JOURNAL OF INFORMATION SCIENCE AND ENGINEERING XX, XXXX-XXXX (2016)

DroidSD: An Efficient Indexed Based Android Applications
Similarity Detection Tool *

JUNAID AKRAM, ZHENDONG SHI, MAJID MUMTAZ, PING LUO
Key State Laboratory of Information Security
School of Software Engineering
Tsinghua University Beijing 100028 China
E-mail: {zndl15; szd15; majil6; luop} @mails.tsinghua.edu.cn

Android is becoming more and more popular in recent years. Meanwhile, it has been
noticed that the security threats are also increasing with the passage of time. Most of the
threats come by copying and pasting other applications code without knowing and evalu-
ating it. Similar code fragments (clones) in Android applications make it very difficult to
maintain these security flaws. To overcome these security problems, it is very important
to discover, identify, retrieve, evaluate and recover these clones. In this paper, we propose
and design DroidSD, a novel clone detection approach for android applications, that helps
to detect different types of code clones from APK’s source code. A prototype has been de-
veloped and implemented to detect clones in android applications. We downloaded almost
30,500 top rated android applications and decompiled those APK to get their Java source
code by using reverse engineering techniques. DroidSD detects type-1, type-2 and type-3
(near-miss) clones in android applications at the source code level with high accuracy rate,
which was not possible in previous Android similarity detection techniques. DroidSD can
also detect the similar code fragments, that are injected into many applications, which may
be an indication of spreading malware. Meanwhile it can detect full and partial level sim-
ilarity between applications. We evaluate DroidSD clone detection approach on real time
data-set and count the Recall and Precision on BigCloneBench, which is quite significant.
Furthermore, our results show that our approach is very efficient and effective in detecting
near-miss clones to check the similarity level in android applications.

Keywords: Clone detection, Maintaining APK code, Android apps re-usability, Plagiarism
detection, Apps similarity detection, Information security

1. Introduction

Recently, smart phones are incredibly popular and very widely used in modern life.
Android is one of the main smart phone operating system used globally. As we know
that android is an open source operating system for mobile phones, that’s why it has
been supported by many well-featured applications. There are bundle of android app
stores, which are providing the facility to download latest and updated versions of android
applications'. For example, there are more than 3.8 million applications in Google play
store [1] and more than 50 billion downloads [2]. These apps are actually providing
very useful features in online payment systems, but meanwhile becoming the target for
criminals to fraud. Mobile browsers also relied on sensitive security operations, such
as online payments and transactions [3]. Android is very easy fraud target for attackers

Received March 11, 2014; revised June 20, 2014; accepted September 28, 2014.
Communicated by the editor.
Thttp://www.businessofapps.com/guide/app-stores-list/

2 JUNAID AKRAM, ZHENDONG SHI, MAJID MUMTAZ, PING LUO

because anyone can make their own apps and upload on official app stores. Even some
people can download the original APK files and by using reverse engineering techniques,
they can decompile the source code and rebuild app after making some changes in it [4]
[5].

Because of very fast demand of new features in android applications, the developers
are copying code from other apps and tries to reuse these fragments by pasting in other
source code sections with or without modifying the code, this type of reuse source code
approach is called code cloning, and the pasted code called as cloned code of the orig-
inal code. It is very adapting approach, especially in application development activities
[6]. However, during or after development process it is quite difficult to say which code
fragment is the original and which was copied. Clones in source code actually bring a big
trouble in applications security and maintenance [5] The previous research work shows
that a significant amount of 7% - 23% of source code was actually cloned in large sys-
tems [7]. Even recent research work [8] [9] on very large systems [10] shows that 22.3%
of Linux code has been cloned. A lot of research have been done in the field of open
source code clone detection in large scale systems, but clone detection in android applica-
tions is still an open chapter. There are some techniques to check the similarity between
android application [11] [12] [13], but these techniques check the similarity on basis of
it’s user interface, application signatures, application versions and uploaded patterns. But
in our approach we avoid these comparing factors to check the similarity in applications
and focused on analysis the source code of applications. Many researchers have explored
the techniques to detect malwares in android applications [2] [14] [15]. Alam [15] and
Chen [2] use clone detection techniques to detect malware in APK, Chen has used a third
party component called NiCad [16] to detect malware code fragments in APK. Very rare
researchers detect code clones at source code level by decompiling android applications
and evaluate the source code. In our approach, we have detected code clones at very deep
level of source code by extracting the main feature of APK source files.

To make sure the security and reliability of android applications, we develop
DroidSD to detect the apps similarity, copy paste code from APK source files and in-
jected code fragments, which can be a malware code. Meanwhile it can detect both par-
tial application similarity and full application similarity. We have experimented DroidSD
solution on the source code of 30,500 android applications, we get source code of these
apps by using reverse engineering techniques. It detects type-1, type-2, type-3 code clones
from android applications and retrieve the results in the form of similar code fragments.
DroidSD worth more for application markets rather than an approach embedded in an-
droid devices or used by end users. The particular apps we actually are interested in
finding code clones are those that copy code from other apps, or repackage existing apps.
DroidSD is a semantic based clone detection approach, which is scalable, incrementable
and can be extended to large scale android source repositories.

In this paper, our contributions are as follows:

e Decompiled and built index of 30,500 android applications.

e We developed DroidSD technique to detect similarity in android applications at
source code level.

e Conduct experiments to evaluate DroidSD to identify code clones.
o It detects full and partial level similarity between applications

e DroidSD achieves significant results as compare to state-of the-art tool with high
accuracy of 87%.

EXAMPLE FOR USING THE JISE TEMPLATE 3

1.1 Types of Clones

Type-1 (Exact clones): The identical code fragments, which are the exact copies of
code, except blanks, layouts, whitespaces and comments [10].

Type-2 (Parameterized/Renamed): Two Syntactically identical code fragments are sim-
ilar except for variations in literals, names of variables, types, and functions [10].
Type-3 (Near miss clones/Gapped clones): Two copied code fragments with further
modifications such as added or removed statements, the use of different literals, identi-
fiers, types, whitespaces, comments and layouts [10].

Type-4 (Semantic clones): Two code fragments that perform the same computation but
implemented by different syntactic variants. Or they are semantically similar, without
being syntactically similar [10].

The cloned code is actually the similar source code fragment between two appli-
cations, where cloned type describes the degree of similarity between code fragments.
Type-1 clones are the totally similar code fragments with 100% similarity because the
code is fully identical. Type-2 have the similar source code with 90% similarity because
in type-2 clones there are little variations in literals, names of variables, types, and func-
tions but the source code is also similar. In case of type-3 clones, where new lines added
in the original source code or maybe deleted, it is still suspected code which shows the
similarity of 60% to 80% between source code fragments, which have been further cat-
egorized and explained in case study of section 6. So, the similarity between Android
source code varies with the detected code clone types. Although two application share
same source code but through DroidSD, we can find the degree of similarity between the
source code.

2. Related Work

Detecting and evaluating code clones in applications or code bases have been very
useful to many software engineering techniques such as refactoring and bug detection
[17]. Researchers have explored and proposed different ways to identify and detect simi-
larity between android applications [11] [12] [13], similarity between different documents
[18] [19] and in open source files [10] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29]
[30]. Their results and methods have been employed by code clone management tools
for open source projects [31] [32]. Prior research has shown that there are many cloned
and fake applications in android markets [11] [14] [33]. Recently similarity detection in
android applications is very hot research topic in software reliability and security [10], be-
cause a lot of applications are having vulnerable source code [34]. Haofei [12] performed
a semantic analysis over android applications to detect clones, which compute similarity
value of original apps. Mostly signature based techniques have been used for malware de-
tection in source code [2]. Juxtapp is a system used to detect the similarity of code based
on feature hashing in android applications [35]. It extracted the DEX files to analyze the
code similarity in different applications. In this technique, the basic blocks are generated
from XML files, which are derived from DEX file. Then the hash function is applied to
k-grams into vectors. The similarity between two-bit vectors counted to check the sim-
ilarity between two android applications. DroidMOSS [33] detect the similarity of two
applications on the basis of fuzzy hashing, which can identify the repackaged or rebuild
applications after decompilation. This method divides the entire package into small parts
to compute the hash value of the individual part, and then combine all hash values into
final fingerprint value of an application. Zhou [14] collected almost 1200 code malware

4 JUNAID AKRAM, ZHENDONG SHI, MAJID MUMTAZ, PING LUO

samples to detect android malware in other applications. Jian Chen [2] collect the android
applications which were known to be malware, then by using NICAD [16] near miss
clone detection technique to detect the same code fragments in other applications [9]. He
decompiled almost 1000 applications for clone evaluation. Sungmin Kim [36] proposed
a method to detect illegally copied android application on the network. He extended data
objects which were being transmitted from the network through sniffing, assembling and
analyzing the packets. He made an analysis on extracted features of data objects are APK
files or not. DroidClone [15] exposes the code clones in android applications by using
MAIL (Malware Analysis Intermediate Language) technique. This technique uses a spe-
cific flow pattern to reduce the obfuscations effect. It can detect the byte code and native
code simultaneously. Charlie Soh [13] proposed a clone detection technique based on
applications UI (user interface) information. UI information can be collected very easily
at run time without affecting it’s behavior. It can also detect the repackaging attacks of
android applications. In this approach, it runs the android Emulator to get the XML files
then by applying hashing filters, it finally gets the similarity indexes of clones. AnDar-
win [4] uses PDG (Program Dependence Graph) approach to detect the similarity of two
applications. It only analyzes the application at the level of Java byte code. But in our
method we check and identify the similarity at source code level, we use our own devel-
oped method to detect code clone fragments in two different applications. Svajlenko [37]
have proposed an efficient way to detect large-scale near-miss clone in large scale sys-
tems. Recently SourcererCC [38] tool performs code clone detection in big code and it’s
extended version SourcererCC-1 [39] is an Eclipse plug in, which is using SourcererCC
to detect, identify and navigate all clones during software development.

3. Problem and Proposed Solution

It is very easy to apply reverse engineering techniques on android APK files and re-
build them by adding some malicious code fragments inside. Mostly previous techniques
have focused on similarity detection between application by consider it’s user interface,
uploaded information, signatures and patterns. But there are very less techniques, which
checks the applications similarity at source code level. Even some developers copy some
code from other applications and paste into their own application without testing that
code, this code fragment can be the malicious code of original applications. So if we can
detect that malicious code fragments from APK files we can use that code fragment as
malware pattern to check in other applications. Hence, to perform that task code clone
detection technique can be best solution. To make sure the security level and reliability
of android APK files, we propose a scalable solution in the form of DroidSD for clone
detection in APK source code files. Our purpose is to build a tool, where we can de-
tect the cloned android applications. DroidSD has been tested on almost 30,500 android
applications, those downloaded from AppChina market. It detects similarity between ap-
plications at different granularity. Our proposed solution can be defined by two main
steps:

Step 1: (APK Source Code Collection): All 30,500 applications decompiled to get
their DEX files by using reverse engineering techniques. From DEX files we retrieved
JAR files, after that these JAR files further decompiled to a Java source files as shown in
Fig 3.

Step 2: (APK Code Clone Detection): We developed DroidSD, a code clone detec-
tion tool to detect the same code fragments in different applications. We use Hadoop file
system environment to build an index of 30,500 application’s source code and save into

EXAMPLE FOR USING THE JISE TEMPLATE 5

Reverse |:"> Indexing Subject Systems D
Engineering
I t g
Signatures
(HBase)

Results
Fig. 1: Top level view of whole system.

Android

Applications

Source
Code

- Sorting
Comparison - Storing
a- Displaying

HBase. Our code clone detection approach is hybrid (semantic), which detects type-1,
type-2, type-3 code clones from the source code of android applications.

4. APK Source Code Collection and Decompilation

Google Play Store is the largest distributed android channel for android applications,
which is actually offering global coverage for the big audience [5]. But we used Ap-
pChina® platform to download APK files. The reason we use AppChina store is that it
has the application’s review criteria [2]. Every application would be checked from devel-
oper’s side before it released. AppChina has more than 30 million users and about 600
million applications have been downloaded every month?.

4.1 APK Crawler

For the collection of APK files, we wrote a web crawler, which was downloading the
top ranking applications from market including basic information, i.e Name, Path, Size,
Downloaded Frequency and Category).

4.2 Reverse Engineering (.apk to .java source)

We used reverse engineering techniques to get the source code from APK files. The
development process of an android app is shown in Fig 2.

Java Dex .
ﬂ ,
Signed Al
= < .apk LY Builder
.apk

Fig. 2: Building structure of android applications.

Our most concern files in apk is DEX files because these are the files holding all
source code of Java class files. Our performed reverse engineering steps have been shown
in Fig 3. Reverse Engineering on 30,500 android applications was done in first part
through the decompilation of all DEX files to Java source code files. We wrote Java
scripts for every reverse engineering step to perform decompiling automatically. The fol-
lowing main steps and resources which were used in decompiling the APK files to source
code.

Zhttp://www.appchina.com
3http://www.businessofapps.com/the-ultimate-app-store-list/

6 JUNAID AKRAM, ZHENDONG SHI, MAJID MUMTAZ, PING LUO

.Java

BB

Apk Files Dex Files Jar Files Java Class Files

Fig. 3: Reverse engineering for android applications.

1. Unzip .apk files to get all .dex files.

2. Through scripts, we used Dex2jar* tool to get jar files

3. We used JD-CORE’ decompiler to get .java source files from jar files
4.3 Excluding Third-Party Libraries and Obfuscation Handling

Third-party libraries may affect the accuracy rate of malware detection and may
also slow down the detection process. So, we excluded them during signature generation
and detection process of malwares. We uses a Whitelist to filter all third-party libraries.
Although, it was not possible to build a complete Whitelist effectively because sometime
obfuscation may change the name of packages. During experiments, we find many library
files named “com/d/c/b”, where come is the root folder. Which was quite hard to filter
using Whitelist technique. So, We apply some filters against packages and classes names
to ignore third-party library files. We extract the semantic features of different API calls
and generated a vector sequences of directories. Then we perform comparison between
these sequence vectors during malware detection and ignored these library files.

The obfuscation process make the source code difficult to explore, analyze and un-
derstand. Obfuscation can remove the literals, strings, variable names and sometimes it
prevent decompilation of APK files. So, to overcome this problem, we used Annotated
Control Flow Graph (ACFG) and Sliding Window of Difference (SWOD) techniques [40],
which help us to detect the code similarity more effectively.

5. APK Code Clone Detection

In this section, we explain how our proposed DroidSD clone detection tool works.
Our proposed approach is a hybrid (semantic), which performs several screening filters
to detect absolute and exact code clones in APK source code files. The clone detection
method runs in a pipeline, where every process fully depends on the output of the previous
step as shown in Fig 4.

5.1 Preprocessing and Normalization

This is a first but very important process in APK code clone detection, which con-
sists of several steps to make code ready for further procedures of detection. The source
derived from APK files by using different reverse engineering techniques places in a sep-
arate repository to perform preprocessing and normalization on it. In preprocessing code
retrieved from source repository and split into tokens. We replace all integers, variables,
functions, methods etc. into specified ids and number, meanwhile all import utilities,
comments and spaces ignored as shown in first part of Fig 5. Preprocessing of APK
source code includes many steps, i.e. loading source code, verify and clean the source

“https://github.com/pxb1988/dex2jar
Shtps:/github.com/nviennot/jd-core-java

EXAMPLE FOR USING THE JISE TEMPLATE 7

= S
Apk’s Source Code Collection

‘ Source code files from code base l 4_/
g O
[Prepl'ocessing: Loading, Transforming, Tokenizing, Normalizing, Chunking]
O O

Chunk Formation(Chunk 1] (Chunk2| [Chunk3) [Chunk4] (Chunk 5| [Chunk 6]
The whole file is divided into chunks and generate MD35 hash of each Chunk.

O O
[Chunking : Set window size of chunks to 6 and select smallest hash from it]

n .
Feature Extraction: Extracting main features from source code files. i.e.
Row Key (MD 5 Hash value), File Path, First Line Number (each chunk), Total Lines

b '

[Index Creation: On the basis of extracted feature, Index info stored in HBase]
b b

[Clune Detection: Upload test file =>Performing all above steps = Filter same]

]

Hashes from HBasec> Detect & verify clones ¢ Retrieve cloned code fragment:

Fig. 4: DroidSD feature extraction and indexing process

code, tokenization for lexical analysis as shown in Algorithm 1, normalization,chunk for-
mation, MD 5 hash generation, indexing, feature extraction and fingerprint generation as
shown in Fig 4.

The ConQAT [27] lexical analysis tool was used for preprocessing and normalization
purposes. This tool mainly filters the source code on the basis of programming language
characteristics, i.e. preprocessing commands (import, include, package); visibility modi-
fiers (static, public, private and so on); name space qualifiers; number all the identifiers,
types, and constants. Meanwhile, identifier replaced by id+ numbers, replace “empty”
to string, integer replaced by 0, floating-point is also replaced by 0 and boolean replaced
by true. In the ConQAT preprocessing section, we have made some modifications to its
source code to implement the reserved converter operation so that the subsequent genera-
tion of chunk is easily generated.

5.2 Feature Extraction

This is very basic but the core phase of code clone detection in android applications,
main features from the source code of APK files would be extracted to transform source
code into representation form for code comparison. These features include MDS5 hash
values of every chunk, path of source code file, first line number of every chunk and
total lines of code in each file. After preprocessing and tokenization is done, the chunk
formation performed on every file by putting 10 lines of code into a single chunk. The
MDS5 hashing algorithm used to get the hashing value of each chunk. To select some
of these hashes as a fingerprint from every source code file, we divide these hashes into
groups (windows) and fixed the window size to 6 by choosing at least one fingerprint

8 JUNAID AKRAM, ZHENDONG SHI, MAJID MUMTAZ, PING LUO

int[] data; de fdl; _

int size; idoidl; -

public boolean binarySearch(int key) '{dD id1 1d2 id3 Chunkl-

i 0 id 120 |- 9285EBD2445B5 45043 13FA033ACTF2AS
int low = 0; VIS - Chunk?-

int high = siza - 1; id0 id1=id2-0; | 68DSFFD7IDADF3628663F513C34E2007
while[high = low) while id0 == id1 —sChual3: B

q { E333D4F0FD430DA4AB0T20146381D4DD
int middle = (low + high) / 2; id id1=id2+id3/0;

if(datalmiddle] == key) fidoidl==id2

return true; |:> return true; _

: : if do 1d1<id2 .

if(data[middle] < key)

{ (o
low = middle + 1; idD=id1+0;

mActivity = null; I}d0=nu||

¥ e

if(datalmiddle] > key) if 1d0 id1>id2 Chuale12:

{ { 862B0BCDECOD66CTFIS19EF424TC6297
high = middle - 1; id0 =id1-0; | Chuakl3: .

} 1 27334D35E43C1618DFE3D3T0B489B5A2
} 1

return false: return true; B MD?3 hashes of zelected chunks

} i with window size 6

(9285EBD2445B5A59A313FA033ACSF2AS, 6GEDEFFDT1D3DF3628663F513C34E2097,
E333D4FOFD439DAAAB0T 201463810400, 336F510BDED13621E36BAS4CI3DOIFE,
3CAFO363C92627F44273A62782E71801, 33DFAYBEOEREBDA347ADD27411A90AES)

(68DBFFD71D3DF3628663F513C34E2097, E333D4F0FD439DA4ABOT201463810400,
336F510BDED13621E36BA34CI3D094FB, 3ICAF0363CI2627F44273A62782ET1801,
32DFASBBOEEBBDA247AD027411A90AES, BEOTOEABGA2241ES0SERE011FGC13CTY)

; : (E333D4FOFD439DA4AB0T 201463810400, 336F510BDED13621E36BAI4CI3D034FB,
Fingerprint Hashes (Selected Features) 3CAF0363C92627F44273A62782E71801, 33DFASBBOEBBBDA347A0027411A90AES,
The smallest hash value from each window SE079EAB642341ES05EBBO11F6C13C74, AGDD39364202974153E731CA8FB64DF2)

(Red underlined hash values) (336F510BDED13621E36BA94CI3D094FB, 3CAFO363CI2627F44273A62782E71801,
. 33DFAIBBOEBBBDA347A0027411A90AEA, BEOTOEABGA2341ESOSERBO11FEC13CTA,
Chunkd : 336FS10BDEDL3621EIGBAIMCIID0IIE | Jenr30364202074153E731CA8FBEADF2, 1SAEASCI70DRE66CE843ABDIGBALLSS)

Chunkd : 15AEASCI70DBEGE6CEBAIABDIGBALLSS (30aF0363C92627F44273A62782E71801, 33DFAIBBOERBBDA347AND27411A90AEA,
BEO79EABG42341ES05EBB011FEC13CT74, ABDD39364202974153E731CABFB64ADF2
15AEASC970DBB6B6CA843ABDIGEALLSS, TBEADZEFBD6DTBDC13B199981BABETEA)

(33DFASBBOEBBEDA34TAD027411AS0AES, BEOTIEABGA2341ESOSEBBO11FEC13CT4,
AGDD39364202974153E731C48FBE4ADF2, 15AEASCI70DBRARGCEB43ABDIEBALLSS,
7BBAODZEFEDGD7BDC13B199981B4BETS4, 3BESS7IEER3I0BT7CI3BATCEEGBECSCBED)

(BEOT9EABG42341ES05SEBED11FGC1ICT4, AGDD39364202974153E731C48FBGADF2
15AEASCI70DBE6EECEEA3ABDIGBAL1SS, TBBADZEFBDEDTBDC13B199981B4BETE4,
3BESS7IEEB3087CI3BATCAEGBBCSCEED, 862B0BCDBCIDE6CTF3519EF4247CH297)

ﬂ@

NDDB‘SWNJ.SBETSLC!SFB“DFZ 15AEASCITODBEEBEC 1155,
BABETE4, 3!55579!583087C33!A706€MCB&D
OGZBOBCDSCGDGGCTFﬁlSEMN?Cﬁ!S? 2 1618DF83D3

Fig. 5: Preprocessing, normalization, feature extraction.

from each window as shown in Fig 5 in red underlined hashes. By choosing at least one
fingerprint from each window, we bound the maximum gap in fingerprints. Given a set of
subject files, we want to find chunks matches between them should be satisfy two things.

1. If a chunk match, it verifies the actual threshold: ¢, then this chunk is detected.
2. There is no need to detect any chunk, who’s threshold is smaller than threshold: u.

Where the 7 and u are constants and can be set by the user. The larger value of u makes us
confident that the detected chunks are not coincidental.

Given a sequence of generated hash values hy,h;....h,, if n >t — u then at least one
hash & must be selected to guarantee the detection of all clone fragments of at least length
t. By considering a simple approach, let the window size w =t —u + 1. Now consider a
sequence of MDS5 hashes A1, h;....h,, which represents the chunks of a source code file.
Every position 1 <i <n—w+1 in this kind of sequence, defines a window of hash values
hi,....hi+w—1. So, it’s mean to keep the guarantee of clone detection, it is very essential to
select at least one hash value from every window size to be a fingerprint of the source code
file. In our case we select the smallest hash value from every window as a fingerprint.

EXAMPLE FOR USING THE JISE TEMPLATE 9

Algorithm 1 APK Feature Extraction Algorithm

Input: A is the lexical analyzer that takes filepath, token streams, normalized tokens and
window size of chunks.

Output: Generate chunks and extract main features from the source file, i.e. MDS5 hash
values, list of chunks, first & last line number of every chunk and size of chunk. Then
add all these features in HBase.

: for i <= 0 to unitsStandard.size() — 1 do
if (units.get (i).hashCode() == 10)
then rowNum +- +
rowRecords.add (i)
end if
end for
if (rowActualNum > leastRow)
then chunkList <=
digest < buildHash(units,0,row.get (size — 1))
10: chunk <= new Chunk(element.getPath(), rowNum)
11: chunkList.add(chunk)
12: for i <=0 1o row.size() — sizePerChunk — 1do
13: digest < buildHash(units,row.get (i) + 1,rowRecords.get (i + sizePerChunk))
14 chunk < newChunk(element.getPath(),digest i+ 1,rowNum)
15: chunkList.add(chunk)
16: end for
17: end if
18: featuresList < 0
19: windowSize <= 6
20: for i <= 0to (chunkList.size() — windowSize + 1) do
21: minChunk < chunkList.get (i)
22: for j < i+ 1toi+windowSize do
23: if(chunkList.get (j).getHash() < min.getHash())

R A A ol S

24: then min < chunkList.get ()
25: end if

26: if(!featuresList.contains(min))
27: thenfeaturesList.add(min)
28: end if

29: end for

30: end for

31: /xinsertthe featuresListintoHBase /
32: insertChunks(featuresList)

10 JUNAID AKRAM, ZHENDONG SHI, MAJID MUMTAZ, PING LUO

The main reason behind selecting the minimum hash value is that the minimum hash
value in one window is probably remain the minimum hash value in nearby windows, so
the probability is that the minimum value of w (random numbers) is quite smaller than
one supplementary random number. Therefore, many overlying windows select the same
hash value and meanwhile the number of fingerprints selected values are very smaller
than the total number of windows while still sustaining guarantee as shown in Fig 5 in red
underlined hashes.

The main idea of fingerprint used to set the window size 6 of chunks sequence and
select the smallest hash value from each window. The repeated hash values ignored by
keeping it’s information i.e. file name, starting line, ending line of that specific chunk.
Each window size resulted in a term as a fingerprint, which later used for comparison of
different source code files to detect code clones. Fingerprint value is directly proportional
to code clones; it means that if the file has bigger fingerprint value, it has much affected by
clones. The same method also used during code detection process, where hashes values
of chunks later on compared with the index values stored chunks in HBase. Normalized
source code files from repository pass through some core steps to form feature extraction
as shown in Algorithm 1.

Source code divided into chunks of equal sizes, each chunk consists of 10 lines of
code, less than 15 LOC files discarded and ignored automatically. Chunk size is adjustable
and can be varied any time, but for APK source code we set it at 10 LOC. In Chunk
formation of a file, line from 1 to 10 would be formed as chunkl, line from 2 to 11 would
be formed as chunk?2, line from 3 to 12 would be formed as chunk 3 and so on. We add
all these chunks into a chunk list and apply an MDS5 hashing algorithm to get their hash
values, which help to compare code fragments during clone detection. After getting all
hashing values against all chunks, the least values from each window abstracted and saved
in HBase as an index value. Here are the main extracted features.

MDS Hash: This is the hashing value of each chunk.

File Path: Location where source code located in repository.

First Line Number: First line number of every chunk, to keep a record that from where
this chunk starts. It helps us to retrieve clone fragments from the source code.

Total Lines: This feature is used to further verify that the cloned files have the same LOC
or not. In case of both source files have the same number of LOC, it shows that file was
fully copied from an original file.

5.3 Index Creation (Fingerprint Generation)

To minimize the indexing information and use less storage for index, there are two
very important parameters considered in DroidSD: the fixed size of each hash value and
the size of each window. These two parameters determine the eigenvalue density and
the accuracy of clone detection. In order to reduce the storage cost and to improve the
detection accuracy, we have carried out several rounds of tuning the two parameters, and
finally achieved satisfactory results. Since code cloning is typically done by rows, the
first parameter is the size of the chunk, which computed by lines. Based on your own
writing code, or by referring to the experience of open source code, the general 10 line
can complete a simple functional unit, or a basically complete logical structure. So, we
set the size of chunk to 10 lines. The second parameter is the size of the window (set of
chunks) determines the shortest possible number of cloned lines of code, which set as 6.

All the extracted features from every source code file of APK saved in HBase as
an index information. Our proposed index creation method is very fast and reliable. It
just took 26 hours to build an index of 41 million files & 983 million LOC accurately.

EXAMPLE FOR USING THE JISE TEMPLATE 11

It considered takes very less time for large files as compare to small files of same size.
Index function gets the source files path, total lines, chunks, MDS5 hash values and stored
in HBase. There were almost 83 million hash values were saved in HBase index table. The
proposed index creation process is very fast, accurate, flexible and easy to maintainable.

5.4 Clone Detection and Retrieval

The proposed approach in this paper is a novel way to detect code clones in android
applications. In this section, we explained the final task of DroidSD, in which it filters the
clone fragments from source code and perform the evaluation. The concept of MapRe-
duce has been used to detect and retrieve the cloning files from repository against every
subject system (to be detected). All the subject systems uploaded to the HDFS file sys-
tem and become the input of map() in MapReduce. Then pass through certain criteria of
preprocessing, normalization, feature extraction and chunk formation to detect clones in
it as shown in Fig 6.

To be detected file uploaded to HDFS =
Use file path as input value of Map()

b
[Pl'epl'ocessing: Loading, Transforming, Tokenizing, Chunking, Feature Extra..]

Chunk Formation: (Chunk 1| (Chunk 2| [Chunk 3| [Chunk 4| (Chunk 5| (Chunk 6]

Ny
[Scanning: Scan HBase index info and compare the hash values of both files]
O L

[Normalizing: Normalizing all chunks as input of Reduce (F1 # P1 # P2, F2)]
F1:Chunks of test file, P1:Path of test file, P2:Path of repository file. F2:Chunks of repository file
b
[Count: Use Reduce input < key, value > to count the cloned chunks as output]
key: F1 #P1#P2 & value : F2

O b
[Storing: Output of MapReduce stored in HDFS in the form of detected Chunks]
Vg b

[Results: Retrieving all clone fragments from source repository by using HDFS]

Fig. 6: Clone detection architecture

At the initial stage of the detection process, all the preprocessing and normalization
steps would have performed after uploading a subject system. After forming chunks
of the subject system, the scanning process takes over the next procedure, which scans
all the hash values of the index in HBase and compares them with the hash values of
subject system. During the scanning process, it starts retrieving the chunks against similar
hash values from HBase repository. After scanning and retrieving all detected chunks,
DroidSD performs normalization on all chunks through reduce(). Inputs of reduce (F1#
P1# P2, F2) function are the values of test files, where F1 is chunks of the subject file,
P1 is the path of the subject file, P2 is the path of repository files, and F2 is the chunks
of repository files. Chunks of subject files and repository files further compared and
evaluated by considering their path value. All detected chunks counted one by one to find
their occurrence in different repository files. After performing count step, MapReduce
retrieves all the chunks, which are detected as clones and stores into HDFS for further
process of retrieving code segments. The algorithm of APK clone detection part has been
shown in Algorithm 2. In this algorithm the line 1-6 shows the initialized variables and

12 JUNAID AKRAM, ZHENDONG SHI, MAJID MUMTAZ, PING LUO

functions. Lines 10-13 scans the stored hashes from big table against subject system hash
values. Lines 14-17 MapReduce retrieves the detected results and normalised them for
evaluation. Finally, all results saved in HDFS file and basic info stored in mysql.

Algorithm 2 APK Clone Detection Algorithm

Input: Subject System uploaded into Hadoop file system. preprocessing, normalization,
formation of chunks performed.

Output: Retrieve all clone fragments from source code repository, sort them and count
the similarity value between them.

1: Initialize some Variables

2: hdfs as fs, hbasetable as ht and mysql as mq

3. /*Consider cksl,cks2 are chunks and ck : chunk, cks : chunks* /
4: function detector(filepath)

5: map(k,v) < filepath(k is a filepath value, v is 0)
6: cksl < preProcess(filePath)

7: cks2 < chunkExtract(cks1)

8: for i=0to length(cks2) do

9: loop

10: ¢k < cks2.get(i)

11: If ck is not null then

12: scan hbase chunks, according ck's md5 hash
13: cks <= chunks
14: end if

15: Let result 1is a (k,v)

16: resultl < normalizeResult(cks)

17: Store result 1in mapReducecalculate model
18: reduce(k,v) < result 1

19: for i = 0to length(k) do

20: loop

21: countChunk(v)
22: updateValue(v)
23: end loop

24: end for

25: let Initialize hdfs file hf1, hf2
26: hfl < reduceOut put(k,v)

27: insert(k,v) into mq

28: hf2 < locateResults(k,v)

29: end loop

30: end for

The detected types of clones depend on the similarity measures between the subject
file of subject system and the files in the repository. If the value of similarity is 1, then it’s
mean that there are type-1 & type-2 clones in subject file, and if the value varies from 1,
then the clones would be considered as type-3.

5.5 Near-Miss (Type-3) Clones Detection

This is the distinguish characteristic of DroidSD to detect near-miss clones in An-
droid application, where the source code have been changed by developers. These clone

EXAMPLE FOR USING THE JISE TEMPLATE 13

fragments have been changed by adding, modifying or removing statements during copy-
ing the source code from other applications. Many type-3 clones have modifies by swap-
ping statements in a source file or by combing multiple condition statements into one.
Detecting such kind of similar code fragments from apk is very challenging for other An-
droid clone detection approaches. So, we focused on detecting near-miss clones. Near-
miss clones were further divided into different groups, i.e very strong type, strong type,
medium type and weak type and their detection results have been shown in Table 2. Fig 9
shows one of the detected near-miss code fragment, which was detected in WhatsApp ap-
plication. The other near-miss clone fragments have been discussed below in case study
section and the near-miss clones results have been shown in Table 4, which are quite
significant.

6. Case Study of Clone Detection

In this part, the results of DroidSD approach have been shown and discussed. By
downloading a big amount of android applications from AppChina store as shown in
Table 1, we transform all .apk files to .java source code files by using different reverse
engineering techniques. We preprocessed and normalized almost 41 million files to build
and save their index information in HBase. All android application files decompiled in
the same way and with the same tools, that’s why the source code recovered by reverse
engineering process was the same every time.

Table 1: Source Code and Index Info

Downloaded Apk Decompiled Source files Lines of Code ~MDS5 Hash Values
30,500 41,261,694 983,975,411 82,998,573

System Specification: Our APK clone detection approach was performed on Linux
operating system. All process till clone retrieval was performed on a single machine (Intel
core-i7, 3.60GHz*8 & 24 GB of RAM) i.e. downloading android apps, decompiling
source code, preprocessing, normalizing, indexing and clone detection.

We extracted the main features of source code files and built an index of almost
30,500 android applications to perform the clone detection based on index info compar-
ison. For the evaluation of DroidSD, we took top android application named Chrome,
Firefox, Gmail, WhatsApp, GoogleMap, GooglePlayStore, Baidu as a subject system to
detect clones in them. These APK files were first decompiled through reverse engineering
techniques to get their source code. HDFS has been used for uploading these applications
decompiled source code to Hadoop file system for clone detection. Preprocessing, nor-
malization, feature extraction were performed to make code ready for detection. Indexed

Table 2: Detection Results of Chrome, Firefox, Gmail, WhatsApp, GoogleMap, Google-
PlayStore, Baidu and BigCloneBench

App Name Total Files LoC Detection Time Type-1 Clones Type-2 Clones VST3 Clones ST3 Clones MT3 Clones WT3,T4 Clones

Chrome 8,291 618,682 2h 53 min 230,305 142,137 82,949 5,300 192,604 266,316
Firefox 3,614 578,124 2 h 38 min 286,850 212,861 294,305 7,938 543,236 610,174
Gmail 10,796 874,888 4 h 36 min 172,784 214,676 129,893 16,027 250,949 381,531
WhatsApp 3,895 628,426 3 h 10 min 484,323 169,346 277,656 190,956 512,977 256,093
GoogleMap 12,794 1,115,701 5h 57 min 110,209 146,753 120,458 16,328 226,588 318,798
GooglePlayStore 11,133 899,689 5h 3 min 205,095 234,390 129,430 13,409 219,788 385,042

Baidu 3,326 631,469 3h 8 min 22,755 15,596 7,071 2,309 12,650 20,800
BigCloneBench 51,499 10,431,956 7 h 15 min 91,387 1,572,672 451,319 103,827 759,867 1,693,033
in (JaDataset)

14 JUNAID AKRAM, ZHENDONG SHI, MAJID MUMTAZ, PING LUO

hadoop/BackUp/apk _collection/appChina/apk java source/Catwangl/com/google/android/gms/wearable/internal/zza.java 3089
1983878 $/media/
hadoop/BackUp/apk_collection/appChina/apk java source/Googlecalender/android/support/v4/content/FileProvider.java 43
1903879 24$hdfs://192.168 . bmidd : 9000/ sourcecode/12345678912345/whatsapp/com/google/android/gms /wearable/internal/a. javas/media/
hadoop/Backup/apk_collection/appChina/apk_java source/ChromeBrowser/com/google/android/gms/t/xR.java 84
1903880 265hdfs://192.168 . MM : 9000/ sourcecode/12345678912345/whatsapp/com/google/android/gms/location/internal/e. javas$/media/
hadoop/BackUp/apk_collection/appChina/apk_java_source/Car-Netl/com/google/android/mdb/maps/r/e.java 20
19A38A1 2RA%hdfs-//192 1AR +QARA/snurcerarde /19345A7RA12345 /whatsann /enm/nnanl e/andrnid/ame /1ncation/internal /f iavad/medias

Fig. 7: APK Clone Detection results (HDFS file)

9%
80%
7%
6036
5080
4%

30%

Similarity in %

20%

10%

0%
o A 2 * © o o A B o o &
4 & \‘,’?% '153‘)} %”5‘? '*9950 © 4'9'@ & é'?a A7 & %@P%' O?'QP q‘g? \gﬁ"\’ Q“} &q' {L@\}”@{{-\dﬁ\y@ @‘@@@@“P(’\G &P oP"P {i\&@'@@

NN

Feature (ss: Subject System (WhatsApp) & sr: APK Source Repository) Msr Mss

Fig. 8: Features similarity of WhatsApp in APK source repository

MDS5 hash values of approximately 83 million from HBase were scanned and comparison
between these hashes was performed through MapReduce. The detection time of each
subject system is displayed in Table 2. Results of clone detection were retrieved from
Reduce, which consists of feature similarity ratio in two files and their local path. Fig 7
shows of only 3 selected results of subject system (WhatsApp), it is actually the HDFS
file of size 417 MB, which consists of 1,903,894 retrieved clone results. Each result in
it gives the actual path of detected cloned subject file (WhatsApp), repository files and
the number of similar features in clone files. The 1903878 fully highlighted line in Fig 7
is the file from WhatsApp, which was cloned in other android applications in our source
repository, names of detected clone android applications in our source repository have
been underlined with red color. The graphical representation of selected results of Fig 7
has been shown in Fig 8, which displays the actual similarity against different retrieved
files. In Fig 8, the files of subject system (WhatsApp) are in red color and the files of
source repository are in blue color. The white lines shows that the features in these files
are very less, i.e the source code in these files is less than 10 LOC.

Table 2 shows the detection results of the subject systems against their total number
of files, LOC, time and number of detected clones of type-1, type-2, type-3. Types of
clones actually depends on features similarity of files, i.e. similarity: 1.0 shows type-
1 clones, similarity: 0.9 - 1.0 shows type-2 clones, similarity: 0.5 - 0.8 shows type-3
clones. There is no hard and fast rule on when a clone is not syntactical similar, so it’s
quite hard to separate type-3 and type-4 clones, instead we divide and categorise them
on the basis of their similarity measure, i.e. very strongly type-3 (VST3) clones have the
feature similarity of 80-90%, strongly type-3 (ST3) clones have the feature similarity of
70-80%, moderately type-3 (MT3) clones have the feature similarity of 60-70%, weakly
type-3/4 (WT3/4) clones have the feature similarity of 50-60%. The clones of less than
50% similarity can be type-4 clones, but not surely evaluated and considered in this paper.

The result of type-3 (near-miss) clone of our similarity detection approach has been

EXAMPLE FOR USING THE JISE TEMPLATE 15

147 return false; 56 public int hashCode()

48} 57
58 long 11 = Double.doubleToLongBits(this.latitude);

50 public final int hashCode(} 59 int i = 31 + (int)(11 ~ 11 »»> 32);

51 { 60 long 12 = Double.doubleToLongBits(this.longitude);

52 l-nu 11 = Double. doubleToLongBits (this.b); 61 return 1 * 31 + (int)(12 ~ 12 >>> 32);

53 it 4 =31 & (int)(11 ~ 11 >»> 32); 62}

54 lnng 12 = Double. doub\eTﬂLonans(thi.s c)i 63 public String toString()

55 return 1 * 31 4 (int)}(12 ~ 12 >>> 32); 64

56 } 65 return "lat/lng: (" + this.latitude + "," + this.longitude + "}";

57 66

28 public final String toString() 67 public void writeToParcel(Parcel paramParcel, int paramInt)
68

66 return “lat/lng: (" + this.b + ", + this.c + ")"; 69 if (2zaa.2zqF())

61 } 70

62 71 zzj.zza(this, paramParcel, paramint);

63 public final veid writeToParcel(Parcel paramParcel, int paramInt){72 return;
73 }

65 j.a(this, paramParcel); 74 2zi.2za(this, paramParcel, paramInt);

66 75

67 76}

Java > Tab width:8 ~ Lnag,col3 = N5 | Java ™ Tabwidth:8 ¥ 62, Cola NS

Left picture: $hdfs://192.168..../whatsapp/.../gms/maps/model/LatLng.java
Right picture:$/.../appChina/apkSource/HellRider/unity/maps/ads/Unity.java

Fig. 9: Near-Miss clone detection result of APK

100%

Similarity in %
§ 8 ¢ 8 8 8§ 8

8

g

0%

CHC RO A AP e P R
Feature (ss: Subject System (Chrome) & sr: Source Repository(Firefox)) Esr Ess

Fig. 10: Features similarity between Chrome and Firefox

shown in Fig 9, which describe that new lines have been added to the source code of
the original file, or may be the lines of source code were deleted from the original file.
Furthermore, there were some function & method names have been changed in cloned
file. Left picture in Fig 9, is one of the subject file named LatLng.java from 3,895 files
of WhatsApp application. The picture on the right is the file from another APK named
Hell-Rider, which was detected and retrieved from our android source code repository.

Another case study has been done for Batch clone detection (one to one), in which
two systems have been used, i.e Chrome and Firefox. The clone detection was auto-
matically performed on each system one by one by considering one system as a subject
system and another as a source repository and vice versa, the results are listed in Table 3.
Through this experiment we can see the source code similarity between these two browser
applications. It have been seen that many files of these application have been sharing the
source code fragments. Through DroidSD we can even display those code fragments very
effectively. The features similarity graph of Chrome over Firefox has been shown in Fig
10. Table 3 shows the results of type-1 type-2 and type-3 clones Chrome over Firefox
(Chrome as subject system) and Firefox over Chrome (Firefox as subject system).

16 JUNAID AKRAM, ZHENDONG SHI, MAJID MUMTAZ, PING LUO

Table 3: Clones detected between Chrome and Firefox

App Name Detection Time Type-1 Clones Type-2 Clones VST3 Clones ST3 Clones MT3 Clones WT3,T4 Clones
Chrome over Firefox 13 min 301 5085 670 221 1020 4820
Firefox over Chrome 11 min 67 2245 333 138 569 2181

7. Evaluation

In this section, we have evaluated the performance of DroidSD. We have imple-

mented our approach in real time environment to evaluate it’s accuracy. To get the value
of false negative and to make sure, if our APK code clone detection method is better
enough, we supposed to count how many clones were not identified by DroidSD. So, we
count the Recall and Precision. A perfect code similarity detection approach supposed
to have Recall and Precision values both 100%. Recall is actually the fraction of all re-
lated files, which have been retrieved through a query. High Recall means that most of
the clones in that application have been found. In our approach, relevant clone files are
those files which are supposed to be retrieved as cloned files, and retrieved files are those
which were detected and retrieved as clones. In Precision, the relevant files retrieved by
the query and it measures that how many irrelevant files were retrieved as a clone. High
precision means that candidate clones are mostly actual and real clones. However, we
could not able to find any benchmark for android applications. Neither we could evaluate
all the retrieved results. Because there were million clone results, which were retrieved
from the source code of 30,500 million applications as shown in Table 2. So, we used an
unbiased way to evaluate DroidSD through two ways. The first way by mutation frame-
work and the second way BigCloneBench®.
Mutation Framework: The first way to evaluate DroidSD is creation a data-set by man-
ual inserting different type of clone fragments from BigCloneBench in the source code
files. We create our own data-set of 100 android applications by inserting test code frag-
ments of type-1, type-2 and type-3 in these applications. We inserted 30 type-1 clone
fragments in first 30 applications, 30 type-2 clone fragments in next 30 applications and
40 type-3 clone fragments in last 40 applications. The data-set repository formed and
ready for DroidSD evaluation. Then we extract features and build index of this data-set
repository by using DroidSD. We take these inserted code fragments of BigCloneBench
as a subject system and detect code clones in data-set repository. DroidSD detects clones
at different threshold values to differentiate different types of clones. All retrieved clone
fragments from data-set further manually evaluated by comparing them with the subject
code fragments those inserted in data-set. Fig 11 shows the clone detection results from
data-set at different threshold values. As we minimize the threshold value, we able to
detect type-3 clones. The graph in Fig 11 shows that DroidSD detects almost all inserted
code fragments of type-1 and type-2 clones. But there is a small difference in detection of
near-miss clones because of threshold value, if we minimize that value, we could detect
almost all inserted fragments.

BigCloneBench: BigCloneBench is a benchmark of manually collected and eval-
uated clone pairs in IJaDataset’. IJaDataset consists of almost 25,000 open source Java
projects, 3 million files and 250 MLOC. BigCloneBench was built on the basis of 1Ja-
Dataset and consists of almost 8 million validated clone pairs.

We executed DroidSD for 1JaDataset and evaluated Recall with BigCloneBench

Shttps://github.com/clonebench/BigCloneBench
"https://jeffsvajlenko.weebly.com/bigcloneeval.html

EXAMPLE FOR USING THE JISE TEMPLATE 17

50

40

30

20

10

0
Type-3 Type-2 Type-1
0.6~0.8 0.8~1.0 1.0
M Inserted M Detected
Fig. 11: Manually evaluated results of data-set

2983987 82%hdfs://192.168../bcb_reduced/4/default/82827.javas/mediasdataSet/IJaDatasSet 0 9/files/1068646.java 230
2983988 B2§hdfs://192.168../bch reduced/4/default/82827.javas/media/dataSet/IlaDataSet 0 9/files/1068724.java 1880
2983989 82%hdfs://192.168../bcb_reduced/4/default/82827.javas/mediasdataSet/IJabatasSet 0 9/files/1068756.java 450
2983990 B2§hdfs://192.168../bch reduced/4/default/82827. javas/media/dataSet/IlaDataSet 0 9/files/1068929.java 310
2983991 82%hdfs://192.168../bcb_reduced/4/default/82827.javas/mediasdataSet/IJaDataset 0 9/files/1069618.java 218
2983992 B2§hdfs://192.168. ./bch reduced/4/default/82827. javas/media/dataSet/IlaDataSet 0 9/files/1070493.java 220
2983993 29%hdfs://192.168. ./bcb_reduced/2/selected/1005719. javas/media/dataset/IJaDataSet B _9/files/1002290.java 78
2983994 29%hdfs://192.168../bcb reduced/2/selected/10085719. java$/media/dataSet/IJaDataSet @ 9/files/1002618.java 222
2983995 29%hdfs://192.168. ./bcb_reduced/2/selected/1005719. javas/media/dataset/IJaDataSet B _9/files/1B0O5166.java 45
2983996 29%hdfs://192.168../bcb reduced/2/selected/10085719. java$/media/dataSet/IJaDataSet @ 9/files/1006102.java 150
2983997 29%hdfs://192.168. ./bcb_reduced/2/selected/1005719. javas/media/dataset/IJaDataSet B _9/files/1008122.java 57
2983998 29%hdfs://192.168../bcb reduced/2/selected/10085719. java$/media/dataSet/IJaDataSet @ 9/files/101385.java 45
2983999 29%hdfs://192.168. ./bcb_reduced/2/selected/1005719. javas/media/dataset/IJaDataSet B _9/files/1014216.java 45
2954000 293hdfs://192.168. ./bch reduced/2/selected/1005719. java$/media/dataSet/IJaDataSet B 9/files/1018489.java 63
2984001 29%hdfs://192.168. ./bcb_reduced/2/selected/1005719. javas/media/dataset/IJaDataSet B _9/files/1019260.java 45
2984002 29%hdfs://192.168../bcb reduced/2/selected/10085719. java$/media/dataSet/IJaDataSet @ 9/files/1021363.java 225
29840083 29%hdfs://192.168. ./bcb_reduced/2/selected/1005719. javas/media/dataset/IJaDataSet B _9/files/1022594. java 63
2984004 293hdfs://192.168../bch reduced/2/selected/1005719. java$/media/dataSet/IJaDataSet B 9/files/1024491. java 45
NAGAGAE WNFMAEr . £ 110T TEQ fhrk radiend 40 fe Al ar b A CTAAETIA 3 mainf S = S Ak ok ST 1aNasnEne B A F$51mc S1ANES2D Sanm AE

Fig. 12: BigCloneBench results from IJaDataSet (HDFS file)

(51,499 files, 10 MLOC). The results measured BigCloneBench are summarized per clone
type in Table 2 and the HDFS result file have been shown in Fig 12. DroidSD has per-
fectly detected type-1 and type-2 clones in BigCloneBench. The VST3 clones are also
have excellent detection rate as shown in Table 4. To detect near-miss code fragments of
type-3 was not possible in previous Android similarity detection techniques. The weak
type-3 clones which can be type-4 clones were not evaluated in this paper, So we consider
it as a 0 Recall and Precision.

As for Recall, there exist a high quality benchmark, but to count Precision, it was
still an open problem. So, we used manually evaluation method to count Precision for
DroidSD. We randomly selected 200 files from the results and for fair evaluation, we
divide them on three judges, who were having the knowledge of source code similarity
measures. After combining their results, we found that DroidSD has high Precision (97%)
for type-1 clones, (91%) for type-2, (83%) for very strong type-3 clones.

Table 4: Recall and Precision (BigCloneBench)

Clone Types Type-1 Type-2 VST3 ST3 MT3 WT3
Recall (%) 98 93 87 63 30 0
Precision (%) 97 91 83 49 17 0

18 JUNAID AKRAM, ZHENDONG SHI, MAJID MUMTAZ, PING LUO

During evaluation process, we have performed full application similarity detection
and partial application similarity detection. Using full application similarity detection,
we detected all clone files from dataset repository against our all subject systems as the
results are shown in Table 2. It has been detected that two same applications with different
versions have much more common features than different application. In the case of
partial similarity detection, our approach has successfully found the applications which
share some source files or part of their source code. our approach also retrieves and count
all features in the subject file and the clone file, if the total number of features in both files
are same, it’s also the symbol of 100% similarity in files. Both full and partial similarity
detection require finding similar code fragments in application’s source code.

For further evaluation and to check the accuracy, we perform manual analysis of
clone fragments. We manually evaluated almost 200 code pairs from Chrome (subject
system), which were reported to be cloned. To manually evaluate every clone fragment,
we opened both files side by side and verify if they were similar. Manually evaluation on
clone fragments performed for type-1, type-2 and type-3 code clones. Meanwhile, Recall
and Precision counted against every clone type as shown in table 5.

Table 5: Recall and Precision Measurement (Chrome apk)

Clone Types Type-1 Type-2 VST3 ST3 MT3

Evaluation Files 20 20 20 20 20
Recall (%) 93 86 75 54 23
Evaluation Files 20 20 20 20 20
Precision (%) 96 89 81 32 17

Scalability: The scalability of DroidSD was evaluated by using different inputs with
varying the size of LOC, at different level of granularities. In default execution time
scales with the size of input (LOC). As our approach is based on Hadoop, HBase and
MapReduce, so the scalability is not an issue. DroidSD can handle million of files and
billion of LOC very effectively. 1JaDataset and BigCloneBench are considered two big
data-sets, which we used for the evaluation of DroidSD. For much large scale systems,
our technique can be extended to multiple clusters which can handle any size of input.

The results in Table 2, 3, 4 and 5 proves the performance ability of our approach.
The results were retrieved and calculated from 30,500 APK’s source code repositories
and IJaDataset®. We know that type-1 is exact clones, type-2 are renamed and type-3
(near-miss) are modified clones. Near-miss clones were a little bit difficult to detect but
our approach has detected them with high accuracy.

The main mechanism behind the evaluation of results is the formation of chunks and
then the comparison of hash values of these chunks. The results were evaluated through
two unbiased ways, manually and be using the code cloning data-set. In manually, we
create our own data-set of 100 android applications by inserting test code fragments from
BigCloneBench. The retrieved results were divided on three different judges, who has the
knowledge of code clones. During evaluation process they opened cloned file and the test
file on both side to match the code against its clone type. In case of with data-set eval-
uation, we executed DroidSD for IJaDataset and evaluated Recall with BigCloneBench
(benchmark of manually collected and evaluated clone pairs). So, the results are very
satisfactory in the sense of similarity detection between different applications.

8https://jeffsvajlenko.weebly.com/bigcloneeval.html

EXAMPLE FOR USING THE JISE TEMPLATE 19

8. Comparisons with Existing Approaches

Most of the application’s clone and similarity detection approaches are simple hash-
ing, semantic feature based, PDG based, API method based and UI based and even they
were unable to detect near-miss clone fragments from apk source code. We considered a
few detection approaches to compare with DroidSD, i.e. PDG based approaches are not
scalable and can not be implemented on clone detection on a market with over million ap-
plications. Kim’s technique (API method) executes applications and then collect all API
call sequences as birthmarks. API method can not work when apps are encrypted by Ijimi
because API method would not be able to get exact API traces of the application. Soh (UI
method) uses the user interface information to check the similarity. If some fake activities
or code fragments inserted in apps, which does not influence or make any change in user
interface, Ul method can not detect these kind of similar code fragments. DroidSD have
some benefits over Wukong approach also.

WuKong [41] detects code clone by using feature matrices for each app by building
n*m Characteristic Matrix, which is an abstraction of code segments. DroidSD detects
code clones and similarity of android applications at source code level by extracting it’s
main features. DroidSD have few advantages over Wukong

o If the classes, methods and API are encrypted or obfuscated, the Wukong approach
can not detect these kinds of code clones but DroidSD can do.

e In case of an application contains many small applications embedded inside,
Wukong would not be able to detect this as an application clone. But in case of
DroidSD it’s quite simple, because we consider every decompiled file of an appli-
cation as a subject file for clone detection.

e Aslong as it concerns to usage and implementation, Wukong technique is not ready
to be implemented as an app clone detection platform for an enterprise level. But
DroidSD approach is extensive and scalable to be implemented on enterprise level,
and it can be adopted by mobile app stores.

9. Limitations

DroidSD can detect code clones in android applications very effectively but it’s still
hard to differentiate between the clone code and the original code. DroidSD can detect
type-1,2,3 code clones with high accuracy rate but it’s very hard to detect type-4 clones,
because it’s a token based clone detection approach and up to our knowledge there is
no any token based approach which can detect type-4 clones but we considered it as a
probability that the clones of less than 50% similarity can be type-4 clones, but not surely
evaluated and considered in this paper.

10. Conclusion and Future Work

In this paper, we have proposed DroidSD a novel approach for clone detection in
android applications at source code level. Reverse engineering has been used for decom-
piling the source code of android applications. Several tasks have been performed to
preprocess the source code i.e. cleaning, transforming, normalizing and tokenizing etc.
Index of each source code file was built by extracting their main selected features. In total,

20 JUNAID AKRAM, ZHENDONG SHI, MAJID MUMTAZ, PING LUO

index of 982 million LOC source code was built just less than 3 days. DroidSD can detect
type-1, type-2 and type-3 code clones from any kind of android application, which helps
us to check the fake, vulnerable and malware application. Our clone detection approach is
incrementable and can be extended to distributed clone detection approach, where we can
build an index of a large amount of android applications and detect code clones from apps
on large scale. DroidSD can be used by android app stores to check the accuracy, validity
and repackage similarity in every application before upload into app stores. For future
concerns, we are planning to develop an algorithm, which can help us to detect type-4
clones effectively, and meanwhile detect the malicious or vulnerable code segments from
android applications to overcome the security threat.

Acknowledgement

This research done in Key State Laboratory of Information Security, School of Soft-
ware Engineering, Tsinghua University Beijing, China and it was supported by the Na-
tionnal Natural Science foundation of China under Grant No: 61540020.

REFERENCES

1. K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo: Collecting millions
of android apps for the research community,” in Mining Software Repositories (MSR),
2016 IEEE/ACM 13th Working Conference on. 1EEE, 2016, pp. 468-471.

2. J. Chen, M. H. Alalfi, T. R. Dean, and Y. Zou, “Detecting android malware using
clone detection,” Journal of Computer Science and Technology, Vol. 30, no. 5, 2015,
pp- 942-956.

3. C. Amrutkar, P. Traynor, and P. C. Van Oorschot, “An empirical evaluation of secu-
rity indicators in mobile web browsers,” IEEE Transactions on Mobile Computing,
Vol. 14, no. 5, 2015, pp. 889-903.

4. J. Crussell, C. Gibler, and H. Chen, “Andarwin: Scalable detection of android appli-
cation clones based on semantics,” IEEE Transactions on Mobile Computing, Vol. 14,
no. 10, 2015, pp. 2007-2019.

5. Y. Y. Ng, H. Zhou, Z. Ji, H. Luo, and Y. Dong, “Which android app store can be
trusted in china?” in Computer Software and Applications Conference (COMPSAC),
2014 IEEE 38th Annual. 1EEE, 2014, pp. 509-518.

6. M. Mondal, C. K. Roy, and K. A. Schneider, “Identifying code clones having high
possibilities of containing bugs,” in Proceedings of the 25th International Conference
on Program Comprehension. 1EEE Press, 2017, pp. 99-109.

7. E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code clones matter?”
in Software Engineering, 2009. ICSE 2009. IEEE 31st International Conference on.
IEEE, 2009, pp. 485-495.

8. C. K. Roy and J. R. Cordy, “An empirical study of function clones in open source
software,” in Reverse Engineering, 2008. WCRE’08. 15th Working Conference on.
IEEE, 2008, pp. 81-90.

9. C.K.RoyandJ.R. Cordy, “Nicad: Accurate detection of near-miss intentional clones
using flexible pretty-printing and code normalization,” in Program Comprehension,
2008. ICPC 2008. The 16th IEEE International Conference on. 1EEE, 2008, pp.
172-181.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

EXAMPLE FOR USING THE JISE TEMPLATE 21

A. Sheneamer and J. Kalita, “A survey of software clone detection techniques,” In-
ternational Journal of Computer Applications, 2016, pp. 0975-8887.

K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scalability simultaneously
in detecting application clones on android markets,” in Proceedings of the 36th Inter-
national Conference on Software Engineering. ACM, 2014, pp. 175-186.

H. Niu, T. Yang, and S. Niu, “Clone analysis and detection in android applications,”
in Systems and Informatics (ICSAI), 2016 3rd International Conference on. IEEE,
2016, pp. 520-525.

C. Soh, H. B. K. Tan, Y. L. Arnatovich, and L. Wang, “Detecting clones in android
applications through analyzing user interfaces,” in Proceedings of the 2015 IEEE
23rd International Conference on Program Comprehension. 1EEE Press, 2015, pp.
163-173.

Y. Zhou and X. Jiang, “Dissecting android malware: Characterization and evolution,”
in Security and Privacy (SP), 2012 IEEE Symposium on. 1EEE, 2012, pp. 95-109.

S. Alam, R. Riley, I. Sogukpinar, and N. Carkaci, “Droidclone: Detecting android
malware variants by exposing code clones,” in Digital Information and Communica-
tion Technology and its Applications (DICTAP), 2016 Sixth International Conference
on. 1EEE, 2016, pp. 79-84.

J. R. Cordy and C. K. Roy, “The nicad clone detector,” in Program Comprehension
(ICPC), 2011 IEEE 19th International Conference on. 1EEE, 2011, pp. 219-220.

Y. Dang, D. Zhang, S. Ge, R. Huang, C. Chu, and T. Xie, “Transferring code-clone
detection and analysis to practice,” in 2017 IEEE/ACM 39th International Conference
on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP), May
2017, pp. 53-62.

S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: local algorithms for doc-
ument fingerprinting,” in Proceedings of the 2003 ACM SIGMOD international con-
ference on Management of data. ACM, 2003, pp. 76-85.

Q. Li, S. Wang, H. Mao, Q. Han, and X. Niu, “An adaptive improved winnow algo-
rithm,” in Computer Software and Applications Conference (COMPSAC), 2015 IEEE
39th Annual, Vol. 3. IEEE, 2015, pp. 303-306.

D. Rattan, R. Bhatia, and M. Singh, “Software clone detection: A systematic review,’
Information and Software Technology, Vol. 55, no. 7, 2013, pp. 1165-1199.

P. Wang, J. Svajlenko, Y. Wu, Y. Xu, and C. K. Roy, “Ccaligner: a token based large-
gap clone detector,” in Proceedings of the 40th International Conference on Software
Engineering. ACM, 2018, pp. 1066-1077.

C. K. Roy and J. R. Cordy, “Benchmarks for software clone detection: A ten-year
retrospective,” in 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER). 1EEE, 2018, pp. 26-37.

M. A. Nishi and K. Damevski, “Scalable code clone detection and search based on
adaptive prefix filtering,” Journal of Systems and Software, Vol. 137, 2018, pp. 130—
142.

A.-F. Mubarak-Ali, S. Sulaiman, S. M. Syed-Mohamad, and Z. Xing, “Code clone
detection and analysis in open source applications,” Computer Systems and Software
Engineering: Concepts, Methodologies, Tools, and Applications. 1GI Global, 2018,
pp- 1112-1127.

A. Ghosh and Y. Lee, “An empirical study of a hybrid code clone detection approach
on java byte code,” GSTF Journal on Computing (JoC), Vol. 5, no. 2, 2018.

22

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

JUNAID AKRAM, ZHENDONG SHI, MAJID MUMTAZ, PING LUO

A. Gupta and B. Suri, “A survey on code clone, its behavior and applications,” Net-
working Communication and Data Knowledge Engineering. Springer, 2018, pp.
27-39.

E. Juergens, F. Deissenboeck, and B. Hummel, “Clonedetective-a workbench for
clone detection research,” in Proceedings of the 31st International Conference on
Software Engineering. 1EEE Computer Society, 2009, pp. 603-606.

B. Hummel, E. Juergens, L. Heinemann, and M. Conradt, “Index-based code clone
detection: incremental, distributed, scalable,” in Software Maintenance (ICSM), 2010
IEEE International Conference on. 1EEE, 2010, pp. 1-9.

H. Sajnani, V. Saini, and C. Lopes, “A parallel and efficient approach to large scale
clone detection,” Journal of Software: Evolution and Process, Vol. 27, no. 6, 2015,
pp. 402-429.

R. Koschke, “Large-scale inter-system clone detection using suffix trees,” in Soft-
ware Maintenance and Reengineering (CSMR), 2012 16th European Conference on.
IEEE, 2012, pp. 309-318.

X. Cheng, H. Zhong, Y. Chen, Z. Hu, and J. Zhao, ‘“Rule-directed code clone syn-
chronization,” in Program Comprehension (ICPC), 2016 IEEE 24th International
Conference on. 1EEE, 2016, pp. 1-10.

C. Kapser and M. W. Godfrey, “Improved tool support for the investigation of du-
plication in software,” in Software Maintenance, 2005. ICSM’05. Proceedings of the
21st IEEE International Conference on. 1EEE, 2005, pp. 305-314.

W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged smartphone ap-
plications in third-party android marketplaces,” in Proceedings of the second ACM
conference on Data and Application Security and Privacy. ACM, 2012, pp. 317—
326.

R. Dhaya and M. Poongodi, “Detecting software vulnerabilities in android using
static analysis,” in Advanced Communication Control and Computing Technologies
(ICACCCT), 2014 International Conference on. 1EEE, 2014, pp. 915-918.
S.Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song, “Juxtapp: A scalable system
for detecting code reuse among android applications,” in International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment. Springer, 2012,
pp. 62-81.

S. Kim, E. Kim, and J. Choi, “A method for detecting illegally copied apk files on
the network,” in Proceedings of the 2012 ACM Research in Applied Computation
Symposium. ACM, 2012, pp. 253-256.

J. Svajlenko and C. K. Roy, “Cloneworks: a fast and flexible large-scale near-miss
clone detection tool,” in Proceedings of the 39th International Conference on Soft-
ware Engineering Companion. 1EEE Press, 2017, pp. 177-179.

H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes, “Sourcerercc: Scaling
code clone detection to big-code,” in Software Engineering (ICSE), 2016 IEEE/ACM
38th International Conference on. 1EEE, 2016, pp. 1157-1168.

V. Saini, H. Sajnani, J. Kim, and C. Lopes, “Sourcerercc and sourcerercc-i: tools to
detect clones in batch mode and during software development,” in Proceedings of the
38th International Conference on Software Engineering Companion. ACM, 2016,
pp- 597-600.

S. Alam, Z. Qu, R. Riley, Y. Chen, and V. Rastogi, “Droidnative: Automating and
optimizing detection of android native code malware variants,” computers & security,
Vol. 65, 2017, pp. 230-246.

EXAMPLE FOR USING THE JISE TEMPLATE 23

41. H. Wang, Y. Guo, Z. Ma, and X. Chen, “Wukong: A scalable and accurate two-phase
approach to android app clone detection,” in Proceedings of the 2015 International
Symposium on Software Testing and Analysis. ACM, 2015, pp. 71-82.

Junaid Akram is a member of IEEE Computer Society. He received his 1st Master
degree in major of “Information Technology” from Pakistan in year 2009, and 2nd
Mater degree in major of "Communication and Information System” from China in year
2015. Recently he is PhD scholar in Department of Software Engineering at Tsinghua
University China. His current research includes: software reliability and testing, system
security, vulnerability detection and code cloning detection.

Zhendong Shi received the BS degree in software engineering from Yunnan
University China, in year 2015. Currently studding a master program in Tsinghua
university China of major entitled ”Software Engineering”. Research interests include
big data, software verification, vulnerability analysis and parallel computing.

Majid Mumtaz is a faculty member of COMSATS Institute of Information Tech-
nology Pakistan. He received Bachelor degree in Computer Science, MS in Information
Security from Royal Institute of Technology, Sweden. He is doing PhD in Tsinghua Uni-
versity Beijing China. His primary research interests are Information and communication
systems security, cryptography, algebraic cryptanalysis and mobile application security.

Luo Ping is a faculty member in Tsinghua University, China. He received PhD de-
gree in Applied Mathematics from Chinese Academy of Sciences Institute of Systems
Science in year in 1996. He joined department of Computer Science and Technology,
Tsinghua University in year 2008. Later on he started offering his duties as Professor
in Key Laboratory of Information System Security, School of Software, Tsinghua Uni-
versity, Beijing, 100084, China His area of research is Information security, Including:
cryptography, vulnerability analysis and attack, database vulnerabilities and security.

