
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 38, XXX-XXX (2022) 

DOI: 10.6688/JISE.20220X_38(X).00XX    

1  

LBRS：A Reinforcement Learning approach to Mixed Flow 

Scheduling in Data Center Networks* 

 
XING-YAN ZHANG1,2* 

1 College of Computer, Hubei University of Education, Wuhan 430205, China 

2 Hubei Co-Innovation Center of Basic Education Information Technology Services, Hubei University of 

Education, Wuhan 430205, China 

E-mail: {Zhangxy}@hue.edu.cn 

 
Abstract: Deploying enterprise-level applications on cloud servers helps saving delivery 

and management costs in data centers. These applications generate lots of flows between 

servers within the data center. Efficient flow transmission between the servers can im-

prove the utilization of data centers and has become a research hotspot in both academia 

and industry. However, the different requirement from these complex composed flows is 

the main obstacle for efficient flow scheduling for DCN. 

In this study, a Link-state-based Bandwidth-Reservation Scheme (LBRS) is proposed 

to reduce the performance loss caused by the performance requirement of these mixed 

flows.  Firstly, the bandwidth reservation mechanism is set to limit the occupancy of 

link bandwidth by elephant flows, thereby ensuring the transmission performance of 

mice flows. Secondly, the recursive path selection algorithm is designed to redirect paths 

for elephant flow, when too many elephant flows occupy overload link bandwidth. Fi-

nally, reinforcement learning is leveraged to train optimal configurations for better per-

formance. Experimental results have shown that LBRS offers better performance. Com-

pared to previous flow scheduling, such as queue management and buffer management, 

LBRS can reduce the latency of mice flows while increasing network throughput. In ad-

dition, intelligent technology can increase the efficiency of flow scheduling and network 

management, and provide reference and convenience for intelligent network manage-

ment. 

Keywords: link-bandwidth reservation, recursive path selection, model-based reinforce-

ment learning 

1. INTRODUCTION 

 

In recent, cloud computing has exhibited high availability and high scalability. De-

ploying enterprise-level applications on cloud servers is helps saving delivery and man-

agement costs on data centers [1]. These applications generate lots of flows between 

servers within the data center. Efficient flow transmission between the servers can im-

prove the utilization of data centers and has become a research hotspot in both academia 

and industry. 

The flow in data center network (DCN) can be divided into mice flow and elephant 

flow based on the flow transmission durations [2]. Some applications (e.g. instant mes-

saging applications, and online social networks) generate a large number of flows, and 

these flows need to be processed before the deadline [3]. The main performance goal is 

minimizing flow completion time (FCT). Some other applications (e.g. Hadoop MapRe-

duce) generate elephant flows, which require high throughput for a long-time flow 

transmission. Furthermore, flow generated from online video applications [5] requires 

bandwidth and deadline performance. The different requirement from the complex com-

posed flow is the main obstacle for efficient flow scheduling for DCN.  
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In general, adjusting the flow priority can meet the transmission latency requirements 

of the deadline-aware applications. When the network traffic approaches the overall 

throughput, it may face some problems. Firstly, not all priorities of flow can be predicted 

[7, 8], resulting in the flow of low-priority applications constantly under-waiting for 

scheduling and the performance being ignored. Additionally, the flows of low-priority 

applications which wait for transmission [9] occupy excessive switch cache, leading to a 

decline in overall network performance. Another method is the management of the 

switch buffer. By detecting elephant flows in the switch, the elephant flow can be quickly 

forwarded out through multi-path methods [4] for increasing network throughput. How-

ever, it is easy to ignore the deadline requirements of the mice flow [10]. The two-tier 

scheduling scheme can optimize the performance of both mice flow and elephant flow, 

but the prediction of flow priority can’t be avoided [11]. In conclusion, the main obstacle 

to mixed flow scheduling is the bandwidth competition from the complex requirement 

flow. 

In this study, a Link-state-based Bandwidth-Reservation Strategy (LBRS) is proposed 

to improve the FCT of mixed flow and overall throughput. The parameter, which is 

named the maximum number of elephants flow for each link, is set to ensure enough 

bandwidth for mice flow transmission. When the number of elephant flows on a link ex-

ceeds the parameter, the idle neighbor switch is selected for an alternative path, as to 

redirect the path for the elephant flow. Moreover, more information in flow scheduling 

decisions is helpful for better performance. Intelligence technology, such as the rein-

forcement learning [12, 13, 14], can improve network performance for data center flow 

scheduling. The analyses and experiment results indicate that the model-based RL algo-

rithms can improve scalability and adaptability. The main contributions of this study are 

as follows. 

  The link-bandwidth reservation scheme of flow scheduling can satisfy the per-

formance requirements of both mice flow and elephant flow. We limited the 

count of elephant flow on links, and set the trigger for flow split and multipath 

redirection. The configuration parameter is combined with the ECMP protocol, 

which improves the flow scheduling efficiency. 

 The reinforcement learning is used to training the optimal parameters for net-

work configuration achieved intelligent parameter setting. The model-based is 

helpful for parameter training and performance convergence. 

 The performance and simulation of LBRS show that it can reduce the average 

FCT and improve the overall throughput. The intelligent technology can in-

crease the efficiency of flow scheduling and network management, and provide 

reference and convenience for intelligent network management. 

The organizational structure of this article is as follows: the second section describes 

the related works, and the LBRS model is shown in the third section, the next section 

introduces the specific design and implementation method, the fifth section presents per-

formance and analysis, and finally, we conclude the work and future works. 

2. RELATED WORKS 
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The main resolution on flow scheduling in DCN can be divided into queue management and 

buffer management. The main idea of queue management is to adjust the priority of mixed 

flow. The P4-MLFQ [6] schedules incoming flow into numerous priority queues according to 

the active time of flows, resulting in short queuing delays for short flows. P4-MLFQ improves 

the overall throughput in average and FCT for 99th percentile short flows, which makes it a 

suitable scheduler for high-speed DCNs. EAshman [7] proposed a flow scheduling framework 

only to schedule the elephant flows to the lightly congested links. The method of probabil-

ity-based path selection algorithm can improve network throughput. This method only focuses 

on the throughput improvement from the elephant flows and ignores the impact on mice. The 

proposed DCI-NACC [8] optimizes the priority queue to improve overall throughput, network 

latency and FCT. It can improve the performance of the DCNs based on lossless transmission, 

which ignores the effect of elephant flow transmission. 

The method of buffer management utilizes the properties of switch buffers to adjust rout-

ing strategies and flow forwarding. PFLBS [9] defines a port-based source-routing addressing 

scheme, and designs a buffer trigger mechanism to split the elephant flow to keep the traffic 

load balanced. The main goal is increasing the throughput of elephant flow. The R-AQM [10] 

mechanism can prevent TCP from suffering incast collapse, which can reduce retransmission 

timeouts and forward queuing delays. 

There are some flow scheduling strategies that rely on more parameters. The ReQ-tank 

[11] implements a two-tier scheduling scheme to reduce the FCT. On the flow scheduling 

layer, priority queues are segmented into two categories, and the flows within high-priority 

queues follow a strict priority scheduling, while those in low-priority queues adhere to differ-

ential weighted Round-robin scheduling; On the packet scheduling layer, ReQ-tank modifies 

the priority of initially high-priority re-transmitted packets to facilitate fine-grained data 

packet scheduling.  

The common goal of these strategies is to improve the flow scheduling performance. 

Queue management and buffer management can both reduce the latency of mice flows and 

increase the total throughput of the network, but it’s difficult to achieve both targets.  

Recently, artificial intelligence technology has been wildly used to improve the network 

performance in DCNs. The proposed DRL-R [12] redesigns the routing algorithm in soft-

ware-defined data-center networks, which adds the cache information to the flow scheduler. 

The DRL-Plink [13] designs some private links to divide the link bandwidth and establishes 

some corresponding private links to prevent bandwidth competition for different flows. These 

proposed using deep reinforcement learning, which needs less time and fewer computing 

sources for model training. The proposal of LBRS can try to use reinforcement learning get 

the almost performance without less training cost. The reinforcement learning [14] can used 

to optimize multi-object flow scheduling. It proved that reinforcement learning or something 

like artificial intelligence is the trend to optimize flow scheduling, especially for large data 

centers.  

3. DESIGN OF THE LBRS SCHEME 

In this section, the mathematical model of LBRS was presented, and then, the recur-

sive path selection strategy is specified. Finally, the rationality and performance of the 

model were analyzed. 
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3.1 LBRS model 

To formalize the LBRS scheme, the specific data was formalized. 

flowi: the ith flow needs to translate 

pathj,k: the path set for the flow j is the order of jth concurrent path，k is the kth link in 

the single path from jth concurrent path 

  : in theory, the single link is capacity for limited elephant flows, the count is marked 

as   

pn: The number of elephant flows carried on a single link. The larger the value of pn, 

the larger the number of elephant flows that can be accommodated, and the smaller the 

number of mice flows that can be reserves. On the contrary, it can support more mice 

flows. 

  So the remaining bandwidth of the one path is denoted by PB_rsv, reserved for the 

mice flow transmission. 

When elephant flow is detected between two hosts, the Equal-cost multi-path rout-

ing (ECMP) protocol generates a set of j number of alternative paths for the ith flow, 

pathi, j={ pathi,0, path i,m, ..., path i, j-1}. These paths are j number of parallel transmission 

paths, each consisting of k segments links, so each segment of the link can be represented 

as path j, k. From the above definition, it can be seen that each segment of the link on pathj, 

k can carry (between two adjacent switches, or between a host and a directly connected 

switch, which referring to a 1-hop network). When the remaining bandwidth can reserve 

enough bandwidth to accommodate elephant flow, as shown in Equation  1, this link 

can be used as an alternative path. 

   rsv
i  j  k

  -
  

 
                            (1) 

So the maximum link bandwidth obtained from the existing k-th path is expressed as 

Equation  2 

   rsv
i  j

         rsv
i  j   

    rsv
i  j   

       rsv
i  j  k- 

                          (2) 

For the ith flow, the maximum available bandwidth reserved by the network is ex-

pressed as Equation  3 

   rsv
i
         rsv

i   
    rsv

i   
       rsv

i  j
              (3) 

Only when the remaining bandwidth can meet the requirements shown in Formula 4, 

can this link be used as an alternative path for ECMP as one of the alternative paths. 

   rsv
i
  

 ⁄                     (4) 

Due to the fact that multiple paths on the link and the ECMP protocol choose the 

minimum link capacity as the actual transmission bandwidth during transmission, the 

determination of whether the path of the i-th flow can reach the optimal transmission 

path mainly depends on Equation  5, which can be inferred from Equation s 1 and 4 

                           (5) 

The remaining bandwidth of the link can be adjusted according to the distribution of 

flow. If the system is mainly composed of elephant flow, a certain amount of bandwidth 

can be reserved for the transmission of mice flow. If the mice flow is mainly, the path of 

mice flow cannot be predicted. If too much reserved bandwidth is left for each path, it 

causes elephant flow to be unable to find a suitable transmission path. Conversely, mice 

flow may not achieve the expected performance value. Setting appropriate bandwidth 

reservation parameters is important for the overall network performance. 
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In addition, retrans_count is defined to represent the number of flow retransmis-

sions. When the number of retransmissions exceeds the value of retrans_count, it is 

handed over to the upper layer of the network for processing, and the retransmission ends. 

To meet the transmission efficiency of the mice flow, the retransmission time 

TCP_time_out of the flow is set, which is set to 300ms to ensure the delay requirements 

of the mice flow transmission. 

To record the pn value of each link, the most intuitive way is to use a matrix to record 

the pn value on each link. Due to the large number of links and the sparsity of the matrix, 

we use a link forward data structure to record the pn value. We use an array head to store 

nodes and an array w to store the weights of each edge, where the weight is pn. The use 

of a link forward-data structure can effectively remove duplicate edges, and the time 

complexity can meet the application requirement. 

 

3.2 Recursive Path Selection Algorithm 

Once the default path found by the ECMP algorithm does not meet Equation  (5), a 

new path needs to be found to replace the original path. Intuitively speaking, utilizing the 

hopping of neighboring nodes to quickly find new transmission paths. We abstract the 

path discovery process as the process of finding concurrent paths, implementing breadth 

first on each neighboring node to break out of the current default, and then using depth 

first algorithms to find alternative paths for sending flows. 

In order to find available transmission paths, the ECMP protocol's transmission path 

to flow is represented as a triplet <AggID1, CoreID, AggID2> for calculation. We use 

three methods to replace the original transmission path: 

(1) Replace the core switch, and the corresponding AggID1 and AggID2 will be 

changed accordingly. The new transmission path is:<AggID1 ', Core_ID’, Agg_ID2’> 

(2) Add a new aggregation switch AggID1 'to the POD where the source server is lo-

cated, and the corresponding CoreID and AggID2 will change accordingly. The new 

transmission path is:<AggID1, Edg_ID, Agg_ID1’, Core_ID’, Agg_ID2’>  

(3) Add a new aggregation switch AggID2' to the POD where the destination server is 

located, and the corresponding CoreID will change accordingly. The new transmission 

path is:<AggID1, Core_ID’, Agg_ID2’, Edg_ID, Agg_ID2>。 

On these alternative paths set, the available paths through the network probe are used 

as alternative paths for ECMP. We can periodically monitor the operation status of the 

data center (5 minutes each time), detect the number of elephant flows carried by each 

link, the transmission delay of flows, and other data, and hand them over to intelligent 

decision-making for processing, thereby providing intelligent decision-making for the 

above key parameters and achieving the best system configuration. 

3.3 analyses of LBRS 

Rationality analysis: When the value of pn increases, it means that each link can ac-

commodate more elephant flows, while the bandwidth that can be reserved for other 

flows will decrease. If pn approaches σ-1, theoretically this segment of the link may not 

allow other flows to pass through, regardless of how many retransmissions are made. 

When the link bandwidth in a network exceeds 70% of the total bandwidth, performance 

degradation is very severe. So, pn becomes a key factor in flow scheduling. On the one 

hand, if pn is set too small, as the number of network flows increases, it makes it difficult 
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for elephant flow to use the default ECMP protocol to choose a suitable transmission 

path, resulting in more redirect paths and increasing the cost of network transmission 

[16]. 

Cost analysis: flow transmission requires a certain amount of link occupancy for a 

certain period time. The lower the link occupancy time, the more flows can be accom-

modated in other links in the system. Therefore, the cost of a flow transmission can be 

expressed as the number of occupied links hop multiplied by the time t of the occupied 

links, expressed as       ∑      . When the transmission time of each flow is fixed, 

reducing the number of new path hops in the ECMP protocol can reduce the value of the 

hop. If all flows can choose the shortest path chosen by ECMP, there is no doubt that the 

lowest transmission value can be achieved, but the requirement for pn to be infinitely 

large is not consistent with Equation (5). So the value of pn is a tradeoff that optimizes 

the transmission efficiency of both elephant flow and mice flow simultaneously. 

4. REINFORCEMENT LEARNING IMPLEMENTATION 

This section introduces the specific LBRS and settings of reinforcement learning, 

and shows the details of scheme initialization in online learning. 

4.1 Intelligent Proxy Settings 

This section introduces deep Markov pro-

cesses to train parameter values. Reinforcement 

learning utilizes continuous interaction between 

agents and the environment, utilizing actions, 

rewards, and observation results to gradually 

update and optimize agents, providing support 

for intelligent decision-making. The basic idea 

is to achieve the goal of universal artificial intel-

ligence by maximizing environmental rewards. 

In this method, we set up agents to change pa-

rameter values and optimize the parameters of 

the network system by monitoring network per-

formance and adopting different rewards (or 

punishments) for different actions. 

From a mathematical perspective, reinforcement learning is modeled as a Markov 

decision process (MDP). During this process, the agent interacts with the environment at 

each step. The intelligent agent executes an action, and the environment returns the cur-

rent immediate reward and the next state. This process continues to form a sequence of 

states, actions, and rewards. Establish an RL algorithm for decision-making and generate 

a state action table, which becomes a Q-value table. The configuration policies can be 

generated based on the updated Q-table. 

State space. For the automatic configuration task in this study, a vector state is de-

fined as a possible configuration. The format is as follows: 

Data Center

Network Controller

Agent

St+1 Rt+1

State
St

Reward
Rt

Networks 
Config.

Networks 
QoS

Updating
Config.
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Si = (pn, retrans_count, σ)                         (6) 

Action set. Three actions are defined to control parameters associated with increase, 

decrease, and keep. Using the vector Actioni to represent the operation on parameter i, 

each parameter is a vector composed of three elements, indicating that the action com-

posed of three elements has been adopted (using 1 instead of 0). For example, Parai(1, 0, 

0) represents the increase operation on parameter i, so each state has three actions, 

marked with 1 and 0 respectively 

Immediate reward. The immediate reward received at time t, which reflects the 

positive benefit of network system throughput, is: 

Rt   SLA − performancet,                       (7) 

Where SLA represents predefined network performance, such as FCT, and perfor-

mancet is the measured value at time t. For some SLAs, lower FCT means that agents 

will bring a positive reward, otherwise they will receive a negative penalty. On the con-

trary, if throughput is used as an immediate report, the Equation 7 is exactly the opposite. 

Q-value learning. Due to the state and action space of the environment, an envi-

ronment model isn’t needed, and the Q-table can be updated based on measurement val-

ues, making it suitable for choosing Q-Learning algorithm. The Q-learning algorithm is 

not about optimizing a strategy based on its knowledge, but creating a new scheme that is 

represented in the form of a table. The input is the state and action, and the output is the 

value of each state and action. Using this incremental approach, the Q value of the action 

A on state S can be calculated once after each instant reward R is updated as equation 8. 

                       [                              ]    (8) 

where α is the learning rate parameter  which helps to converge to the true Q-value in 

the presence of noise or random rewards and state transitions, and γ is the discount rate to 

guarantee the accumulated reward convergence in the continuing scheduling task. 

In the reinforcement learning process, the interaction with the external environment 

means exchanging network status with DCN. The reconstruction process can be a finite 

MDP, which consists of a set of states and several actions for each state. At each step of 

state transition, the agent could get a reward which can be calculated by Equation 9. 

           [                     ]              (9) 

The purpose of the agent is to establish a scheme π: S → A to maximize the accumu-

lated rewards based on iterative trial and error interaction [17]. 

4.2 the parameter training  

To learn the initial scheme, we need to collect training data for subsequent RL learn-

ing. The key issue of the algorithm is to select representative states for approximation. In 

the production environment, the parameter scale of system configuration is very large. 

The method proposed in this question, while considering the goal of simplifying the sys-

tem, tries to use a simple method to optimize key parameters as much as possible. 

Therefore, three parameters (pn, retrans_count, σ) were selected. With the optimization 
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of system performance, more key parameters that affect performance will be discovered 

and added to this method. Overall, the key parameters of the DCN include the following: 

pn, retrans_count, and σ. The range and default value of parameters are shown in Table 1, 

in which the value refers to experience [15].  
TABLE1. KEY PARAMETERS 

Parameter Range Default 

pn [1,10] 3 

retrans_count [3,15] 8 

  [3,10] 7 

 

Algorithm 1 shows the LBRS training algorithm. LBRS never stops until being 

stopped. At each interaction with DCN performance, the current state is marked, so the 

actual immediate reward can be obtained. The greedy policy is used to select the next 

action by the output function. The network performance is calculated during the last in-

terval. The Q function is updated as in Algorithm 2. 
Algorithm 1 The LBRS training algorithm  
1: Configuration DCN with three parameters (pn:3, retrans_count:8  σ:7) , Measure the FCT as initial st 
2: Initializeα  . 5  γ  .9 in agent, t:0  

3: repeat  
4:   st ← current_networks_state ()  
5:   reconf igure_DCN(at)  
6:   rt+1 ← calculate reward()  
7:   at+1 ← get next action(st, Qappx)  
8:   configure ← identif y configure()  
9:   Rmodel ← select model(configure)  
10:  update Rmodel(st, at, rt+1, Rmodel)  
11:  update Qappx(Rmodel, Qappx)  
12:  t ← t + 1  
13: until LBRS is terminated 

 

Algorithm 2 Q function update algorithm 

1: Initialize Q() to the function. α  . 5  γ  .9 

2: repeat  

3:   s ←    

4:   for n iterations do  

5:      (st , at ,rt) = generate ( )  

6:       target= rt + γ * Q (st+1, at+1)  

7:       error = target − Q (st , at)  

8:       s = γ* s +α* error * error  

9:       update target network as Q (st , at)  

10:  end for  

11: until converge(s) 

After obtaining all the training data, we ran an algorithm similar to [17] to learn the 

initial Q-value table. In the implementation process  we set α  . 5  γ  .9 as the parame-

ter values during Q function updating. 

5. PERFORMANCE EVALUATION 
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5.1 Simulation Environment 

The simulator Mininet is employed to test the performance of LBRS. We need to un-

derstand how well LBRS performs against other schemes such as P4-MLFQ [6], PFLBS 

[9], and DRL-Plink [13]. The Mininet version was ryu3.4.3, and the programming lan-

guage was Python 3.4. The experimental machine configuration is Intel i7-14700kf, 

16.0GB RAM, CentOS Linux release 7.6.1810 (Core). The experiment uses the iperf 

tools to generate simulated elephant flow between hosts, and uses the ping command to 

simulate the generation of mice flow. The topology of the network adopts the standard 

Fat Tree structure. 

The data flow adopts two communication modes: (1) Random: randomly generating 

data flow between randomly numbered hosts. (2) Stag (pEdge, pPod): pEdge is the pro-

portion of traffic between hosts within the same Edge Switch, pPod is the proportion of 

traffic between hosts within the same Pod that are not in the same Edge Switch, and the 

proportion of host traffic between different Pods is 1-pEdge pPod. 

5.2 Metrics 

(1) Response time for the first packet of dynamic flow 

We simulated three types of flows and changed the composition of the data flow at 

three stages, with the basic ratio of elephant flow to mice flow, and the quantity ratio 

being 3:1, 7:1, and 10:1 at the 10ms, 20 ms, and 30ms, respectively. The response time of 

first packet is shown in Figure 2. when the proportion of the flow changes, the iterative 

algorithm always tends to converge in response time within a certain number of times, 

and the performance obtained is better than the default scheduling method. From this 

perspective, this method can adaptively adapt to dynamically changing flows and the 

performance can quickly converge than others. 

 
Fig. 2. Impact of Iteration Times on Response Time 

 

(2) Average FCT 

Figure 3 shows the overall average FCT for the different traffic at different link 

loads. The overall average FCT with LBRS is up to ∼ 21.6% lower compared to 

P4-MLFQ in Strg(0.1,0.3) traffic, and ∼ 23.6% lower compared to PFLBS in 

Strg(0.3,0.3). LBRS reduces the overall average FCT in these traffic by up to ∼ 17.2%, ∼ 
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16.6% and ∼ 9.9%, when compared to PFLBS, P4-MLFQ, and DRL-Plink, respectively. 

The results show LBRS can reduce the transmission time efficiency. 

 
 

Fig. 3. Impact of Scheduling Strategies on Average FCT 

 

(2) Total throughput 

Figure 4 shows the total throughput of whole networks for the different loads. In 

general, LBRS offers the best performance. The total throughput with LBRS is up to ∼ 

27.0% higher compared to PFLBS in Strg(0.3,0.3) traffic and ∼ 23.6% lower compared 

to PFLBS in Strg(0.1,0.3). LBRS increases the overall average FCT in these traffic by up 

to ∼ 25.3%, ∼ 21.6%, and ∼ 6.7% when compared to PFLBS, P4-MLFQ, and 

DRL-Plink, respectively, which indicates that while restricting the forwarding of ele-

phant flows. The result shows it can also improve the forwarding efficiency of elephant 

flows and enhance the network throughput. 

 
Fig. 4. Impact of Scheduling Strategies on Total Throughput 

6. CONCLUSIONS 

In this paper, a link-state-based bandwidth-reservation scheme is proposed 

mixed-flow scheduling in DCN. Theoretical analyses and experimental results show that 

LBRS can adapt to dynamic changes in the data flow distribution, and automatically con-
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figure appropriate parameters. In addition, intelligent technology can increase the effi-

ciency of flow scheduling and network management, and provide reference and conven-

ience for intelligent network management. 

In this work, the fewer parameters for flow scheduling decisions may limit the per-

formance improvement, which means ignoring the potential detail. Automatic parameter 

choices are not considered in this work. 

In the future, fine-grained flow scheduling will become our new direction, and more 

parameters in intelligent decision-making may make flow scheduling more refined. 

Moreover, combining intelligent routing and flow scheduling could improve in better 

network performance. 
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