flows. Secondly, the recursive path selection algorithm is designed to redirect paths

for elephant flow, when too many elephant flows occupy overload link bandwidth. Fi-

nally, reinforcement learning is leveraged to train optimal configurations for better per-

formance. Experimental results have shown that LBRS offers better performance. Com-

pared to previous flow scheduling, such as queue management and buffer management,

LBRS can reduce the latency of mice flows while increasing network throughput. In ad-

dition, intelligent technology can increase the efficiency of flow scheduling and network

management, and provide reference and convenience for intelligent network manage-

ment.

Keywords: link-bandwidth reservation, recursive path selection, model-based reinforce-

ment learning

1. INTRODUCTION

In recent, cloud computing has exhibited high availability and high scalability. De-

ploying enterprise-level applications on cloud servers is helps saving delivery and man-

agement costs on data centers [1]. These applications generate lots of flows between

servers within the data center. Efficient flow transmission between the servers can im-

prove the utilization of data centers and has become a research hotspot in both academia

and industry.

The flow in data center network (DCN) can be divided into mice flow and elephant

flow based on the flow transmission durations [2]. Some applications (e.g. instant mes-

saging applications, and online social networks) generate a large number of flows, and

these flows need to be processed before the deadline [3]. The main performance goal is

minimizing flow completion time (FCT). Some other applications (e.g. Hadoop MapRe-

duce) generate elephant flows, which require high throughput for a long-time flow

transmission. Furthermore, flow generated from online video applications [5] requires

bandwidth and deadline performance. The different requirement from the complex com-

posed flow is the main obstacle for efficient flow scheduling for DCN.

XING-YAN ZHANG

2

In general, adjusting the flow priority can meet the transmission latency requirements

of the deadline-aware applications. When the network traffic approaches the overall

throughput, it may face some problems. Firstly, not all priorities of flow can be predicted

[7, 8], resulting in the flow of low-priority applications constantly under-waiting for

scheduling and the performance being ignored. Additionally, the flows of low-priority

applications which wait for transmission [9] occupy excessive switch cache, leading to a

decline in overall network performance. Another method is the management of the

switch buffer. By detecting elephant flows in the switch, the elephant flow can be quickly

forwarded out through multi-path methods [4] for increasing network throughput. How-

ever, it is easy to ignore the deadline requirements of the mice flow [10]. The two-tier

scheduling scheme can optimize the performance of both mice flow and elephant flow,

but the prediction of flow priority can’t be avoided [11]. In conclusion, the main obstacle

to mixed flow scheduling is the bandwidth competition from the complex requirement

flow.

In this study, a Link-state-based Bandwidth-Reservation Strategy (LBRS) is proposed

to improve the FCT of mixed flow and overall throughput. The parameter, which is

named the maximum number of elephants flow for each link, is set to ensure enough

bandwidth for mice flow transmission. When the number of elephant flows on a link ex-

ceeds the parameter, the idle neighbor switch is selected for an alternative path, as to

redirect the path for the elephant flow. Moreover, more information in flow scheduling

decisions is helpful for better performance. Intelligence technology, such as the rein-

forcement learning [12, 13, 14], can improve network performance for data center flow

scheduling. The analyses and experiment results indicate that the model-based RL algo-

rithms can improve scalability and adaptability. The main contributions of this study are

as follows.

 The link-bandwidth reservation scheme of flow scheduling can satisfy the per-

formance requirements of both mice flow and elephant flow. We limited the

count of elephant flow on links, and set the trigger for flow split and multipath

redirection. The configuration parameter is combined with the ECMP protocol,

which improves the flow scheduling efficiency.

 The reinforcement learning is used to training the optimal parameters for net-

work configuration achieved intelligent parameter setting. The model-based is

helpful for parameter training and performance convergence.

 The performance and simulation of LBRS show that it can reduce the average

FCT and improve the overall throughput. The intelligent technology can in-

crease the efficiency of flow scheduling and network management, and provide

reference and convenience for intelligent network management.

The organizational structure of this article is as follows: the second section describes

the related works, and the LBRS model is shown in the third section, the next section

introduces the specific design and implementation method, the fifth section presents per-

formance and analysis, and finally, we conclude the work and future works.

2. RELATED WORKS

LBRS：AN REINFORCE LEARNING APPROACH TO MIXED FLOW SCHEDULING IN DATA CENTER NETWORKS 3

The main resolution on flow scheduling in DCN can be divided into queue management and

buffer management. The main idea of queue management is to adjust the priority of mixed

flow. The P4-MLFQ [6] schedules incoming flow into numerous priority queues according to

the active time of flows, resulting in short queuing delays for short flows. P4-MLFQ improves

the overall throughput in average and FCT for 99th percentile short flows, which makes it a

suitable scheduler for high-speed DCNs. EAshman [7] proposed a flow scheduling framework

only to schedule the elephant flows to the lightly congested links. The method of probabil-

ity-based path selection algorithm can improve network throughput. This method only focuses

on the throughput improvement from the elephant flows and ignores the impact on mice. The

proposed DCI-NACC [8] optimizes the priority queue to improve overall throughput, network

latency and FCT. It can improve the performance of the DCNs based on lossless transmission,

which ignores the effect of elephant flow transmission.

The method of buffer management utilizes the properties of switch buffers to adjust rout-

ing strategies and flow forwarding. PFLBS [9] defines a port-based source-routing addressing

scheme, and designs a buffer trigger mechanism to split the elephant flow to keep the traffic

load balanced. The main goal is increasing the throughput of elephant flow. The R-AQM [10]

mechanism can prevent TCP from suffering incast collapse, which can reduce retransmission

timeouts and forward queuing delays.

There are some flow scheduling strategies that rely on more parameters. The ReQ-tank

[11] implements a two-tier scheduling scheme to reduce the FCT. On the flow scheduling

layer, priority queues are segmented into two categories, and the flows within high-priority

queues follow a strict priority scheduling, while those in low-priority queues adhere to differ-

ential weighted Round-robin scheduling; On the packet scheduling layer, ReQ-tank modifies

the priority of initially high-priority re-transmitted packets to facilitate fine-grained data

packet scheduling.

The common goal of these strategies is to improve the flow scheduling performance.

Queue management and buffer management can both reduce the latency of mice flows and

increase the total throughput of the network, but it’s difficult to achieve both targets.

Recently, artificial intelligence technology has been wildly used to improve the network

performance in DCNs. The proposed DRL-R [12] redesigns the routing algorithm in soft-

ware-defined data-center networks, which adds the cache information to the flow scheduler.

The DRL-Plink [13] designs some private links to divide the link bandwidth and establishes

some corresponding private links to prevent bandwidth competition for different flows. These

proposed using deep reinforcement learning, which needs less time and fewer computing

sources for model training. The proposal of LBRS can try to use reinforcement learning get

the almost performance without less training cost. The reinforcement learning [14] can used

to optimize multi-object flow scheduling. It proved that reinforcement learning or something

like artificial intelligence is the trend to optimize flow scheduling, especially for large data

centers.

3. DESIGN OF THE LBRS SCHEME

In this section, the mathematical model of LBRS was presented, and then, the recur-

sive path selection strategy is specified. Finally, the rationality and performance of the

model were analyzed.

XING-YAN ZHANG

4

3.1 LBRS model

To formalize the LBRS scheme, the specific data was formalized.

flowi: the ith flow needs to translate

pathj,k: the path set for the flow j is the order of jth concurrent path，k is the kth link in

the single path from jth concurrent path

 : in theory, the single link is capacity for limited elephant flows, the count is marked

as

pn: The number of elephant flows carried on a single link. The larger the value of pn,

the larger the number of elephant flows that can be accommodated, and the smaller the

number of mice flows that can be reserves. On the contrary, it can support more mice

flows.

 So the remaining bandwidth of the one path is denoted by PB_rsv, reserved for the

mice flow transmission.

When elephant flow is detected between two hosts, the Equal-cost multi-path rout-

ing (ECMP) protocol generates a set of j number of alternative paths for the ith flow,

pathi, j={ pathi,0, path i,m, ..., path i, j-1}. These paths are j number of parallel transmission

paths, each consisting of k segments links, so each segment of the link can be represented

as path j, k. From the above definition, it can be seen that each segment of the link on pathj,

k can carry (between two adjacent switches, or between a host and a directly connected

switch, which referring to a 1-hop network). When the remaining bandwidth can reserve

enough bandwidth to accommodate elephant flow, as shown in Equation 1, this link

can be used as an alternative path.

 rsv
i j k

 -

 (1)

So the maximum link bandwidth obtained from the existing k-th path is expressed as

Equation 2

 rsv
i j

 rsv
i j

 rsv
i j

 rsv
i j k-

 (2)

For the ith flow, the maximum available bandwidth reserved by the network is ex-

pressed as Equation 3

 rsv
i
 rsv

i
 rsv

i
 rsv

i j
 (3)

Only when the remaining bandwidth can meet the requirements shown in Formula 4,

can this link be used as an alternative path for ECMP as one of the alternative paths.

 rsv
i

 ⁄ (4)

Due to the fact that multiple paths on the link and the ECMP protocol choose the

minimum link capacity as the actual transmission bandwidth during transmission, the

determination of whether the path of the i-th flow can reach the optimal transmission

path mainly depends on Equation 5, which can be inferred from Equation s 1 and 4

 (5)

The remaining bandwidth of the link can be adjusted according to the distribution of

flow. If the system is mainly composed of elephant flow, a certain amount of bandwidth

can be reserved for the transmission of mice flow. If the mice flow is mainly, the path of

mice flow cannot be predicted. If too much reserved bandwidth is left for each path, it

causes elephant flow to be unable to find a suitable transmission path. Conversely, mice

flow may not achieve the expected performance value. Setting appropriate bandwidth

reservation parameters is important for the overall network performance.

LBRS：AN REINFORCE LEARNING APPROACH TO MIXED FLOW SCHEDULING IN DATA CENTER NETWORKS 5

In addition, retrans_count is defined to represent the number of flow retransmis-

sions. When the number of retransmissions exceeds the value of retrans_count, it is

handed over to the upper layer of the network for processing, and the retransmission ends.

To meet the transmission efficiency of the mice flow, the retransmission time

TCP_time_out of the flow is set, which is set to 300ms to ensure the delay requirements

of the mice flow transmission.

To record the pn value of each link, the most intuitive way is to use a matrix to record

the pn value on each link. Due to the large number of links and the sparsity of the matrix,

we use a link forward data structure to record the pn value. We use an array head to store

nodes and an array w to store the weights of each edge, where the weight is pn. The use

of a link forward-data structure can effectively remove duplicate edges, and the time

complexity can meet the application requirement.

3.2 Recursive Path Selection Algorithm

Once the default path found by the ECMP algorithm does not meet Equation (5), a

new path needs to be found to replace the original path. Intuitively speaking, utilizing the

hopping of neighboring nodes to quickly find new transmission paths. We abstract the

path discovery process as the process of finding concurrent paths, implementing breadth

first on each neighboring node to break out of the current default, and then using depth

first algorithms to find alternative paths for sending flows.

In order to find available transmission paths, the ECMP protocol's transmission path

to flow is represented as a triplet <AggID1, CoreID, AggID2> for calculation. We use

three methods to replace the original transmission path:

(1) Replace the core switch, and the corresponding AggID1 and AggID2 will be

changed accordingly. The new transmission path is:<AggID1 ', Core_ID’, Agg_ID2’>

(2) Add a new aggregation switch AggID1 'to the POD where the source server is lo-

cated, and the corresponding CoreID and AggID2 will change accordingly. The new

transmission path is:<AggID1, Edg_ID, Agg_ID1’, Core_ID’, Agg_ID2’>

(3) Add a new aggregation switch AggID2' to the POD where the destination server is

located, and the corresponding CoreID will change accordingly. The new transmission

path is:<AggID1, Core_ID’, Agg_ID2’, Edg_ID, Agg_ID2>。

On these alternative paths set, the available paths through the network probe are used

as alternative paths for ECMP. We can periodically monitor the operation status of the

data center (5 minutes each time), detect the number of elephant flows carried by each

link, the transmission delay of flows, and other data, and hand them over to intelligent

decision-making for processing, thereby providing intelligent decision-making for the

above key parameters and achieving the best system configuration.

3.3 analyses of LBRS

Rationality analysis: When the value of pn increases, it means that each link can ac-

commodate more elephant flows, while the bandwidth that can be reserved for other

flows will decrease. If pn approaches σ-1, theoretically this segment of the link may not

allow other flows to pass through, regardless of how many retransmissions are made.

When the link bandwidth in a network exceeds 70% of the total bandwidth, performance

degradation is very severe. So, pn becomes a key factor in flow scheduling. On the one

hand, if pn is set too small, as the number of network flows increases, it makes it difficult

XING-YAN ZHANG

6

for elephant flow to use the default ECMP protocol to choose a suitable transmission

path, resulting in more redirect paths and increasing the cost of network transmission

[16].

Cost analysis: flow transmission requires a certain amount of link occupancy for a

certain period time. The lower the link occupancy time, the more flows can be accom-

modated in other links in the system. Therefore, the cost of a flow transmission can be

expressed as the number of occupied links hop multiplied by the time t of the occupied

links, expressed as ∑ . When the transmission time of each flow is fixed,

reducing the number of new path hops in the ECMP protocol can reduce the value of the

hop. If all flows can choose the shortest path chosen by ECMP, there is no doubt that the

lowest transmission value can be achieved, but the requirement for pn to be infinitely

large is not consistent with Equation (5). So the value of pn is a tradeoff that optimizes

the transmission efficiency of both elephant flow and mice flow simultaneously.

4. REINFORCEMENT LEARNING IMPLEMENTATION

This section introduces the specific LBRS and settings of reinforcement learning,

and shows the details of scheme initialization in online learning.

4.1 Intelligent Proxy Settings

This section introduces deep Markov pro-

cesses to train parameter values. Reinforcement

learning utilizes continuous interaction between

agents and the environment, utilizing actions,

rewards, and observation results to gradually

update and optimize agents, providing support

for intelligent decision-making. The basic idea

is to achieve the goal of universal artificial intel-

ligence by maximizing environmental rewards.

In this method, we set up agents to change pa-

rameter values and optimize the parameters of

the network system by monitoring network per-

formance and adopting different rewards (or

punishments) for different actions.

From a mathematical perspective, reinforcement learning is modeled as a Markov

decision process (MDP). During this process, the agent interacts with the environment at

each step. The intelligent agent executes an action, and the environment returns the cur-

rent immediate reward and the next state. This process continues to form a sequence of

states, actions, and rewards. Establish an RL algorithm for decision-making and generate

a state action table, which becomes a Q-value table. The configuration policies can be

generated based on the updated Q-table.

State space. For the automatic configuration task in this study, a vector state is de-

fined as a possible configuration. The format is as follows:

Data Center

Network Controller

Agent

St+1 Rt+1

State
St

Reward
Rt

Networks
Config.

Networks
QoS

Updating
Config.

LBRS：AN REINFORCE LEARNING APPROACH TO MIXED FLOW SCHEDULING IN DATA CENTER NETWORKS 7

Si = (pn, retrans_count, σ) (6)

Action set. Three actions are defined to control parameters associated with increase,

decrease, and keep. Using the vector Actioni to represent the operation on parameter i,

each parameter is a vector composed of three elements, indicating that the action com-

posed of three elements has been adopted (using 1 instead of 0). For example, Parai(1, 0,

0) represents the increase operation on parameter i, so each state has three actions,

marked with 1 and 0 respectively

Immediate reward. The immediate reward received at time t, which reflects the

positive benefit of network system throughput, is:

Rt SLA − performancet, (7)

Where SLA represents predefined network performance, such as FCT, and perfor-

mancet is the measured value at time t. For some SLAs, lower FCT means that agents

will bring a positive reward, otherwise they will receive a negative penalty. On the con-

trary, if throughput is used as an immediate report, the Equation 7 is exactly the opposite.

Q-value learning. Due to the state and action space of the environment, an envi-

ronment model isn’t needed, and the Q-table can be updated based on measurement val-

ues, making it suitable for choosing Q-Learning algorithm. The Q-learning algorithm is

not about optimizing a strategy based on its knowledge, but creating a new scheme that is

represented in the form of a table. The input is the state and action, and the output is the

value of each state and action. Using this incremental approach, the Q value of the action

A on state S can be calculated once after each instant reward R is updated as equation 8.

 [] (8)

where α is the learning rate parameter which helps to converge to the true Q-value in

the presence of noise or random rewards and state transitions, and γ is the discount rate to

guarantee the accumulated reward convergence in the continuing scheduling task.

In the reinforcement learning process, the interaction with the external environment

means exchanging network status with DCN. The reconstruction process can be a finite

MDP, which consists of a set of states and several actions for each state. At each step of

state transition, the agent could get a reward which can be calculated by Equation 9.

 [] (9)

The purpose of the agent is to establish a scheme π: S → A to maximize the accumu-

lated rewards based on iterative trial and error interaction [17].

4.2 the parameter training

To learn the initial scheme, we need to collect training data for subsequent RL learn-

ing. The key issue of the algorithm is to select representative states for approximation. In

the production environment, the parameter scale of system configuration is very large.

The method proposed in this question, while considering the goal of simplifying the sys-

tem, tries to use a simple method to optimize key parameters as much as possible.

Therefore, three parameters (pn, retrans_count, σ) were selected. With the optimization

XING-YAN ZHANG

8

of system performance, more key parameters that affect performance will be discovered

and added to this method. Overall, the key parameters of the DCN include the following:

pn, retrans_count, and σ. The range and default value of parameters are shown in Table 1,

in which the value refers to experience [15].
TABLE1. KEY PARAMETERS

Parameter Range Default

pn [1,10] 3

retrans_count [3,15] 8

 [3,10] 7

Algorithm 1 shows the LBRS training algorithm. LBRS never stops until being

stopped. At each interaction with DCN performance, the current state is marked, so the

actual immediate reward can be obtained. The greedy policy is used to select the next

action by the output function. The network performance is calculated during the last in-

terval. The Q function is updated as in Algorithm 2.
Algorithm 1 The LBRS training algorithm
1: Configuration DCN with three parameters (pn:3, retrans_count:8 σ:7) , Measure the FCT as initial st
2: Initializeα . 5 γ .9 in agent, t:0

3: repeat
4: st ← current_networks_state ()
5: reconf igure_DCN(at)
6: rt+1 ← calculate reward()
7: at+1 ← get next action(st, Qappx)
8: configure ← identif y configure()
9: Rmodel ← select model(configure)
10: update Rmodel(st, at, rt+1, Rmodel)
11: update Qappx(Rmodel, Qappx)
12: t ← t + 1
13: until LBRS is terminated

Algorithm 2 Q function update algorithm

1: Initialize Q() to the function. α . 5 γ .9

2: repeat

3: s ←

4: for n iterations do

5: (st , at ,rt) = generate ()

6: target= rt + γ * Q (st+1, at+1)

7: error = target − Q (st , at)

8: s = γ* s +α* error * error

9: update target network as Q (st , at)

10: end for

11: until converge(s)

After obtaining all the training data, we ran an algorithm similar to [17] to learn the

initial Q-value table. In the implementation process we set α . 5 γ .9 as the parame-

ter values during Q function updating.

5. PERFORMANCE EVALUATION

LBRS：AN REINFORCE LEARNING APPROACH TO MIXED FLOW SCHEDULING IN DATA CENTER NETWORKS 9

5.1 Simulation Environment

The simulator Mininet is employed to test the performance of LBRS. We need to un-

derstand how well LBRS performs against other schemes such as P4-MLFQ [6], PFLBS

[9], and DRL-Plink [13]. The Mininet version was ryu3.4.3, and the programming lan-

guage was Python 3.4. The experimental machine configuration is Intel i7-14700kf,

16.0GB RAM, CentOS Linux release 7.6.1810 (Core). The experiment uses the iperf

tools to generate simulated elephant flow between hosts, and uses the ping command to

simulate the generation of mice flow. The topology of the network adopts the standard

Fat Tree structure.

The data flow adopts two communication modes: (1) Random: randomly generating

data flow between randomly numbered hosts. (2) Stag (pEdge, pPod): pEdge is the pro-

portion of traffic between hosts within the same Edge Switch, pPod is the proportion of

traffic between hosts within the same Pod that are not in the same Edge Switch, and the

proportion of host traffic between different Pods is 1-pEdge pPod.

5.2 Metrics

(1) Response time for the first packet of dynamic flow

We simulated three types of flows and changed the composition of the data flow at

three stages, with the basic ratio of elephant flow to mice flow, and the quantity ratio

being 3:1, 7:1, and 10:1 at the 10ms, 20 ms, and 30ms, respectively. The response time of

first packet is shown in Figure 2. when the proportion of the flow changes, the iterative

algorithm always tends to converge in response time within a certain number of times,

and the performance obtained is better than the default scheduling method. From this

perspective, this method can adaptively adapt to dynamically changing flows and the

performance can quickly converge than others.

Fig. 2. Impact of Iteration Times on Response Time

(2) Average FCT

Figure 3 shows the overall average FCT for the different traffic at different link

loads. The overall average FCT with LBRS is up to ∼ 21.6% lower compared to

P4-MLFQ in Strg(0.1,0.3) traffic, and ∼ 23.6% lower compared to PFLBS in

Strg(0.3,0.3). LBRS reduces the overall average FCT in these traffic by up to ∼ 17.2%, ∼

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30

R
es

p
o

n
se

 T
im

e(
m

s)

Times (ms)

PFLBS P4-MLFQ

DRL-Plink LBRS

XING-YAN ZHANG

10

16.6% and ∼ 9.9%, when compared to PFLBS, P4-MLFQ, and DRL-Plink, respectively.

The results show LBRS can reduce the transmission time efficiency.

Fig. 3. Impact of Scheduling Strategies on Average FCT

(2) Total throughput

Figure 4 shows the total throughput of whole networks for the different loads. In

general, LBRS offers the best performance. The total throughput with LBRS is up to ∼

27.0% higher compared to PFLBS in Strg(0.3,0.3) traffic and ∼ 23.6% lower compared

to PFLBS in Strg(0.1,0.3). LBRS increases the overall average FCT in these traffic by up

to ∼ 25.3%, ∼ 21.6%, and ∼ 6.7% when compared to PFLBS, P4-MLFQ, and

DRL-Plink, respectively, which indicates that while restricting the forwarding of ele-

phant flows. The result shows it can also improve the forwarding efficiency of elephant

flows and enhance the network throughput.

Fig. 4. Impact of Scheduling Strategies on Total Throughput

6. CONCLUSIONS

In this paper, a link-state-based bandwidth-reservation scheme is proposed

mixed-flow scheduling in DCN. Theoretical analyses and experimental results show that

LBRS can adapt to dynamic changes in the data flow distribution, and automatically con-

0

50

100

150

200

250

300

350

400

Random Strg(0.1,0.1) Strg(0.1,0.3) Strg(0.3,0.3)

A
v

er
ag

e
F

C
T

 (
m

s)
PFLBS DRL-Plink P4-MLFQ LBRS

450

550

650

750

850

Random Strg(0.1,0.1) Strg(0.1,0.3) Strg(0.3,0.3)

T
o

ta
l

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

PFLBS P4-MLFQ

DRL-Plink LBRS

LBRS：AN REINFORCE LEARNING APPROACH TO MIXED FLOW SCHEDULING IN DATA CENTER NETWORKS 11

figure appropriate parameters. In addition, intelligent technology can increase the effi-

ciency of flow scheduling and network management, and provide reference and conven-

ience for intelligent network management.

In this work, the fewer parameters for flow scheduling decisions may limit the per-

formance improvement, which means ignoring the potential detail. Automatic parameter

choices are not considered in this work.

In the future, fine-grained flow scheduling will become our new direction, and more

parameters in intelligent decision-making may make flow scheduling more refined.

Moreover, combining intelligent routing and flow scheduling could improve in better

network performance.

ACKNOWLEDGMENTS

This work has been supported by the project funded by the Hubei Provincial De-

partment of Education (No. B2018203) and the National Natural Science Foundation of

China (No. 62272350); in part by the Teaching Research Project of Hubei University of

Education (X2019011).

REFERENCES

1. S. M. Shetty, S. Shetty, "Analysis of load balancing in cloud data centers,"

Journal of Ambient Intelligence and Humanized Computing, Vol. 15, 2024, pp. 973–

981, doi:10.1007/s12652-018-1106-7

2. A. Cornacchia, A. Bianco, P. Giaccone, and G. Sviridov "A “ ig-Spine” Ab-

straction: Flow Prioritization With Spatial Diversity in The Data Center Net-

work," 2024 IEEE 25th International Conference on High Performance Switching

and Routing (HPSR), 2024, pp. 43-48, doi: 10.1109/HPSR62440.2024.10635939.

3. M. Yenugula, S. Sahoo, and S. Goswami. "Cloud computing for sustainable de-

velopment: An analysis of environmental, economic and social benefits." Journal of

future sustainability, vol. 4, no.1, 2024, pp. 59-66. doi:10.5267/j.jfs.2024.1.005

4. Z. Li, J. Huang, S. Wang, and J. Wang, "Achieving Low Latency for Multipath

Transmission in RDMA Based Data Center Network," IEEE Transactions on

Cloud Computing, vol. 12, no. 1, 2024, pp. 337-346, doi:

10.1109/TCC.2024.3365075.

5. L. Sun et al., "BiSwift: Bandwidth Orchestrator for Multi-Stream Video Ana-

lytics on Edge," IEEE INFOCOM 2024, 2024, pp. 1181-1190, doi:

10.1109/INFOCOM52122.2024.10621392.

6. M. Iqbal and C. Chen, "P4-MLFQ: A P4 implementation of Multi-level Feed-

back Queue Scheduling Using A Coarse-Grained Timer for Data Center Networks,"

2023 IEEE 12th International Conference on Cloud Networking (CloudNet), 2023,

pp. 120-125, doi: 10.1109/CloudNet59005.2023.10490044.

7. B. Huang and S. Dong, "An Enhanced Scheduling Framework for Elephant

Flows in SDN-Based Data Center Networks," 2020 IEEE Symposium on Computers

and Communications (ISCC), 2020, pp. 1-7, doi:

10.1109/ISCC50000.2020.9219688.

XING-YAN ZHANG

12

8. J. Geng, "DCI-NACC: flow scheduling and congestion control based on pro-

grammable data plane in high-performance data center networks," The International

Journal of Advanced Manufacturing Technology, Vol. 122, 2022, pp. 51-63,

doi:10.1007/s00170-021-08459-4.

9. Z. Liu, et al. "An Efficient Flow Detection and Scheduling Method in Data

Center Networks," The 2nd International Conference on Computing and Data Sci-

ence (CONF-CDS), 2021, pp. 1-7, doi:10.1145/3448734.3450819

10. X. Du, et al. "R-AQM: Reverse ACK Active Queue Management in Multitenant

Data Centers, " IEEE/ACM Transactions on Networking, Vol. 31, no. 2, 2022, pp.

526–541. doi:10.1109/TNET.2022.3197973

11. Q. Xu, et al. "ReQ-tank: Fine-grained Distributed Ma-chine Learning Flow

Scheduling Approach," IEEE 29th International Conference on Parallel and Dis-

tributed Systems (ICPADS), 2023, pp. 146-152, doi:

10.1109/ICPADS60453.2023.00030.

12. W. Liu, et al. "DRL-R: Deep reinforcement learning approach for intelligent

routing in software-defined data-center networks." Journal of Network and Comput-

er Applications, Vol, 177: 102865, 2021, doi:10.1016/j.jnca.2020.102865.

13. W. Liu, J. Lu, J. Cai, Y. Zhu, S. Ling and Q. Chen, "DRL-PLink: Deep Rein-

forcement Learning With Private Link Approach for Mix-Flow Scheduling in Soft-

ware-Defined Data-Center Networks," IEEE Transactions on Network and Service

Management, Vol. 19, no. 2, 2022, pp. 1049-1064, doi:

10.1109/TNSM.2021.3128267.

14. T. Chen, et al. "Reinforcement Learning for Datacenter Congestion Control,"

ACM SIGMETRICS Performance Evaluation Review, Vol. 49, no. 2, 2022, pp. 43–

46, doi:10.1145/3512798.3512815.

15. W. Liu, et al. "Fine-grained flow classification using deep learning for software

defined data center networks," Journal of Network and Computer Applications. Vol,

168, 2020, pp. 102766, doi: 10.1016/j.jnca.2020.102766.

16. A. Satpathy, et al, "ReMatch: An efficient virtual data center re-matching strat-

egy based on matching theory," IEEE Transactions on Services Computing. Vol,

16.2, 2022, pp. 1373-1386. doi:10.1109/TSC.2022.3183259

17. X. Bu, J. Rao, C. Xu, "A reinforcement learning approach to online web sys-

tems auto-configuration," In 29th IEEE International Conference on Distributed

Computing Systems, 2009, pp. 2-11. doi: 10.1109/ICDCS.2009.76

Xing-Yan Zhang received a Ph.D. degree in Computer Science from

Huazhong University of Science and Technology in 2016. He is current-

ly a lecturer at Hubei University of Education. His research interests

include data center networks and artificial intelligence.

https://doi.org/10.1016/j.jnca.2020.102766
https://doi.org/10.1109/TSC.2022.3183259
https://doi.org/10.1109/ICDCS.2009.76

