Efficient Evaluation of Minimum Total Cost Queries on Heterogeneous Neighboring Objects*

YUAN-KO HUANG
Department of Maritime Information and Technology
National Kaohsiung University of Science and Technology, Taiwan
E-mail: huangyk@nkust.edu.tw

In recent years, many of the location-based services provide information of a single type of spatial objects, based on their spatial closeness to the query object. However, in real-life applications, user may be interested in obtaining information about different types of objects (e.g., hotels, restaurants, and theaters), in terms of their neighboring relationship. Moreover, an important aspect that has not been previously explored is the total cost of experiencing various types of spatial objects. As a result, we present a new type of location-based queries, named the minimum total cost query (MTCQ), which takes both the neighboring relationship and the total experiencing cost of spatial objects into account. Given the \(n \) types of spatial objects and a user-defined distance \(d \), the MTCQ finds a set of \(n \) objects such that the distance between any pair of objects does not exceed \(d \) and their total cost is smallest. To efficiently process the MTCQ, we utilize a R-tree-based index, the \(R_c \)-tree, to manage the spatial objects with their locations and costs. Then, two processing algorithms, namely the topk-based MTCQ algorithm and the enhanced MTCQ algorithm, are proposed to determine a set of objects satisfying the constraint of distance \(d \), whose total cost is lowest. Finally, extensive experiments using the synthetic dataset are conducted to demonstrate the efficiency and the effectiveness of the proposed algorithms.

Keywords: location-based services, minimum total cost query, \(R_c \)-tree, topk-based MTCQ algorithm, enhanced MTCQ algorithm

1. INTRODUCTION

In recent years, the location-based services focus on efficiently managing a large number of spatial objects, and then providing various types of location-based queries [1, 2, 3, 4]. For example, the range queries and the nearest neighbor queries can be used to find the objects within a query range and the closest object to the query object, respectively. There are many applications related to the location-based services, such as location-aware advertisements, traffic control systems, and geographical information systems. Most of the processing techniques for the location-based queries consider a single type of objects (e.g., hotels, restaurants, or theaters). However, some users may not be interested in obtaining information of one type of objects. Instead, they want to know information about different types of objects. As a result, in [5], we consider the different types of objects, termed the heterogeneous neighboring objects (HNOs for short), and present the location-based aggregate queries on the HNOs. The HNOs and the location-based aggregate queries are defined as follows.

Received March 11, 2014; revised June 20, 2014; accepted September 28, 2014.
Communicated by the editor.
Consider the n types of spatial objects, $O_1, O_2, ..., O_n$. If there is a set of objects, $\{o_1, o_2, ..., o_n\}$, where o_i belongs to O_i and $i = 1 \sim n$, and the distance between any pair of objects in this set is less than or equal to a user-defined distance d, then the objects set $\{o_1, o_2, ..., o_n\}$ is a set of HNOs.

Assume that there are m sets of HNOs. Given a query object q, the location-based aggregate queries retrieve a set of objects $\{o_1, o_2, ..., o_n\}$, among the m sets of HNOs, such that the average, min, max, or sum distance of $\{o_1, o_2, ..., o_n\}$ to q is minimal.

Fig. 1(a) shows an example of processing the location-based aggregate queries on the HNOs, where the user-defined distance is set to 2 and the set of HNOs with the shortest average distance to q will be retrieved. There are three types of objects in the space, hotels h_1 to h_3, restaurants r_1 to r_3, and theatres t_1 to t_3. As $d = 2$, only the two object sets $\{h_2, r_1, t_3\}$ and $\{h_3, r_2, t_2\}$ can be the sets of HNOs. By comparing their average distances to the query object q, the set $\{h_3, r_2, t_2\}$ is returned as the query result because it has the shorter distance. From the above figure, we know that the result of the location-based aggregate queries is mainly based on the distance of the HNOs (i.e., hotels, restaurants, and theatres) to the query object. However, in many real applications, the users may want to experience the facilities while keeping the total cost as low as possible. In such applications, a set of HNOs with the minimum experiencing cost in total is the best choice. Let us consider the example in Fig. 1(b). As we can see, although the set $\{h_3, r_2, t_2\}$ is closer to q than the set $\{h_2, r_1, t_3\}$, its total cost (i.e., $2200 + 800 + 500 = 3500$) is much higher than that of $\{h_2, r_1, t_3\}$ (i.e., $1600 + 600 + 400 = 2600$). As such, the set $\{h_2, r_1, t_3\}$ is the better choice if the cost is a main concern in determining the query result.

In this paper, we present a new type of location-based queries on the HNOs, named the minimum total cost query (MTCQ for short), to find the set of HNOs having the smallest total cost. Formally, the MTCQ is defined as follows.

• Consider the n types of spatial objects, $O_1, O_2, ..., O_n$, where O_i has a cost attribute. Based on the user-defined distance d, there are m sets of HNOs. The
MTCQ retrieves a set of HNOs \(\{o_1, o_2, ..., o_n\} \), among the \(m \) sets of HNOs, such that the total cost of \(\{o_1, o_2, ..., o_n\} \) is smallest.

To efficiently process the MTCQ, we first utilize a R-tree-based index, the \(R^- \)-tree, to manage the spatial objects with their locations and costs. Then, two processing algorithms, namely the \textit{topk-based MTCQ algorithm} and the \textit{enhanced MTCQ algorithm}, are proposed to determine a set of objects satisfying the constraint of distance \(d \) (i.e., a set of HNOs), whose total cost is lowest. The \textit{topk-based MTCQ algorithm} is designed based on traversing the \(R^- \)-tree for each type of spatial objects to retrieve the top-k objects with the smallest cost. Having constructed the \(k^n \) sets of \(n \) objects, the set of HNOs with the lowest total cost is returned as the query result. Thus, the performance of the \textit{topk-based MTCQ algorithm} would be affected by the number of object types (i.e., the value of \(n \)). To effectively alleviate the above effect, the \textit{enhanced MTCQ algorithm} is proposed by taking advantage of a simultaneous traversal of the \(R^- \)-trees built on the \(n \) types of spatial objects. Moreover, three criteria, the \textit{d-pruning criterion}, the \textit{d-qualifying criterion}, and the \textit{cost-pruning criterion}, are devised to improve the query performance of the \textit{enhanced MTCQ algorithm}. To sum up, the major contributions of this paper are as follows.

- A new type of location-based queries, the MTCQ, is presented to provide information of spatial objects with the better neighboring relationship and the lowest cost in total.
- The \(R^- \)-tree is used to manage each type of spatial objects, which is built by taking into account the spatial objects’ locations and costs.
- The \textit{topk-based MTCQ algorithm} and the \textit{enhanced MTCQ algorithm} are proposed to efficiently process the MTCQ by traversing the \(R^- \)-trees.
- Extensive experiments using the synthetic dataset are conducted to demonstrate the efficiency and the effectiveness of the proposed algorithms.

The remainder of this paper is organized as follows. In Sections 2, we review related work on processing the location-based queries. In Section 3, we describe the data structures of the \(R^- \)-tree and the pruning criteria used for the processing algorithms. Then, the \textit{topk-based MTCQ algorithm} and the \textit{enhanced MTCQ algorithm} are presented in Section 4. Section 5 shows extensive experiments on the performance of the proposed approaches. Finally, we conclude this paper in Section 6.

2. RELATED WORK

In this section, we first survey the related works for processing the location-based queries, in which the spatial closeness of the spatial objects to the query object plays an important role in query processing. Then, we discuss the processing techniques for the location-based queries, where the neighboring relationship of spatial objects is a main concern in determining the query result. Finally, we review some works on processing the collective spatial keyword queries.

The \textit{K-nearest neighbor query} (KNN query) [6, 7] is the most popular type of location-based queries, which is presented to retrieve the \(K \) spatial objects with the best spatial closeness to the query object (that is, the \(K \) spatial objects that are closest to the query object). Recently, several variations of KNN query have been proposed to provide information of \(K \)-nearest neighbors in numerous applications. To address the issue of scalability, the \textit{all-nearest-neighbors query} (ANN query) [8] focuses on finding the \(K \)-nearest
neighbors for all objects in a query set. The ANN query inevitably incurs more CPU and I/O overhead because multiple KNN queries are executed. To express requests by groups of users, the aggregate nearest neighbor query has been proposed in [9], which is defined as follows. Given a set of query objects \(Q \) and a set of objects \(O \), the aggregate nearest neighbor query retrieves the spatial object in \(O \), so that an aggregate distance function (e.g., sum, min, or max) with respect to all objects in \(Q \) is minimized. The nearest surrounder query [10] finds the nearest neighbor around a query object, from the perspective of the query object’s orientation. In other words, the nearest surrounder query retrieves the nearest neighbors of a query object at different angles. The range nearest-neighbor query [11] is related to but different from the KNN query, where a query object is replaced by a query region. Specifically, the range nearest-neighbor query finds the nearest neighbors for every point in a spatial region, instead of a point. Another variation of KNN query with asymmetric property is the reverse nearest neighbor query (RNN query) [1, 12], where the set of objects whose nearest neighbor is the query object would be returned as the query result. The within query is proposed in [13, 14] to maintain the better spatial closeness of spatial objects by constraining their distance to the query object to be within a user-defined distance \(d \).

Then, we discuss some of the location-based queries that aim at preserving the good neighboring relationship between spatial objects. Given two data sources \(S_1 \) and \(S_2 \), the \(K \) closest pair query [15] focuses on finding the \(K \) closest object pairs between \(S_1 \) and \(S_2 \) (i.e., the \(K \) pairs \((a, b)\), where \(a \in S_1 \) and \(b \in S_2 \), with the smallest distance between them). The spatial join query [16] determines a set of object pairs that satisfy a user-defined spatial predicate (e.g., overlap or coverage). In [17], the spatial join query is extended to process the multiway spatial join query, in which the spatial predicate is a function over \(m \) data sources (where \(m \geq 2 \)). Recently, the \(k \) nearest group query in [18] tries to preserve the spatial closeness of objects to the query object and the neighboring relationship between objects, by computing the sum of the minimum distance between objects and the query object and the maximum distance among the objects. However, the \(k \) nearest group query may return a set of objects that are close to the query object but far away from each other, or are close to each other but far away from the query object. As a result, the location-based aggregate queries in [5] are further presented to appropriately keep the spatial closeness and the neighboring relationship of spatial objects.

Recently, the collective spatial keyword query [19, 20] is presented to find a set of objects that collectively cover user-given keywords with the minimum cost. Moreover, Su et al. [21] propose the group-based collective keyword (GBCK) query, considering not only the spatial closeness of objects to the query object but also the neighboring relationship between objects. The object group retrieved by the GBCK query could be close to the query object but far away from each other, or close to each other but far away from the query object. As the GBCK query is inherently different from the MTCQ, it cannot be applied to find the group of objects that we address in this paper.

3. INDEX STRUCTURE AND PRUNING CRITERIA

In this section, we first describe the data structures of the \(R^k \)-tree, which is used as the underlying index structure for the topk-based MTCQ algorithm and the enhanced MTCQ algorithm. Then, we discuss the three pruning criteria, the \(d \)-pruning criterion, the \(d \)-qualifying criterion, and the cost-pruning criterion, which are devised to upgrade the query performance of the enhanced MTCQ algorithm.
3.1 Data Structures of R^c-tree

The R^c-tree is a height-balanced index structure, where objects are recursively grouped in a bottom-up manner according to objects’ locations and costs. Each entry of a leaf node of a R^c-tree has the structure $((o.x, o.y), o.c, o.ptr)$, where $(o.x, o.y)$ refers to the location of spatial object o, $o.c$ is the cost of object o, and $o.ptr$ is a pointer to the actual object tuple in the database. Each entry of an internal node of the R^c-tree has the structure $(MBR_E, E.c, E.ptr)$, where MBR_E is a minimum bounding rectangle (represented as (x_1, y_1, x_2, y_2)) enclosing all the objects in the child node E of this internal node, $E.c$ is the minimum among all costs of the objects enclosed in MBR_E, and $E.ptr$ is a pointer to node E.

Let us use the example in Fig. 2 to illustrate the information maintained for the R^c-tree. As shown in Fig. 2(a), eight hotels h_1 to h_8 in the space are indexed by the R^c-tree. Initially, hotels h_1 to h_8 are grouped according to their locations and costs into four leaf nodes H_4 to H_7. Take the leaf node H_4 as an example. As hotels h_1 and h_2 are enclosed by MBR_{H_4}, they are the entries of the leaf node H_4 and will be stored as $((7, 15), 1800)$ and $((8, 12), 2000)$, respectively. Then, the leaf nodes H_4 to H_7 are recursively grouped into two internal nodes, H_2 and H_5, that becomes the entries of the root. Because the extent of MBR_{H_2} covers hotels h_1 to h_4, the node H_2 is maintained in the form of $(MBR_{H_2}, 1500)$, where 1500 represents the minimal cost among the four hotels.

![Diagram of R^c-tree for hotels](attachment:image)

Fig. 2. Data structures of the R^c-tree.

3.2 Three Pruning Criteria

Consider the n types of spatial objects, $O_1, O_2, ..., O_n$, which are separately indexed by the n R^c-trees, termed the R^c_1-tree, the R^c_2-tree, ..., and the R^c_n-tree. Let $\{s_1, s_2, ..., s_n\}$ be a set of entries to be considered, where entry s_i corresponds to a MBR E_i or an object o_i indexed by the R^c_i-tree. The goal of the first criterion, the d-pruning criterion, is to prune the set $\{s_1, s_2, ..., s_n\}$ that cannot satisfy the constraint of distance d, without the need to compute all pairwise distances between entries. Two parameters, d_x and d_y, are used in the d-pruning criterion. The parameter d_x refers to the minimal
distance between the two entries that are furthest apart on the x-dimension. As for d_y, it is the minimal distance between the two entries that are furthest apart on the y-dimension. Assume that R^r and L^l are the left boundary of the rightmost entry and the right boundary of the leftmost entry, respectively. Then, the distance d_x is computed as:

$$d_x = \begin{cases} R^r - L^l & \text{if } R^r > L^l, \\ 0 & \text{otherwise.} \end{cases}$$

Similarly, let U^u and D^b be the lower boundary of the uppermost entry and the upper boundary of the lowermost entry, respectively. Then, the distance d_y can be obtained using the following equation:

$$d_y = \begin{cases} U^u - D^b & \text{if } U^u > D^b, \\ 0 & \text{otherwise.} \end{cases}$$

With the two distances d_x and d_y, the set of entries $\{s_1, s_2, ..., s_n\}$ can be pruned using the d-pruning criterion if $\max(d_x, d_y) > d$.

The second criterion, the d-qualifying criterion, is used to efficiently determine a set of entries $\{s_1, s_2, ..., s_n\}$ satisfying the constraint of distance d, without computing the distance between all pairs of entries. To achieve this, a rectangle R, whose lower-left corner and upper-right corner are (x_l, y_l) and (x_u, y_u) respectively, is constructed to tightly enclose the extents of all entries. With the rectangle R, the distance between any two objects enclosed in R does not exceed the distance between the two points (x_l, y_l) and (x_u, y_u). As such, the set of entries $\{s_1, s_2, ..., s_n\}$ must satisfy the constraint of distance d if the following equation holds: $(x_u - x_l)^2 + (y_u - y_l)^2 \leq d^2$.

The third criterion is the cost-pruning criterion, which is designed to prune the non-qualifying object set, no matter whether it is a set of HNOS or not. Let $\{o_1, o_2, ..., o_n\}$ be a set of HNOS found so far, whose total cost, defined as $TC(o_1, o_2, ..., o_n)$, is equal to $\sum_{i=1}^n c_{i,m}$. Consider a set of MBRs $\{E_1, E_2, ..., E_n\}$. As mentioned in Section 3.1, E_i, c_m is the minimum among all costs of the objects enclosed in the MBR E_i. Thus, the cost of an object enclosed in E_i must be greater than or equal to $c_{i,m}$. It means that if the sum of $E_{i,m}$ for $1 \leq i \leq n$, defined as $TC_{m}(E_1, E_2, ..., E_n)$ (i.e., $\sum_{i=1}^n c_{i,m}$), is greater than the total cost $TC(o_1, o_2, ..., o_n)$, then all the object sets consisting of the objects enclosed in MBRs $E_1, E_2, ..., E_n$ cannot be the query result. Motivated by this, a set of entries $\{s_1, s_2, ..., s_n\}$ can be pruned using the cost-pruning criterion when (1) $TC_{m}(E_1, E_2, ..., E_n) > TC(o_1, o_2, ..., o_n)$ for s_i corresponds to a MBR E_i or (2) $TC(o_1, o_2, ..., o_n)$ for s_i corresponds to an object o_i, without the need to check for the distance d.

Fig. 3 shows how to prune the non-qualifying object sets using the three pruning criteria. As shown in Fig. 3(a), the d-pruning criterion is imposed on a set of MBRs $\{H, R, T\}$ and a set of objects $\{h, r, t\}$, respectively. As the MBRs H and R are the rightmost and leftmost entries, respectively, the distance d_x is equal to the minimal horizontal distance between H and R. Similarly, the distance d_y is represented as the minimal vertical distance between H and R because they are also the lowermost and uppermost entries, respectively. When the set of objects $\{h, r, t\}$ is considered, the distance $d_x (d_y)$ is computed as the minimal horizontal (vertical) distance between objects h and t (h and r). If one of the two distances d_x and d_y of the set $\{H, R, T\}$ (or $\{h, r, t\}$) exceeds the distance d, then it is pruned by the d-pruning criterion. Consider the example in Fig. 3(b), in which the d-qualifying criterion is used to check whether the sets of MBRs $\{H, R, T\}$ and objects $\{h, r, t\}$ satisfy the constraint of distance d. A rectangle whose length of diagonal is equal to $\sqrt{(x_r - x_l)^2 + (y_u - y_l)^2}$ is constructed to enclosed the set $\{H, R, T\}$
(or \(\{h, r, t\} \)). Once the diagonal length is less than or equal to \(d \), \(\{H, R, T\} \) (or \(\{h, r, t\} \)) is guaranteed to satisfy the constraint of distance \(d \). Fig. 3(c) shows that \(\{h', r', t'\} \) is a set of HNOs found so far, whose total cost \(TC(h', r', t') = 2400 \). According to the cost-pruning criterion, the set of MBRs \(\{H, R, T\} \) can be pruned by the HNOs set \(\{h', r', t'\} \) as its \(TC_m(H, R, T) \) is greater than \(TC(h', r', t') \). Also, a set of objects \(\{h, r, t\} \) is pruned in the same way because of \(TC(h, r, t) > TC(h', r', t') \).

\[
\begin{align*}
&H, R, T \\
&d_x, d_y \\
&H, R, T \quad \text{(a) } d\text{-pruning criterion} \\
&\text{(b) } d\text{-qualifying criterion} \\
&H, R, T \\
&H, R, T \\
&H, R, T \\
&TC(h, r, t) = 2600 \\
&TC(h', r', t') = 2400 \\
&TC(H, R, T) = 2700 \\
&H_c = 1800 \\
&r_c = 550 \\
&t_c = 350 \\
&h_c = 1700 \\
&h_c = 1600 \\
&r_c = 500 \\
&t_c = 300 \\
&h', r', t' \quad \text{(c) cost-pruning criterion}
\end{align*}
\]

\[\begin{align*}
&TC_{\sum}(H, R, T) = 2700 \\
&TC_{\sum}(h, r, t) = 2600 \\
&TC_{\sum}(h', r', t') = 2400
\end{align*}\]

Fig. 3. Illustration of the pruning criteria.

4. PROCESSING ALGORITHMS

Given the \(n \) types of spatial objects, \(O_1, O_2, ..., O_n \), where \(O_i \) has a cost attribute, and the user-defined distance \(d \), the MTCQ is used to find a set of HNOs \(\{o_1, o_2, ..., o_n\} \), such that the total cost of \(\{o_1, o_2, ..., o_n\} \) is smallest. To efficiently process the MTCQ, we propose two processing algorithms, the topk-based MTCQ algorithm and the enhanced MTCQ algorithm, which are described separately as follows.

4.1 Topk-based MTCQ Algorithm

The topk-based MTCQ algorithm consists of the following three steps: (1) for each type of spatial objects, the top-k objects with the smallest cost are retrieved, so as to construct the \(k^n \) sets of \(n \) objects; (2) for each set of \(n \) objects, the distance between any
two objects is computed and compared to the distance \(d \); (3) the set of \(n \) objects satisfying the constraint of distance \(d \) and with the lowest total cost is returned as the MTCQ result.

To improve the performance of Step 1 (i.e., finding the top-\(k \) objects for each object type), we perform a depth-first traversal of the \(R^c \)-tree built on each type of objects to filter the non-qualifying objects. The procedure of Step 1 begins with the root node of the \(R^c \)-tree and proceeds down the tree. When a MBR \(MBR_E \) is encountered, the following pruning criterion is used to determine whether \(MBR_E \) can be pruned or not. If \(E.c_m \) of the MBR \(MBR_E \) is greater than the largest value in the costs of the top-k objects considered so far, then all the objects enclosed in \(MBR_E \) can be pruned, because their costs exceed that of the top-k objects. Consider again Fig. 2, where \(k \) is set to 2 (i.e., finding the top-2 objects). Assume that hotels \(h_3 \) and \(h_4 \) are the top-2 objects considered so far. For the MBR \(MBR_{H_4} \), as its \(H_4.c_m \) is greater than \(h_3.c \) and \(h_4.c \) (i.e., 1800 > 1600 and 1800 > 1500), hotels \(h_1 \) and \(h_2 \) enclosed in \(MBR_{H_4} \) can be filtered using the designed pruning criterion.

For Step 2 (i.e., checking whether a set of \(n \) objects satisfies the constraint of distance \(d \)), we design the following criterion to determine a set of \(n \) objects that must be a set of HNOs, without the need to exhaustively check all pairs of objects for whether their distances exceed the distance \(d \). Let \(\{o_1, o_2, ..., o_n\} \) be a set of \(n \) objects to be considered. Then, \(\{o_1, o_2, ..., o_n\} \) must be a set of HNOs if

\[
(x_r - x_l)^2 + (y_u - y_d)^2 \leq d^2,
\]

where

\[
x_r = \max\{o_i.x | i = 1 \sim n\}, \quad x_l = \min\{o_i.x | i = 1 \sim n\},
\]
\[
y_u = \max\{o_i.y | i = 1 \sim n\}, \quad y_d = \min\{o_i.y | i = 1 \sim n\}.
\]

Although the topk-based MTCQ algorithm can be used to retrieve the MTCQ result, it needs to traverse the \(R^c \)-trees for the \(n \) types of spatial objects to construct the \(k^n \) sets of \(n \) objects. As a result, its performance must be dominated by the number of object types (i.e., the value of \(n \)). To further improve the performance of processing the MTCQ, the enhanced MTCQ algorithm is proposed by taking advantage of a simultaneous traversal of the \(R^c \)-trees built on the \(n \) types of spatial objects. The pseudo code for the topk-based MTCQ algorithm is given in Algorithm 1.

4.2 Enhanced MTCQ Algorithm

Recall that the \(n \) types of spatial objects, \(O_1, O_2, ..., O_n \) are separately indexed by the \(R^c_1 \)-tree, the \(R^c_2 \)-tree, ..., and the \(R^c_n \)-tree. The procedure of the enhanced MTCQ

Algorithm 1: Topk-based MTCQ algorithm

<table>
<thead>
<tr>
<th>Input</th>
<th>The (n) types of objects indexed by the (R^c)-trees and a distance (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>The HNOs set with the smallest total cost</td>
</tr>
</tbody>
</table>

foreach type of objects do

\[\text{traverse the } R^c \text{-tree to find the top-}k \text{ objects with the smallest cost;} \]

construct the \(k^n \) sets of \(n \) objects;

foreach set of \(n \) objects do

\[\text{compute the distances between two objects to compare with the distance } d; \]

return the HNOs set with the smallest total cost;
Algorithm 2: Enhanced MTCQ algorithm

```
Input : The $n$ types of objects indexed by the $R^c$-trees and a distance $d$
Output: The HNOs set with the smallest total cost
initialize a sorted list $L$;
insert information of the root nodes of $R^c$-trees into $L$;
while ( $L$ is not empty ) do
  retrieve ( $\{s_1, s_2, ..., s_n\}, flag, TC(s_1, s_2, ..., s_n)$ ) from $L$;
  if each $s_i$ corresponds to MBR $E_i$, then
    decompose into the $m$ sets of child entries;
    foreach set of child entries $\{s'_1, s'_2, ..., s'_m\}$ do
      impose the d-pruning criterion;
      impose the d-qualifying criterion to update flag;
      compute $TC(s'_1, s'_2, ..., s'_m)$;
    /* each $s_i$ corresponds to object $o_i$ */
  else
    if $\{o_1, o_2, ..., o_n\}$ is a HNOs set then
      return $\{o_1, o_2, ..., o_n\}$;
```

The algorithm begins with the root nodes of the R^c_1-tree, R^c_2-tree, ..., and R^c_n-tree and proceeds down the trees simultaneously. During the traversal of the n R^c-trees, a sorted list L is used to maintain information of the sets of n entries considered so far. Note that each set of n entries consists of either n MBRs or n objects. Each element of L stores a set $\{s_1, s_2, ..., s_n\}$'s information, in the form of $(\{s_1, s_2, ..., s_n\}, flag, TC(s_1, s_2, ..., s_n))$, where $flag$ indicates whether $\{s_1, s_2, ..., s_n\}$ must satisfy the constraint of distance d, and $TC(s_1, s_2, ..., s_n)$ refers to (1) the minimal total cost $TC_m(E_1, E_2, ..., E_n)$ if each s_i corresponds to a MBR E_i or (2) the total cost $TC(o_1, o_2, ..., o_i)$ if each s_i corresponds to an object o_i. The elements of L are sorted in ascending order of their $TC(s_1, s_2, ..., s_n)$. Initially, L only contains information of the set $\{s_1, s_2, ..., s_n\}$, where s_i corresponds to the root node of the R^c_i-tree, and its $flag$ and $TC(s_1, s_2, ..., s_n)$ are both set to 0. In each iteration, the first element of L (i.e., the set $\{s_1, s_2, ..., s_n\}$ whose $TC(s_1, s_2, ..., s_n)$ is the smallest among the sets in L) is retrieved. According to the entries comprising the set $\{s_1, s_2, ..., s_n\}$, there are two cases to be considered: (1) each entry s_i corresponds to MBR E_i and (2) each entry s_i corresponds to object o_i.

For the case that the set $\{s_1, s_2, ..., s_n\}$ consists of the n MBRs, each entry s_i is decomposed into its child entries, so as to construct the m sets of entries $\{s'_1, s'_2, ..., s'_1\}$, $\{s'_2, s'_2, ..., s'_2\}$, ..., $\{s'_n, s'_n, ..., s'_n\}$. Then, the following three steps are processed sequentially. The first step is to impose the d-pruning criterion on the m sets of entries. Once a set $\{s'_1, s'_2, ..., s'_i\}$ is pruned by the d-pruning criterion, it can be immediately discarded. Having checked the m sets of entries, the procedure proceeds to the next step, in which the remaining sets of entries are checked for the d-qualifying criterion to update their $flag$. If a set $\{s'_1, s'_2, ..., s'_i\}$ passes the d-qualifying criterion, its $flag$ is set to 1 (meaning that it must satisfy the constraint of distance d). Otherwise, its $flag$ is equal to 0. Note that $flag$ of all the remaining sets can directly be set to 1 without running the d-qualifying criterion when their parent set $\{s_1, s_2, ..., s_n\}$'s $flag = 1$. The third step is to compute the value of $TC(s'_1, s'_2, ..., s'_i)$ for each remaining set $\{s'_1, s'_2, ..., s'_i\}$. Then, each remaining set is inserted into the list L with its $flag$ and $TC(s'_1, s'_2, ..., s'_i)$.
For the case that each entry of the set \(\{s_1, s_2, ..., s_n\}\) is an object (i.e., an object set \(\{o_1, o_2, ..., o_n\}\)), the procedure consists of the following two steps. The first step is to determine whether \(\{o_1, o_2, ..., o_n\}\) is a set of HNOs by looking up its flag. If its flag is equal to 0, then the distance between any two objects is compared to the distance \(d\). Once the distance between a pair of objects exceeds the distance \(d\), \(\{o_1, o_2, ..., o_n\}\) is discarded and the next iteration starts by retrieving the first element of \(L\). Otherwise (i.e., flag = 1), \(\{o_1, o_2, ..., o_n\}\) must satisfy the constraint of distance \(d\). Only if \(\{o_1, o_2, ..., o_n\}\) is found as a set of HNOs, the procedure proceeds to the next step. In the second step, all of the elements in \(L\) can be pruned by the set \(\{o_1, o_2, ..., o_n\}\), based on the cost-pruning criterion. Finally, \(\{o_1, o_2, ..., o_n\}\) is reported as the query result and the MTCQ is terminated. Algorithm 2 describes the pseudo code for the enhanced MTCQ algorithm.

5. PERFORMANCE EVALUATION

In this section, we conduct three sets of experiments to measure the efficiency of the topk-based MTCQ algorithm and the enhanced MTCQ algorithm, by investigating the effects of three important factors on the performance of processing the MTCQ. These factors are the number of spatial objects, the number of object types (i.e., the value of \(n\)), and the value of distance \(d\). Moreover, we study the performance of the proposed methods using three real datasets. We first describe the performance settings and then show the experimental results with detailed discussions.

5.1 Performance Settings

All the experiments are performed on a PC with Intel 2.70 GHz CPU and 16GB RAM. The topk-based MTCQ algorithm and the enhanced MTCQ algorithm are implemented in JAVA. A synthetic dataset and three real datasets are used in our simulation. The synthetic dataset has \(n\) types of spatial objects (where \(n\) varies from 1 to 5). Each type of spatial objects contains \(O\) (ranging from 1K to 300K) objects whose locations are spread over a region of \(1,000,000 \times 1,000,000\) with uniform distribution. For the real datasets, the Beijing, Manchester, and Pittsburgh files (consisting of about 400K, 1000K, and 1200K objects, respectively) are obtained from the OpenStreetMap [22]. The cost of each object in synthetic and real datasets ranges between 100 and 2000. Based on the locations and costs of spatial objects, the \(R^1\)-tree, the \(R^2\)-tree, ..., and the \(R^n\)-tree, are built to index the \(n\) types of objects. In the experimental space, we randomly generate 30 query objects issuing the MTCQ, where the distance \(d\) changes from 0.01% to 5% of the entire space. The performance is measured by the average CPU time and the average number of node accesses of the \(R^e\)-trees in performing workloads of the 30 queries. To compare the performance of the proposed algorithms, we present a baseline algorithm to process the MTCQ, in which the \(m\) sets of HNOs are first determined by computing the distances between any two objects to compare with the distance \(d\), and then the HNOs set with the smallest total cost is returned as the query result. Table 1 summarizes the parameters under investigation, along with their default values and ranges.

5.2 Effect of Number of Objects

In this subsection, we measure the CPU time and the number of node accesses for the baseline algorithm, the topk-based MTCQ algorithm and the enhanced MTCQ algorithm under various numbers of spatial objects (varying from 1K to 300K). As shown in Fig. 4(a), using a logarithmic scale for the \(y\)-axis, the curve for the enhanced MTCQ...
Table 1. System parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of objects (K)</td>
<td>100</td>
<td>1, 10, 50, 100, 300</td>
</tr>
<tr>
<td>Number of object types</td>
<td>3</td>
<td>1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>Distance d (%)</td>
<td>0.1</td>
<td>0.01, 0.05, 0.1, 1, 5</td>
</tr>
</tbody>
</table>

algorithm first decreases and then increases with the increase of object number. This is because for a smaller number of objects, fewer object sets can satisfy the constraint of distance d, and thus more distance computations are required for finding the sets of HNOs. For the baseline algorithm and the topk-based MTCQ algorithm, the CPU time grows drastically because an increasing number of objects leads to more processing cost in finding the n sets of HNOs for the baseline algorithm and in determining the top-k objects (note that it is executed n times) for the topk-based MTCQ algorithm. Fig. 4(b) evaluates the node accesses for the three algorithms. All curves exhibit the increasing trends as a larger number of objects inevitably causes more index nodes to be accessed. Moreover, the experimental result shows a wide gap between the enhanced MTCQ algorithm and its competitors, confirming that using the one-time query evaluation efficiently improves the query performance.

![Fig. 4. Effect of number of spatial objects.](image)

5.3 Effect of Number of Object Types

The set of experiments shown in Fig. 5 demonstrates the performance (including the CPU time and the number of node accesses) of the proposed algorithms as a function of the number of object types (i.e., ranging n from 1 to 5). In the case that $n = 1$ (that is, considering only a single type of objects), the task of checking for the constraint of distance d is no longer needed. That is why the performance of the topk-based MTCQ algorithm is almost as good as that of the enhanced MTCQ algorithm in terms of both the CPU time and the number of node accesses. On the other hand, when n is larger than 1 (i.e., multiple object types are considered), the curves for the topk-based MTCQ algorithm grow rapidly, compared to the enhanced MTCQ algorithm. The reason is that in the topk-based MTCQ algorithm the repetitive executions are required and dominated by n, while the enhanced MTCQ algorithm is executed only once regardless of n. As for
the baseline algorithm, it yields the worst performance in terms of the CPU time and the node access, because all of the object sets have to be accessed for determining the m sets of HNOs.

5.4 Effect of Distance d

As shown in Fig. 6, the set of experiments is conducted to study how the user-defined distance d affects the performance of processing the MTCQ, by varying the distance d from 0.01% to 5% of the experimental space. As we can see, the curves for the enhanced MTCQ algorithm show that a larger distance d results in a lower CPU time (in Fig. 6(a)) and a less number of node accesses (in Fig. 6(b)) when the MTCQ is processed. This improvement can be attributed to the fact that for a smaller d, most of the object sets cannot be the sets of HNOs so that the enhanced MTCQ algorithm needs to access more index nodes and involve more distance computations of non-qualifying object sets. Conversely, a larger d increases the chance for each object set to be a set of HNOs and thus the MTCQ result could be determined early. The experimental results also illustrate that the performances of the baseline algorithm and the topk-based MTCQ algorithm are quite insensitive to the distance d, but still fall behind the enhanced MTCQ algorithm.

Fig. 6. Effect of distance d.
5.5 Performance for Real Datasets

In this subsection, three sets of experiments are conducted to investigate the performance of the proposed methods using three real datasets, the Beijing, Manchester, and Pittsburgh datasets (containing about 400K, 1000K, and 1200K objects, respectively). As shown in Fig. 7, as the Pittsburgh dataset has a larger number of objects (compared to the Beijing and Manchester datasets), it demands more computation time and accesses more index node in processing the MTCQ for both the topk-based MTCQ algorithm and the enhanced MTCQ algorithm. On the other hand, the Beijing dataset contains much fewer objects than the Manchester and Pittsburgh datasets, but incurs the slightly lower CPU cost and number of node accesses in comparison with the other two datasets. The reason is that the Beijing dataset has a denser object distribution so that it leads to more HNOs sets for the enhanced MTCQ algorithm and more processing time spent on finding the top-k objects for the topk-based MTCQ algorithm.

Fig. 7. Effect of number of objects on real datasets.

Fig. 8 and Fig. 9 study the effects of the number of object types and the distance \(d\) on the performance (in terms of CPU time and number of node accesses) of the enhanced MTCQ algorithm, respectively, for the Beijing, Manchester, and Pittsburgh datasets. The experimental results show that for the Pittsburgh dataset, the enhanced MTCQ algorithm consumes higher CPU time (shown in Fig. 8(a) and Fig. 9(a)) and requires more node...
accesses (shown in Fig. 8(b) and Fig. 9(b)), compared to the Beijing and Manchester datasets. This is expected because the Pittsburgh dataset contains more objects, enforcing it demands more computation time and accesses more index node for determining the HNOs satisfying the constraint of distance \(d \). As for the Beijing dataset, it has a better performance in all cases mostly because of its smaller cardinality. From the experimental results, we know that the enhanced MTCQ algorithm is also suitable for various real datasets.

6. CONCLUSIONS

In this paper, we focused on processing the MTCQ to find a set of HNOs with the lowest total cost. In order to efficiently process the MTCQ, the \(R^c \)-tree was used as the underlying index for managing the locations and costs of spatial objects. Then, the topk-based MTCQ algorithm and the enhanced MTCQ algorithm, combined with the \(R^c \)-tree, were proposed to retrieve the set of HNOs with the lowest cost in total. Comprehensive experiments demonstrated the efficiency of the proposed processing algorithms.

REFERENCES