
Hybrid Bat & Levenberg-Marquardt Algorithms for Artificial Neural

Networks Learning

Nazri Mohd Nawi
1
, M. Z. Rehman

1
, Abdullah Khan

1
, Arslan Kiyani

1
, Haruna Chiroma

2
 and Tutut

Herawan
2

1
Software and Multimedia Centre

Faculty of Computer Science and Information Technology

Universiti Tun Hussein Onn Malaysia

86400 Parit Raja, Batu Pahat, Johor, Malaysia
2
Faculty of Computer Science and Information Technology

University of Malaya

50603 Lembah Pantai, Kuala Lumpur, Malaysia

nazri@uthm.edu.my, zrehman862060@gmail.com, hi100010@siswa.uthm.edu.my, arslan.kiyani@gmail.com,

hchiroma@acm.org, tutut@um.edu.my

Abstract: The Levenberg-Marquardt (LM) gradient descent algorithm is used extensively for

the training of Artificial Neural Networks (ANN) in the literature, despite its limitations,

such as susceptibility to the local minima that undermine its robustness. In this paper, a bio-

inspired algorithm referring to the Bat algorithm was proposed for training the ANN, to

deviate from the limitations of the LM. The proposed Bat algorithm-based LM (BALM) was

simulated on 10 benchmark datasets. For evaluation of the proposed BALM, comparative

simulation experiments were conducted. The experimental results indicated that the BALM

was found to deviate from the limitations of the LM to advance the accuracy and

convergence speed of the ANN. Also, the BALM performs better than the back-propagation

algorithm, artificial bee colony trained back-propagation ANN, and artificial bee colony

trained LM ANN. The results of this research provide an alternative ANN training algorithm

that can be used by researchers and industries to solve complex real-world problems across

numerous domains of applications.

Keywords: Bat algorithm; Levenberg-Marquardt Algorithm; Artificial Neural

Networks; Training.

1. Introduction

Artificial Neural Networks’ (ANN) processing elements translate the synaptic behaviour of neurons in

the human nervous system to the mathematical form [1-2]. The ANN consists of a large number of

interrelated processing components known as neurons that function together to solve complex real-

world problems [3]. The ANN have been implemented successfully in engineering fields such as

biological modelling, decision and control, health and medicine, manufacturing, marketing, ocean

exploration, etc. [4-9]. A back-propagation ANN (BPNN) is a method for training a multilayer feed-

forward ANN [10-11]. However, the BPNN algorithm suffers from two major drawbacks: i.e. low

convergence rate and instability, which lead the ANN towards local minima [12-14]. In the past

decade, several new algorithms have been proposed to overcome the problems of gradient descent-

based systems. These algorithms include a direct enhancement method, using a polytope algorithm

[14], a global search procedure, such as evolutionary programming [15], and genetic algorithm (GA)

[16]. The standard gradient-descent BPNN is not path-driven, but population-driven. However, the

improved learning algorithms have explorative search topographies. Therefore, these approaches are

expected to avoid local minima by promoting exploration of the search space. The Stuttgart Neural

Network Simulator (SNNS) [17], which was developed in the recent past, used many different

algorithms, including error back-propagation [13], quick prop algorithm [18], resilient error back-

propagation [19], back-propagation, delta-bar-delta, cascade correlation [20] etc.

All these algorithms are derivatives of steepest gradient search, thus ANN training was found

to be relatively slow. For fast and efficient training, second-order learning algorithms have to be used.

mailto:nazri@uthm.edu.my
mailto:zrehman862060@gmail.com
mailto:hi100010@siswa.uthm.edu.my

The most effective method is the Levenberg-Marquardt (LM) algorithm [21], which is a derivative of

the Newton method [22]. LM is a multidimensional algorithm since not only the gradient, but also the

Jacobian matrix should be computed. This ranks LM as one of the most efficient algorithms for small-

and medium-sized patterns. As such, LM is considered as one of the most successful algorithm in

increasing the convergence speed of the ANN with multi layered perceptron (MLP) architecture [23].

LM inherits speed from the Newton method and the convergence ability of the steepest descent,

therefore it converges quickly on quadratic surfaces. Despite the robustness of the LM over other

gradient-descent training algorithms, the LM is not able to avoid local minima in cases of complex

surfaces [25-27].

In order to overcome the slow convergence and local minima problems, this paper proposed a

new algorithm that combines the Bat [28] and Levenberg-Marquardt (LM) algorithms (BALM). The

proposed BALM algorithm is compared with conventional BPNN, Artificial Bee Colony (ABC),

BPNN (ABC-BP), and ABC-LM algorithms on 10 classification datasets.

The next two sections explain briefly the Bat algorithm, followed by the proposed BALM

algorithm. In Section 3, the modification of the Bat is presented. Section 4, the performance of the

proposed BALM on experimental datasets is discussed. The paper is finally concluded in Section 5.

2. Bat Algorithm

Bat is a meta-heuristic optimization algorithm developed by Yang [28]. The Bat algorithm is based on

the echolocation behaviour of microbats, with varying pulse rates of emission and loudness. Yang

[28] idealized the following rules to model Bat algorithm:

a. All bats use echolocation to sense distance, and they also ‘know’ the difference between

food/prey and background barriers in some magical way.

b. A bat flies randomly with velocity (𝑣𝑖) at position (𝑥𝑖) with a fixed frequency (𝑓min), varying

wavelength 𝜆 and loudness 𝐴0 to search for prey. It can automatically adjust the wavelength (or

frequency) of its emitted pulses and adjust the rate of pulse emission 𝑟∈ [0,1], depending on the

proximity of its target.

c. Although the loudness can vary in many ways, Yang [28] assumes that the loudness varies from a

large (positive) 𝐴0 to a minimum constant value 𝐴𝑚𝑖𝑛.

The pseudo-code for the Bat algorithm is shown in Figure 1 [28];

Objective function 𝑓(𝑥), 𝑥 = 𝑥1, … , 𝑥𝑑

𝑇

Initialize the bat population 𝑥𝑖 (𝑖 = 1,2, … , 𝑛) and 𝑣𝑖

Define pulse frequency 𝑓𝑖 at 𝑥𝑖

Initialize pulse rates 𝑟𝑖 and the loudness 𝐴𝑖

while (𝑡 < Max number of iterations)

Generate new solutions by adjusting frequency,

and updating velocity and locations/ solutions

 if (𝑟𝑎𝑛𝑑 > 𝑟𝑖)
 Select a solution among the best solutions

 Generate a local solution around the selected best solution

 end if

 Generate a new solution by flying randomly

 if (𝑟𝑎𝑛𝑑 < 𝐴𝑖 & 𝑓(𝑥𝑖) < 𝑓(𝑥∗))

 Accept the new solutions

 Increase 𝑟𝑖 and decrease 𝐴𝑖

 end if

 Rank the Bats and find the current best 𝑥∗

end while

post process results and visualization
Figure 1 Pseudo-code of the Bat Algorithm by Yang [28]

Bat is a population-based optimization algorithm, and like other meta-heuristic algorithms, it starts

with a random initial population. Figure 1 shows that in the Bat algorithm, each virtual bat flies

randomly with a velocity 𝑣𝑖 at some position 𝑥𝑖, with a varying frequency 𝑓𝑖 and loudness 𝐴𝑖, as

explained in the previous Section. As it searches and finds its prey, it changes frequency, loudness and

pulse emission rate 𝑟𝑖. Search is intensified by a local random walk. Selection of the best continues

until stopping criteria are met. To control the dynamic behaviour of a colony of bats, the Bat

algorithm uses a frequency-tuning technique, and searching and usage are controlled by changing the

algorithm-dependent parameters [28-31, 40-41].

3. The Proposed BALM Algorithm

The flow diagram of the proposed BALM algorithm is shown in Figure 2.

Figure 2 Proposed BALM algorithm

In Figure 2, each position represents a possible solution (i.e.; the weight space and the

corresponding biases for LM optimization). The weight-optimization problem and the position of a

food source represents the quality of the solution. In the first epoch, the best weights and biases are

initialized with Bat, and then those weights are passed on to the BPNN. The weights in BPNN are

calculated and then passed on to the Levenberg-Marquardt (LM) algorithm. The main idea of this

combinatorial algorithm is that the Bat algorithm is used at the initial stage of searching for the

optimum to select the best initial weights. Then the training process is continued with the LM

algorithm, using the best weights from the Bat algorithm. In the next cycle, Bat again updates the

weights with the best possible solution, and Bat continues to pass the best weights to LM, until either

the last cycle/epoch of the network is reached, or the mean square error (MSE) is achieved.

In the proposed BALM algorithm, the MSE for each weight matrix consists of all input pattern matrix

through LM ANN. The MSE is considered as a performances index for the proposed BALM

algorithm. The weight value of a matrix is computed as follows:

𝑊𝑐 = ∑ 𝑎. (𝑟𝑎𝑛𝑑 −
1

2
)𝑚

𝑐=1 (1)

𝐵𝑐 = ∑ 𝑎. (𝑟𝑎𝑛𝑑 −
1

2
)𝑚

𝑐=1 (2)

Where 𝑊𝑐 = 𝑐𝑡ℎ weight value in a weight matrix. The 𝑟𝑎𝑛𝑑 in the Equation (1) is the random

number having value between [0 1], 𝑎 is any constant parameter having a value less than one and 𝐵𝑐

is the bias value. So, the list of weight matrix is as follows;

𝑊𝑠 = [𝑊𝑐
1,𝑊𝑐

2,𝑊𝑐
3, …… . .𝑊𝑐

𝑛−1] (3)

From BPNN, MSE is easily calculated for every weight matrix in 𝑊𝑠.The net input to the unit 𝑖 in

layer 𝑗 is expressed as:

𝑦𝑖 = 𝑓(∑ 𝑊𝑐(𝑖 𝑗)𝑎𝑗 + 𝐵𝑐𝑗)
𝑁
𝑗=1 (4)

The net output of 𝑚 unit for the output layer can expressed as:

𝑋𝑚 = 𝑓(∑ 𝑊𝑐(𝑗 𝑚)𝑦𝑖 + 𝐵𝑐𝑚)𝑀
𝑚=1 (5)

Where, 𝑋𝑚 is network output, 𝑓 is transfer function, 𝑊𝑐(𝑗 𝑚) represents weights matrix, and 𝑦𝑖 is the

net output from neuron. The task of the network is to learn association between a specified set of

input-output pairs, {(𝑎1,𝑇1,), (𝑎2,𝑇2), (𝑎3,𝑇3,)... (𝑎𝑟,𝑇𝑟)}. The error can be computed as:

𝑒𝑟 = (𝑇𝑟 − 𝑋𝑟) (6)

The performance index for the network is calculated using the following Equations (7-8)

𝑉𝑡(𝑥) =
1

2
∑ (𝑇𝑟 − 𝑋𝑟)

𝑇(𝑇𝑟 − 𝑋𝑟)
𝑅
𝑟=1 (7)

𝑉𝐹(𝑥) =
1

2
∑ 𝑒𝑟

𝑇 . 𝑒𝑟
𝑅
𝑟=1 (8)

In the proposed BALM algorithm, the average MSE is considered as the performance index computed

based on Equation (9).

𝑉𝜇(𝑥) =
∑ 𝑉𝐹(𝑥)𝑁

𝑗=1

𝑃𝑖
 (9)

Where, 𝑦𝑟 is the output of the network when the 𝑟𝑡ℎ input to 𝑎𝑟 is presented. And 𝑒𝑟 = (𝑇𝑟 − 𝑋𝑟) is

the error for the 𝑟𝑡ℎ input, 𝑉𝜇(𝑥) is the average performance, 𝑉𝐹(𝑥) is the performance index, and 𝑃𝑖

is the number of bats in 𝑖𝑡ℎ iteration. The weights and bias are calculated according to the back

propagation method. The sensitivity of one layer is calculated from the previous one and the

calculation of the sensitivity start from the last layer of the network and moves backward. To speed up

convergence, LM is selected as the learning algorithm. The LM algorithm is an approximation to

Newton’s method to get faster training speed. Assume the error function is expressed as:

𝐸(𝑡) =
1

2
∑ 𝑒𝑟

2(𝑡)𝑁
𝑖=1 (10)

Where, 𝑒(𝑡) is the error; 𝑁 is the number of vector elements, and 𝐸(𝑡) is the MSE function, then the

gradient is calculated as:

∇𝐸(𝑡) = 𝐽𝑇(𝑡)𝑒(𝑡) (11)

∇2𝐸(𝑡) = 𝐽𝑇(𝑡)𝐽(𝑡) (12)

Where, ∇𝐸(𝑡) is the gradient; ∇2𝐸(𝑡) is theHessian matrix of E (t); and 𝐽 (𝑡) is the Jacobin matrix

which is calculated in Equation (13);

𝐽(𝑡) =

[

𝜕𝑒1(𝑡)

𝜕𝑡1

𝜕𝑒1(𝑡)

𝜕𝑡2
… . .

𝜕𝑒1(𝑡)

𝜕𝑡𝑛

𝜕𝑒2(𝑡)

𝜕𝑡1

𝜕𝑒2(𝑡)

𝜕𝑡2
… . .

𝜕𝑒2(𝑡)

𝜕𝑡𝑛
.
.
.

𝜕𝑒𝑛(𝑡)

𝜕𝑡1

𝜕𝑒𝑛(𝑡)

𝜕𝑡2
… . .

𝜕𝑒𝑛(𝑡)

𝜕𝑡𝑛]

 (13)

For Gauss-Newton Method:

∇𝑤 = −[𝐽𝑇(𝑡)𝐽(𝑡)]−1𝐽(𝑡)𝑒(𝑡) (14)

For the LM as the variation of Gauss-Newton Method:

𝑤(𝑘 + 1) = 𝑤(𝑘) − [𝐽𝑇(𝑡)𝐽(𝑡) + 𝜇𝐼]−1𝐽(𝑡)𝑒(𝑡) (15)

Where 𝜇 > 0 and is a constant; 𝐼 is identity matrix, so that the algorithm can approach Gauss-

Newton, which should provide faster convergence. Note that when parameter 𝜇 is large, the above

expression approximates gradient descent (with learning rate 1/𝜇) while for a small 𝜇, the algorithm

approximates the Gauss-Newton method. The LM is an enhancement to BPNN algorithm which is

calculated according to the following steps:

a. Present all inputs to the network and compute the corresponding network outputs and errors using

Equations (5-6) over all inputs. Compute the sum of square of error over all input.

b. Compute the Jacobin matrix using Equation (13).

c. Solve Equation (12) to obtain ∇𝑤.

d. Re-compute the sum of squares of errors using Equation (15), if this new sum of squares is

smaller than the computed sum of square in Step 1, then reduce 𝜇by λ=10, update weight using

𝑤(𝑘 + 1) = 𝑤(𝑘) − ∇𝑤 and go back to Step 1. If the sum of squares is not reduced, then increase

𝜇 by λ=10, and go back to Step 3.

e. The algorithm is assumed to have converged when the norm of the gradient in Equation (11) is

less than some prearranged value, or when the sum of squares has been compact to some error

goal.

At the end of each epoch the list of average sum of squared error of 𝑖𝑡ℎ iteration MSE can be

calculated as:

𝑀𝑆𝐸𝑖 = {𝑉𝜇(𝑥1), 𝑉𝜇(𝑥2), 𝑉𝜇(𝑥3)… . . 𝑉𝜇(𝑥𝑛)} (16)

The bat search is imitating the minimum MSE and it is found when all the input is processed for each

population of the bat. Thus, the bat swarm 𝑥𝑗 is calculated as:

𝑥𝑗 = 𝑀𝑖𝑛{𝑉𝜇(𝑥1), 𝑉𝜇(𝑥2), 𝑉𝜇(𝑥3)… . . 𝑉𝜇(𝑥𝑛)} (17)

The rest of the average sum of square is considered as other bats. A new solution 𝑥𝑖
𝑡+1 for Bat 𝑖 is

generated using Equation (18).

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡−1 + 𝑣𝑖
𝑡 (18)

For each time step 𝑡, the movement of the virtual bats is given by updating their velocity 𝑣𝑖 and

frequency, 𝑓𝑖 using Equations (19-20):

𝑓𝑖 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝛽 (19)

𝑣𝑖
𝑡 = 𝑣𝑖

𝑡−1 + (𝑥𝑖
𝑡−1 − 𝑥∗)𝑓𝑖 (20)

Where 𝛽 denotes a randomly generated number within the interval [0,1], 𝑥𝑖
𝑡 denotes the value of

decision variable 𝑗 for bat 𝑖 at time step 𝑡. The result of 𝑓𝑖 in Equation (19) is used to control the pace

and range of the movement of the bats. The variable 𝑥* represents the current global best solution

which is located after comparing all the solutions among all the n bats.

The movement of the bats 𝑥𝑖 towards 𝑥𝑗 can be drawn from Equation (21-22):

𝑖𝑓 𝑟𝑎𝑛𝑑[0,1] > 𝑟𝑖

𝑉 = 𝑥𝑖 + 𝑟𝑎𝑛𝑑 · (𝑥𝑗 − 𝑥𝑖) (21)

𝑖𝑓 𝑟𝑎𝑛𝑑[0,1] < 𝐴𝑖 && 𝑓(𝑥𝑖) < 𝑓(𝑥∗) ,

The bats can move from 𝑥𝑖 toward 𝑥𝑗 randomly

∇𝑉i = 𝑥𝑖 + 𝑣𝑖
𝑡 ~ 0.01 . (𝑉 − 𝑋𝑏𝑒𝑠𝑡) (22)

Increase 𝑟𝑖 and decrease 𝐴𝑖.

Where 𝐴t stands for the average loudness of all the bats at time 𝑡, and 𝜖 ∈ [−1, 1] is a random number.

For each iteration of the algorithm, the loudness 𝐴𝑖 and the emission pulse rate 𝑟𝑖 are updated, as

follows:

𝐴𝑖
𝑡+1 =∝ 𝐴𝑖

𝑡 (23)

𝑟𝑖
𝑡+1 = 𝑟𝑖

0[1 − 𝑒𝑥𝑝(−𝛾𝑡)] (24)

Where 𝛼 and 𝛾 are constants. At the first step of the algorithm, the emission rate, 𝑟𝑖
0 and the loudness,

𝐴𝑖
0 are often randomly chosen. Generally, 𝐴𝑖

0𝜖[1,2] and 𝑟𝑖
0𝜖[0,1]. ∇𝑉i is a small movement of 𝑥𝑖

towards 𝑥𝑗. The weights and biases for each layer is then adjusted as:

𝑊𝑐
𝑛+1 = 𝑊𝑐

𝑛 − ∇𝑉i (25)

𝐵𝑐
𝑛+1 = 𝐵𝑐

𝑛 − ∇𝑉i (26)

The pseudo-code for the proposed BALM is given in Figure 3.

1. Initialize Bat population size and LM structure.

2. Load the training data (i.e. Inputs and the Label Class).

3. While MSE<stopping criteria.

4. Pass the best solutions calculated by bats as best weights to network.

5. Feed-forward network runs using the weights initialized with Bat.

6. Calculate the error using Equation (6).

7. Calculate the minimum error using Equation (9) and store the best nest as (weight) for the network.

8. Present all inputs to the network with the stored best nest as (weight), and compute the

corresponding network outputs and errors using Equations (5) and (6) over all inputs. Compute

sum of square of error over all input.

9. The sensitivity of one layer is calculated from its previous one, and the calculation of the

sensitivity starts from the last layer of the network and moves backward.

10. Compute the Jacobin matrix using Equation (13).

11. Solve Equation (14) to obtain ∇𝑤 .

12. Recompute the sum of squares of errors using Equation (15). If this new sum of squares is smaller

than that computed in Step 8, then reduce 𝜇 by λ=10, update weight using 𝑤(𝑘 + 1) = 𝑤(𝑘) −
∇𝑤 and go back to Step 8. If the sum of squares is not reduced, then increase 𝜇 by λ=10, and go

back to Step 11.

13. The algorithm is assumed to have converged when the norm of the gradient in Equation (11) is less

than some pre-arranged value, or when the sum of squares has been compacted to some error goal.

14. Minimize the error by adjusting network parameters using Bat.

15. Generate new bats (𝑥𝑗) randomly.

𝑉𝑖 = 𝑥𝑗

16. Build new solution using Equation (18) to replace the old ones.

17. Bat keeps on calculating the best possible weight at each epoch until the network is converged.

18. End While.

Figure 3 Proposed BALM pseudo-code

4. Results and Discussions

 Experimental set-up

In order to illustrate the performance of the proposed algorithm, BALM is trained on 10 datasets. The

simulation experiments were performed on an Intel Core i5 processor and 8 GB of RAM, using

MATLAB 2012 software. The proposed BALM algorithm was compared with the state of the art

ABC-LM, ABC-BP and BPNN algorithms based on the MSE and the number of epochs. The

maximum number of epochs and MSE were set to 1000 and 0.00001 respectively. The network stops

when the target MSE was achieved or after the maximum number of epochs was reached [39]. The

three-layer feed-forward neural networks are used for each problem: i.e. input layer, one hidden layer,

and output layers. The number of hidden nodes comprises five neurons. In the network structure the

bias nodes are also used and the log sigmoid activation function is placed as the activation function

for the hidden and output layers. On each algorithm 20 trials are repeated. For computing the relative

accuracy improvement of the proposed BALM algorithm with respect to BPNN, ABC-BP, and ABC-

LM i.e.; how much better BALM performs in terms of accuracy the following formula is used [32].

For all experiments, best tuning parameters indicated by Yang [28] were used for Bat. The default

parameters on which Bat performs best were loudness A=0.5, pulse rate = 0.5 and population size =

20 [40-41].

Two-Bit Exclusive-OR Problem

The first test problem is the exclusive-OR (XOR) which is a Boolean function of two binary inputs to

a single binary output. In the simulations we used a 2–5–1, feed-forward neural network structure for

a two-bit XOR problem. Table 1 shows the CPU time, number of epochs, accuracy, and MSE for the

two-bit XOR test data set with five hidden neurons. From Table 1 it can be clearly seen that the

proposed BALM algorithm converged to the global minima within 563 epochs, with an MSE of

7.08E-5, which is accurate up to 5 decimal points. Also, the BALM algorithm shows a 3.52 percent

improvement in accuracy during convergence. Meanwhile, the ABC-BP algorithm falls behind with

an accuracy of 96.47 and an MSE of 2.39E-4. Although the BALM algorithm took more CPU time to

converge, it achieved better MSE and accuracy than the comparison algorithms. Figure 4 illustrates

the convergence performance of the BALM, ABC-BP, ABC-LM, and conventional BPNN

algorithms.

Table 1 Comparison results in terms of CPU time, epochs, MSE and accuracy for 2-Bit XOR dataset

Algorithm BPNN ABC-BP ABC-LM BALM Improvement

CPU Time 42.64 172.34 123.95 241.32 53 %

EPOCHS 1000 1000 1000 563 78 %

MSE 0.2206 2.39E-4 0.125 7.08E-5 162724 %

Accuracy 54.61 96.47 71.69 99.99 25 %

Figure 4 MSE Convergence Performance for: (a) BPNN; (b) ABC-BP; (c) ABC-LM; and (d) BALM on

2-Bit XOR dataset

Three-Bit Exclusive-OR Problem

In the second phase, a three-bit XOR dataset, which comprises three inputs and a single binary output,

is used. The parameter range used for the 3–5–1 network consists of twenty connection weights and

six biases. Table 2 shows the CPU time, number of epochs, MSE, and accuracy for the three-bit XOR

test problems with five hidden neurons.

Table 2 Comparison results in terms of CPU time, epochs, MSE and accuracy for 3-Bit XOR dataset

Algorithm BPNN ABC-BP ABC-LM BALM Improvement

CPU TIME 50.03 172.34 123.79 63 83 %

EPOCHS 1000 1000 1000 56 1685 %

MSE 0.25 0.08 0.01063 5.69E-6 1995389 %

Accuracy 47.63 86.47 78.83 99.99 29 %

For the three-bit XOR, the BALM algorithm converges to global minima within 56 epochs

and 99.99 percent accuracy. The proposed BALM algorithm took 60.79 fewer CPU cycles, 944 fewer

epochs, and showed 21.16 percent improved accuracy than the best performing ABC-LM algorithm.

Overall from Table 2, it is clear that the proposed BALM algorithm has better performance than the

compared algorithms in Figure 5, the convergence performance of the BALM, ABC-BP, ABC-LM,

and conventional BPNN algorithms is shown.

Figure 5 MSE Convergence Performance for: (a) BPNN; (b) ABC-BP; (c) ABC-LM; and (d) BALM on

3-Bit XOR dataset

Four-Bit OR Problem

The network structure for four-bit OR is similar to the two- and three-bit XOR problem. In four-bit

OR, if the number of inputs all is 0, the output is 0, otherwise the output is 1. The four-bit network

consists of 4 inputs, 5 hidden neurons in the hidden layer, and 1 output. The 4–5–1 feed-forward

neural network structure is created with twenty-five connection weights and six biases. Table 3

illustrates the CPU time, epochs, and MSE performance of the proposed BALM, ABC-BP, ABC-LM

and BPNN algorithms, respectively. From Table 3, it can be observed that the proposed BALM

algorithm converges to global minima using 81.9 fewer CPU cycles, and 927 fewer epochs than the

other algorithms. Figure 6 shows the convergence performance of the BALM, ABC-BP, ABC-LM,

and conventional BPNN algorithms for the 4–5–1 network architecture.

Table 3 Comparison results in terms of CPU time, epochs, MSE and accuracy for 4-Bit OR dataset

Algorithm BPNN ABC-BP ABC-LM BALM Improvement

CPUTIME 63.280 162.49 118.72 36.82 211 %

EPOCHS 1000 1000 1000 73 1269 %

MSE 0.053 1.91E-10 1.82E-10 4.41E-6 400504 %

Accuracy 89.83 99.97 99.99 99.99 3 %

Figure 6 MSE Convergence Performance for: (a) BPNN; (b) ABC-BP; (c) ABC-LM; and (d) BALM on

4-Bit OR dataset

7 Bit Parity Dataset

For a seven-bit parity dataset, the network architecture consists of 7 inputs, 5 hidden neurons in the

hidden layer, and 1 output. It has 40 connection weights and six biases. Table 4 confirms the CPU

time, number of epochs, MSE, and accuracy for the seven-bit parity test problem with five hidden

neurons. The proposed BALM’s convergence rate is found optimum than the other techniques in

terms of CPU time and number of epochs, MSE, and accuracy. The BALM algorithm shows superior

performance than the comparison algorithms, and converted to an MSE of 5.92E-06 within 33 epochs,

while the ABC-LM and ABC-BP have larger MSEs of 0.083 and 0.217, respectively. Also, the

BALM algorithm shows 63.90 less CPU time, 967 fewer epochs, and 30.85 percent more accuracy

than the best performing ABC-LM algorithm used in this study. Figure 7 illustrates the superior

convergence performance of the proposed BALM algorithm.

Table 4 Comparison results in terms of CPU time, epochs, MSE and accuracy for 7-Bit Parity dataset

Algorithm BPNN ABC-BP ABC-LM BALM Improvement

CPUTIME 22.19 183.39 134.88 70.98 59 %

EPOCHS 1000 1000 1000 33 2930 %

MSE 0.260 0.217 0.083 5.92E-06 3153053 %

Accuracy 85.12 82.13 69.14 99.99 21 %

Figure 7 MSE Convergence Performance for: (a) BPNN; (b) ABC-BP; (c) ABC-LM; and (d) BALM on

7-Bit Parity dataset

Breast Cancer Classification Dataset

The Breast Cancer (Wisconsin) dataset is taken from the UCI Machine Learning Repository. Created

by Dr William H. Wolberg, this problem tried to diagnose breast cancer by classifying a tumour as

either benign or malignant [33]. This dataset consists of 9 inputs and 2 outputs, with 699 instances.

The input attributes are the thickest clump, uniformity of cell size, uniformity of cell shape, amount of

marginal adhesion, single epithelial cell size, frequency of bare nuclei, bland chromatin, normal

nucleoli, and mitoses. The selected network architecture used for the breast cancer classification

dataset consists of 9 inputs nodes, 5 hidden nodes and 2 output nodes. Figure 8 demonstrates the

superior convergence performance of the proposed BALM algorithm.

Table 5 Comparison results in terms of CPU time, epochs, MSE and accuracy for Breast Cancer dataset

Algorithm BPNN ABC-BP ABC-LM BALM Improvement

CPUTIME 95.46 1482.91 1880.65 34.04 3287 %

EPOCHS 1000 1000 1000 7 14285 %

MSE 0.271 0.184 0.014 4.04E-06 3869537 %

Accuracy 90.72 92.02 93.83 99.99 8 %

From Table 5 it is clear that the proposed BALM method has better performance than the

comparison algorithms. The proposed BALM algorithm takes 993 fewer epochs, and 1846.61 less

CPU time, offering a 6.16 percent increase in accuracy when compared with the best performing

ABC-LM algorithm. The proposed BALM algorithm achieves 4.04E-06 MSE, which is accurate up to

6 decimal points, and achieves 99.99 percent accuracy, which is better than the other algorithms,

while the other methods, such as conventional BPNN, ABC-BP, and ABC-LM, have MSEs of 0.271,

0.184 and 0.0139, respectively.

Figure 8 MSE Convergence Performance for: (a) BPNN; (b) ABC-BP; (c) ABC-LM; and (d) BALM on

Breast Cancer dataset

IRIS Classification Dataset

Created by Sir Ronald Aylmer Fisher, the Iris classification dataset is the most famous dataset found

in the pattern-recognition literature [34]. It consists of 150 instances, 4 inputs, and 3 outputs. The

classification of the Iris dataset involves the data of petal width, petal length, sepal length, and sepal

width into three classes of species, which consists of Iris Santos, Iris Versicolor, and Iris Virginica.

The selected network structure of the Iris dataset consists of 4 input nodes, 5 hidden nodes and 3

output nodes. To train the network, 80 instances are used for the training set and the rest for the

testing set.

Table 6 Comparison results in terms of CPU time, epochs, MSE and accuracy for Iris dataset

Algorithm BPNN ABC-BP ABC-LM BALM Improvement

CPUTIME 28.47 156.43 171.52 8.35 1322 %

EPOCHS 1000 1000 1000 4 249 %

MSE 0.311 0.155 0.058 1.62E-06 10781790 %

Accuracy 87.19 86.87 79.56 99.99 15 %

Table 6 displays the result of the proposed BALM on Iris dataset. From the Table 6, it’s clear that

the proposed BALM shows better performance than other methods, in terms of MSE and accuracy.

Within 6 epochs the proposed BALM algorithm gets 1.62E-06 of MSE, with an average accuracy of

99.99 percent, and takes 8.35 CPU seconds, while the other algorithms still have large MSEs and less

accuracy than the proposed BALM algorithm. Figure 9 oresents the superior convergence

performance of the proposed BALM algorithm.

Figure 9 MSE Convergence Performance for: (a) BPNN; (b) ABC-BP; (c) ABC-LM; and (d) BALM on

Iris dataset

Thyroid Classification Dataset

This dataset is also taken from the UCI Machine Learning Repository [35], and consists of 21 inputs,

3 outputs and 7200 patterns. Each case contains 21 attributes, which can be allocated to any of 3

classes, which are hyper, hypo, and normal function of the thyroid gland, based on the patient query

data and the examination date. The selected network architecture for the thyroid classification dataset

consists of 21 input nodes, 5 hidden nodes and 3 output nodes.

Table 7 Comparison results in terms of CPU time, epochs, MSE and accuracy for thyroid dataset

Algorithm BPNN ABC-BP ABC-LM BALM Improvement

CPUTIME 38.43 34153.13 38382.9 6204.06 289 %

EPOCHS 1000 1000 1000 499 100 %

MSE 0.311 0.046 0.041 0.003 4322 %

Accuracy 85.88 93.28 91.66 99.65 9 %

Table 7 illustrates the simulation results for the thyroid classification problem. In Table 7 we can

see that the proposed BALM method converges on the global minima with 0.003 MSE, with 99.65

percent accuracy, while the other algorithms failed to achieve high accuracy, and needed more CPU

time when compared with the BALM algorithm. The convergence performance of the algorithms can

be seen in Figure 10.

Figure 10 MSE Convergence Performance for: (a) BPNN; (b) ABC-BP; (c) ABC-LM; and (d) BALM on

Thyroid dataset

Diabetes Classification Dataset

The Pima India diabetes dataset is taken from the UCI Machine Learning Repository [36], and

consists of 768 examples, 8 inputs and 2 outputs, as well as all the information of the chemical change

in a female body whose disproportion can cause diabetes. The feed-forward network topology for this

network is set to 8–5–2. Table 8 shows the CPU time, MSE, and accuracy for the proposed BALM

and conventional BPNN, ABC-BP, ABC-LM, and clearly demonstrates that the proposed BALM

model performs better than the other methods, in terms of MSE and accuracy. From Table 8, it can be

seen that the proposed BALM algorithm achieved 0.017 MSE with 97.26 percent accuracy, which is

far better than the other algorithms. The convergence performance of the algorithms can be grasped

from Figure 11.

Table 8 Comparison results in terms of CPU time, epochs, MSE and accuracy for diabetes dataset

Algorithm BPNN ABC-BP ABC-LM BALM Improvement

CPUTIME 57.05 4257.32 2805.09 136.91 1633 %

EPOCHS 1000 1000 1000 17 5782 %

MSE 0.269 0.201 0.141 0.017 1098 %

Accuracy 84.95 91.46 65.09 97.26 17 %

Figure 11 MSE Convergence Performance for: (a) BPNN; (b) ABC-BP; (c) ABC-LM; and (d) BALM on

diabetes dataset

Glass Classification Dataset

The glass dataset is used for separating glass splinters in criminal investigation into six classes, and is

taken from the UCI Machine Learning Repository [37]. The dataset consists of float-processed or

non-float-processed building windows, vehicles, windows, containers, tableware, or head lamps. This

dataset is made up of 9 inputs, and 6 outputs. The size of the dataset consists of 214 attributes in total.

The selected feed-forward network architecture is set to 9–5–6. The simulation results for the

benchmark glass classification problem are given in Table 9, where it is clear that the proposed

BALM algorithm has achieved a smaller 9.17E-06 MSE within 133 epochs. The convergence

performance of BALM and other algorithms can be seen in Figure 12.

Table 9 Comparison results in terms of CPU time, epochs, MSE and accuracy for glass dataset

Algorithm BPNN ABC-BP ABC-LM BALM Improvement

CPUTIME 32.74 1715.95 1336.19 197.88 419 %

EPOCHS 1000 1000 1000 133 651 %

MSE 0.364 0.026 0.005 9.17E-06 1435742 %

Accuracy 94.04 91.36 93.96 99.99 6 %

Figure 12 MSE Convergence Performance for: (a) BPNN; (b) ABC-BP; (c) ABC-LM; and (d) BALM on

glass Dataset

Australian Credit Card Classification Dataset

This dataset is also taken from the UCI Machine Learning Repository [38], and consists of all the

procedures of clearing a person for Credit Card approval, based on their past financial proceedings.

All attributes names and values have been changed to meaningless symbols to defend the privacy of

the applicant. The Australian Credit Card dataset consists of 690 instances, 51 inputs, and 2 outputs.

Table 10 displays the CPU time MSE, epochs, and accuracy of the Australian Credit dataset.

From Table 10 it can be seen that the proposed BALM model achieved 99.83% accuracy with an

MSE of 0.001 in 69 epochs, while the other algorithms, such as BPNN, ABC-BP, and ABC-LM, have

smaller percentage accuracies of 89.99, 77.782 and 88.89, respectively. The MSE convergence

performance of the proposed BALM and other algorithms can be seen in Figure 13.

Table 10 Comparison results in terms of CPU time, epochs, MSE and accuracy for Australian Credit Card

dataset

Algorithm BPNN ABC-BP ABC-LM BALM Improvement

CPUTIME 24.43 6894.25 4213.01 1418.11 161 %

EPOCHS 1000 1000 1000 69 1349 %

MSE 0.271 0.173 0.055 0.001 16533 %

Accuracy 88.89 89.99 77.78 99.83 14 %

Figure 13 MSE Convergence Performance for: (a) BPNN; (b) ABC-BP; (c) ABC-LM; and (d) BALM on

Australian Credit Card dataset

In the simulations, it was found that Bat can enhance the performance of the LM by deviating from

the limitations of gradient descent, such as reducing the error in the gradient and escaping from the

local minima. Tables 1–10 show that the proposed algorithm generally performs better than the

comparison algorithms, except in a few cases (see Tables 1 and 3). The probable reason why our

proposed algorithm was able to improve the performance of the state of the algorithms can best be

attributed to the behaviour of the echolocation of microbats in the Bat algorithm. This feature was

likely responsible for the effective searching of the search space, to locate the optimal BATLM, which

contributed to the efficiency and accuracy of the BALM. The study has proved that the BALM has the

potential to be more powerful than the state of the algorithms, thus BALM can be investigated further

for solving problems in other application domains.

5. Conclusion

Levenberg-Marquardt (LM) is a widely used Artificial Neural Network (ANN) training algorithm.

Regardless of its advantages, the LM algorithm is sluggish and susceptible to the local minima

problem. In this paper, a hybrid learning algorithm that integrates the Bat algorithm and the

Levenberg-Marquardt (LM) algorithm is introduced. The proposed Bat-based Levenberg-Marquardt

(BALM) algorithm is trained and tested on ten benchmarked classification datasets. During the

experiments, the BALM algorithm obtained high accuracy in classification within a short execution

time period. Like many other meta-heuristic algorithms, BALM has the advantage of simplicity, and

can be easily developed to be used in a wide range of applications. The Bat algorithm, which has led

the Levenberg-Marquardt (LM) to avoid local minima in this paper, can be further enhanced by

parameter tuning and dynamic parameter control.

Acknowledgment

The authors would like to thank Office of Research, Innovation, Commercialization and Consultancy

Office (ORICC), Universiti Tun Hussein Onn Malaysia (UTHM) and Ministry of Higher Education

(MOHE) Malaysia for financially supporting this Research under Fundamental Research Grant

Scheme (FRGS) vote no 1236. This research is also supported by Gates IT Solution Sdn. Bhd under

its publication scheme.

References

[1] Radhika, Y. & Shashi, M., Atmospheric Temperature Prediction using Support Vector Machines,

International Journal of Computer Theory and Engineering, 1(1), pp. 1793-8201. 2009.

[2] Akcayol, M.A. & Cinar, C., Artificial Neural Network Based Modeling of Heated Catalytic Converter

Performance, Journal of Applied Thermal Engineering, 25, pp. 2341-2350, 2005.

[3] Shereef, K.I. & Baboo, S.S., A New Weather Forecasting Technique using Back Propagation Neural

Network with Modified Levenberg-Marquardt Algorithm for Learning, IJCSI International Journal of

Computer Science, 8(6), pp. 1694-0814, 2011.

[4] Kosko, B., Neural Network and Fuzzy Systems, 1st ed., Prentice Hall of India, 1994.

[5] Krasnopolsky, V.M. & Chevallier, F., Some Neural Network application in environmental sciences. Part

II: Advancing Computational Efficiency of Environmental Numerical Models, Neural Networks, 16(3-4),

pp. 335-348, 2003.

[6] Coppin, B., Artificial Intelligence Illuminated, Jones and Bartlet Illuminated Series, USA, Chapter 11,

pp. 291- 324, 2004.

[7] Basheer, I.A. & Hajmeer, M., Artificial Neural Networks: Fundamentals, Computing, Design, and

Application, Journal of Microbiological Methods, 43(1), pp. 03-31, 2000.

[8] Zheng, H., Meng, W. & Gong, B., Neural Network and its Application on Machinery Fault Diagnosis,

IEEE International Conference on Systems Engineering (ICSYSE), pp. 576--579, 17-19 September,

Kobe, Japan, 1992.

[9] Rehman, M. Z., and Nawi, N. M., Improving the Accuracy of Gradient Descent Back Propagation

Algorithm (GDAM) on Classification Problems, International Journal of New Computer Architectures

and their Applications (IJNCAA), 1(4), pp.838-847, 2012.

[10] Rumelhart D.E., Hinton G.E. & Williams R.J., Learning Representations by Back-Propagating Errors,

Nature, 323, pp. 533-536, 1986.

[11] Lahmiri, S., A Comparative Study of Back-propagation Algorithms in Financial Prediction, International

Journal of Computer Science, Engineering and Applications (IJCSEA), 1(4), 2011.

[12] Nawi, N.M., Ransing, R.S. & AbdulHamid, N., BPGD-AG: A New Improvement of Back-Propagation

Neural Network Learning Algorithms with Adaptive Gain, Journal of Science and Technology, 2(2),

2011.

[13] Ahmed, W., Saad, E. & Aziz, E., Modified Back Propagation Algorithm for Learning Artificial Neural

Networks, The 18
th

 National Radio Science Conference (NRSC), pp. 345-352, 27-29 March, Mansoura,

Egypt, 2001.

[14] Wen, J. Zhao, J.L., Luo. S.W. & Han, Z., The Improvements of BP Neural Network Learning Algorithm,

5th Int. Conf. on Signal Processing WCCC-ICSP, pp.1647-1649, 21-25 August, Beijing, China, 2000.

[15] Salchenberger, L.M., Cinar, E.M. & Lash N.A., Neural Networks: A New Tool for Predicting Thrift

Failures, Decision Sciences, 23(2), pp. 899-916, 1992.

[16] Sexton, R.S., Dorsey, R.E. & Johnson, J.D., Toward Global Optimization of Neural Networks: A

Comparison of the Genetic Algorithm and Back-propagation, Decision Support Systems, 22, pp. 171–

186, 1998.

[17] SNNS (Stuttgart Neural Network Simulator), http://wwwra.informatik. unituebingen.de/SNNS/, 25
th

January, 2013.

[18] Fahlman, S.E., Faster-Learning Variations on Back Propagation: An Empirical Study, 1988

Connectionist Models Summer School by Scott E. Fahlman, pp. 38-51, San Mateo, CA, 1988.

[19] Riedmiller, M. & Braun. H., A Direct Adaptive Method for Faster Back Propagation Learning: The

RPROP Algorithm, IEEE International Conference on Neural Networks (ICNN93), 28
th
 March-1

st
 April,

San Francisco, CA, 1993.

[20] Fahlman, S.E. & Lebiere, C., The Cascade-Correlation Learning Architecture, Advances in Neural

Information Processing Systems, 2, pp. 524-532, San Mateo, Calif, 1990.

[21] Hagan, M.T. & Menhaj, M.B., Training Feed Forward Networks with the Marquardt Algorithm, IEEE

Trans. on Neural Networks, 23, pp. 899-916, 1994.

[22] Wilamowski, B.M., Cotton, N., Hewlett, J. & Kaynak, O., Neural Network Trainer with Second Order

Learning Algorithms, 11th International Conference on Intelligent Engineering Systems, Budapest,

Hungary, IEEE, 2007.

[23] Hagan, M.T. & Menhaj, M.B., Training Feed Forward Networks with the Marquardt Algorithm, IEEE

Trans. Neural Network., 5(6), pp. 989-993, 1994.

[24] Xiao-ping, C., Chang-hua, H., Zhi-qiang, Z. & Ying-jie, L., Fault Prediction for Inertial Device Based

on LMBP Neural Network, Electronics Optics & Control, 12 (6), pp.38-41, 2005.

[25] Haykin, S., Neural Networks, Beijing, China Machine Press, pp. 501-522, 2004.

[26] Nawi, N. M., Khan, A. & Rehman, M.Z., A New Levenberg Marquardt Based Back Propagation

Algorithm Trained with Cuckoo Search, ICEEI, UKM, 2013.

[27] Yan, J., Cao, H., Wang, J., Liu, Y. & Zhao, H., Levenberg-Marquardt Algorithm Applied to Forecast the

Ice Conditions in Ningmeng Reach of The Yellow River, 5
th

 International Conference on Natural

Computation, pp. 184-188, 14-16 August, Tianjin, China, 2009.

[28] Yang, X. S.: A new metaheuristic bat-inspired algorithm, Nature Inspired Cooperative Strategies for

Optimization (NICSO 2010), pp. 65--74, 2010.

[29] Nawi, N. M., Rehman, M. Z., Ghazali, M. I., Yahya, M. N., Khan, A., Hybrid Bat-BP: A New Intelligent

tool for Diagnosing Noise-Induced Hearing Loss (NIHL) in Malaysian Industrial Workers, Journal of

Applied Mechanics and Materials, Trans Tech Publications, Switzerland, vol. 465-466, pp. 652-656,

2014.

[30] Nawi, N. M., Rehman, M. Z., Khan, A., The Effect of Bat Population in Bat-BP Algorithm, ROVISP-

2013, Proceedings in LNEE Journal of Springer, Penang, Malaysia.

[31] Nawi, N. M., Rehman, M. Z., Khan, A., A New Bat Based Back-Propagation (BAT-BP) Algorithm,

ICSS-2013, Proceedings in LNEE Journal of Springer, Wroclaw, Poland.

[32] Mamat, R., Herawan, T., and Deris, M. M., MAR: Maximum Attribute Relative of soft set for clustering

attribute selection, Knowledge-Based Systems, 52, pp. 11--20, 2013.

[33] Wolberg, W.H., and Mangasarian, O.L., Multisurface method of pattern separation for medical diagnosis

applied to breast cytology. In: National Academy of Sciences, 87, pp. 9193--9196, 1990.

[34] Fisher, R. A., The use of multiple measurements in taxonomic problems: Annual Eugenics, 7, 179--188

(1936)

[35] Quinlan, J. R., Compton, P. J., Horn, K. A., and & Lazurus, L., Inductive knowledge acquisition: A case

study, Second Australian Conference on Applications of Expert Systems, Sydney, Australia, 1986.

[36] Smith, J.W., Everhart, J.E., Dickson, W.C., Knowler, W.C., & Johannes, R.S., Using the ADAP learning

algorithm to forecast the onset of diabetes mellitus, The Symposium on Computer Applications and

Medical Care, IEEE Computer Society Press, pp. 261--265, 1988.

[37] Evett, I. W., and Spiehler, E. J., Rule induction in forensic science, KBS in Goverment, Online

Publications, pp. 107--118, 1987.

[38] Quinlan, J. R., Simplifying Decision Trees, J. Man-Machine Studies, 27, pp. 221--234, 1987.

[39] Chiroma, H., Abdul-kareem, S., Khan, A., Nawi, N. M., Gital, A. Y., Shuib, L., Global Warming:

Predicting OPEC Carbon Dioxide Emissions from Petroleum Consumption Using Neural Network and

Hybrid Cuckoo Search Algorithm, PLoS ONE, 10(8), 2015.

[40] Gandomi, A. H., Yang, X. S., Alavi, A. H., Talatahari, S., Bat Algorithm for Constrained optimization

tasks, Neural Computing and Applications, 22(6), pp. 1239--1255, 2013.

[41] Yang, X. S., He, X., Bat algorithm: literature review and applications, International Journal of Bio-

Inspired Computation, 5(3), pp. 141--149, 2013.

