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Due to the highly infectious and long incubation period of COVID-19, detecting 

COVID-19 efficiently and accurately is crucial since the epidemic outbreak. We proposed 
a new detection model based on U-Net++ and adopted dense blocks as the encoder. The 
model not only detects and classifies COVID-19 but also segment the lesion area precisely. 
We also designed a two-phase training strategy along with self-defined groups, especially 
the retrocardiac lesion to make model robust. We achieved 0.868 precision, 0.920 recall, 
and 0.893 F1-score on the COVID-19 open dataset. To contribute to this pandemic, we 
have set up a website with our model. https://medchex.tech/ 
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1. INTRODUCTION 

In December 2019, a cluster of pneumonia-like cases emerged in Wuhan, China. Soon 
after, it spread rapidly throughout China causing an epidemic, followed by an increasing 
number of cases in almost every country throughout the world. In February 2020, the 
World Health Organization (WHO) designated the disease COVID-19, which stands for 
coronavirus disease in 2019. The pathogenic virus COVID-19 is named SARS-CoV-2 
short for severe acute respiratory syndrome coronavirus 2, because of its phylogenetic sim-
ilarity to the SARS virus, which also caused an epidemic in 2003; previously, it was re-
ferred to as 2019-nCoV [1]. 

SARS-CoV-2 is a member of the coronavirus family that causes severe illness in hu-
mans. This virus is very contagious due to the nonspecific symptoms like cough, fever, 
and mild dyspnea similar to the common cold caused by other respiratory viruses. COVID-
19 is an ongoing pandemic. Until August 1, 2020, 17,396,943 cases had been reported in 
over 200 countries with 675,060 deaths (approximately 3.88 % case fatality rate) [2]. Even 
though the Reverse Transcription-Polymerase Chain Reaction (RT-PCR) test serves as the 
gold standard of diagnosing COVID-19, chest X-ray (CXR) is one of the more easily ac-
cessible clinical screening tools available with low cost and high efficiency. Furthermore, 
previous research on detecting COVID-19 on CXR images usually focused on classifying 
COVID-19, other pneumonia, and normal lung [3]. Results would only show which group 
they are, but they were not useful clinically. If we want to apply it online to assist 
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physicians or other frontline staff to screen for COVID-19, the model would be much more 
explainable. Hence, many studies utilize class activation map (CAM)-based approaches to 
visualize the significant features of the diseased position [4]. However, we found that the 
patterns of pneumonia are difficult to detect accurately by solely depending on CAM; like-
wise, physicians find it hard to discriminate against pneumonia caused by other pathogens 
and COVID-19. In this paper, we designed a COVID-19 detection model on CXR images 
and tried to apply it to clinical usage. The model we proposed, MedCheX, not only can 
classify COVID-19, diseased lung patterns, and normal images but also can segment lesion 
areas for visualization. Moreover, MedCheX won the COVID-19 Global Hackathon as a 
highlight project [5]. 

2. RELATED WORK 

2.1 Deep Learning in Medical Images 

Convolution Neural Network (CNN) has worked well on computer vision tasks since 
2012 [6]. Recently it was proved that CNNs also did great at complicated tasks which 
human needs professional training for years such as distinguishing diseased images from 
healthy ones on computed tomography (CT) and CXR or segmenting lesion areas [7]–[9]. 

At present, the available architectures for medical image segmentation are almost in-
spired by the well-known fully convolutional neural network (FCN) [10] or U-Net [11]. In 
FCN, there is no classic fully connected layer, which often is implemented for classifica-
tion but full of convolutional layers. At the last layer, FCN takes a single step of upsam-
pling to recover the original resolution for dense pixel prediction. In contrast, U-Net joints 
convolutional layers with pooling layers and upsampling layers to create contractive and 
expansive paths. Skip connections are implemented to leverage intermediate feature maps 
and merge contractive and expansive features. Recently, many extensive models have been 
proposed to solve medical image tasks based on these two network architectures. We built 
our own model by taking them as references [12], [13]. 

2.2 Deep Learning for Detecting COVID-19 

Applied deep learning tools for detecting COVID-19 is pivotal since the epidemic 
outbreak. Deep learning researchers had approved that the CNN model could classify lung 
lesion patterns very well [14] Hence, investing resources in researching exerting CNN de-
tection ability to help fight against the pandemic is momentous. 

Ali et al. used ten well-known CNN models to classify COVID-19 and non-COVID-
19 on CT images and in the methods for the detection of lung abnormalities, particularly 
in the early stages of the disease [15]. However, with the increasing number of hospitali-
zations and intensive care unit (ICU) admissions, frequent CT scans are unrealistic. 
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Therefore, Borghesi et al. were trying to use CXR imaging for monitoring patients with 
confirmed infection [16]. Even though CXR is considered not sensitive enough for the 
detection of early-stage lung diseases. During this COVID-19 pandemic, many studies had 
shown uplifting results on CXR images with deep learning models [3], [4], [7]. 

2.3 Attention Mechanism 

  Attention can be interpreted as a mechanism of biased towards the most informa-
tive components of a signal, just like humans attend important information while reacting. 
Attention mechanism has demonstrated its utility across many tasks including text transla-
tion, sequence localization, understanding in images, and image captioning. In these appli-
cations, it can be implemented in every part of a network you want to attend just like a 
plug-in device. Some studies proposed spatial or channel attention in image tasks and 
achieved good performance [17], [18]. 

3. METHODOLOGY 

To achieve our goal of detecting COVID-19, we proposed a new model and well-
designed lesion segmentation label groups. In this section, we will introduce our proposed 
model in detail. The overall architecture is shown in Figure 1. The pneumonia detection 
model is based on U-Net++ [13] and utilized dense block to be the encoder backbone. We 
also added the squeeze-and-excitation block [19] into the model to generate more efficient 
features in the decoder. Skip connections are constructed to feed previous feature maps 
into the next convolutional block. 
 

Fig. 1. Overview of MedCheX model architecture 
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3.1 Overview of Detection Model 

We proposed a new model, MedCheX, for detecting COVID-19 by distinguishing 
patterns from other lung diseases and normal CXR images. As mentioned in section 2, 
FCN and U-Net are well-known architecture for designing medical image segmentation 
models. However, they could lose significant information during the downsampling and 
upsampling processes even though skip connections could compensate for the drawbacks. 
Consequently, we designed our model on U-Net++ which improved feature extraction and 
reusability on the skip connections. Furthermore, we adopted dense blocks as encoder 
backbone. The dense blocks as shown in Figure 2 are adopted from DenseNet [20] and 
were also used by Jegou et al in Tiramisu [21] which directly connects every layer within 
the block in a feed-forward fashion. Even then the network will be more accurate. In addi-
tion, the convolution blocks as shown in Figure 1 are constructed by two 3x3 convolutional 
layers. Each layer passed through group normalization [22] and then activated by ReLU 
functions [23]. 

To make a model which utilizes feature maps efficiently and accurately. Hu et al. 
proposed Squeeze-and-Excitation (SE) blocks [19]. It’s an attention architectural unit de-
signed to improve the representational power of a network by enabling it to perform dy-
namic channel-wise feature recalibration. As shown in Figure 2, the squeezing part lever-
aged the weights to do the weighted sum, then produce new feature maps. SE blocks can 
be applied to our model directly and are also computationally lightweight and impose only 
a slight increase in model complexity and computational burden. Therefore, we added SE 
blocks to MedCheX. 

 

Fig. 2. This figure shows how to add the SE-block into the residual convolutional block. After ob-
taining the U, we utilized the global average pooling in Fsq to get the global information 
from each feature map. We adopted two fully connected layers with ReLU and sigmoid 
function to apply the non-linear transformation to attention information in Fex. We then mul-
tiplied the attention weight, produced by Fex, to feature map U to obtain the more efficient 
features X’ in Fscale. 

3.2 Training/Test Protocol 

We designed a two-phase training strategy. During phase 1, we used pneumonia CXR 
images collected from quarantine station at National Cheng Kung University Hospital in 
Taiwan to train a pneumonia classifier model. We used Adam [24] optimizer with an initial 
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learning rate 0.0001 along with 0.1 decay every 20 epochs. Our goal was to train a model 
that could classify pneumonia accurately. Moreover, according to the concept of big suc-
cess in fine-tuning on transferring a pre-trained model for downstream tasks [25]. In phase 
2, We then transferred our pre-trained pneumonia classifier to the COVID-19 dataset for 
fine-tuning to distinguish COVID-19 from pneumonia with a lower learning rate along 
with cosine annealing. Further, we implemented data augmentation while training in two 
phases by computer vision methods. 

3.3 Model Predictions 

The model, MedCheX, will predict two different kinds of patterns including pneumo-
nia and retrocardiac. Thus, we set two 5x5 convolutional kernels with sigmoid activation 
function at the last layer in the model for predicting the probability of groups and creating 
masks for three groups respectively. We trained our model by using the Binary Cross En-
tropy (BCE) and then minimized the loss function as followed: 

ℒ!"#$% = − &
'×)

∑ ∑ 𝑦*,, × 𝑙𝑜𝑔*𝑦+*,,, + *1 − 𝑦*,,,)
,-.

'
*-. × 𝑙𝑜𝑔*1 − 𝑦+*,,,       (1) 

where the N and M denote the height and width of the input image and the 𝑦*,, presents 
the target information and 𝑦+*,  shows the predicted value of this pixel. Moreover, we 
adopted deep supervision [26] to adjust the features start from the early step by utilizing 
the loss L1 to L4 shown in Figure 1. All of the loss values followed (1) to minimize the loss 
function, after that we applied the widely-used optimization method, Adam [24], to opti-
mize the model. Thereafter, we detected pneumonia and normal lung by the strategy as 
shown in (2) when we obtained the prediction mask 𝑥/ from the model, where the θ is a 
threshold to divide the normal and diseased lung, and we set it to 0.5 in this study. 

𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑(𝑥′	; 𝜃) = =1, 𝑖𝑓	𝑚𝑎𝑥(𝑥) 	≥ 	𝜃
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 						              (2) 

As mentioned previously, for applying our model to detect the COVID-19, we took 
advantage of transfer learning to extend our model to predict one more mask for COVID-
19. If the model predicted pneumonia and COVID-19 masks with a confidence score 
greater than 0.5 simultaneously, we would consider this result as the COVID-19 group. 
But for describing clearly, we show all masks on our website platform. 

4. EXPERIMENTS 

In this section, we will describe how we construct our dataset and experiment results. 

4.1 Data Collection 

To protect the patients’ privacy, we anonymize all the private information of patients 
during dataset construction. For our task, we collected overall 2497 chest X-ray images at 
National Cheng Kung University Hospital in Taiwan. All of our data are interpreted by 
professional radiologists who helped us to identify the lesion area and segment it on images 
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as shown in Figure 3. We divided the segmented labels into 3 groups: (a) Diseased lung 
group: We clustered ground-glass opacity (GGO), and consolidation patterns that were not 
infected by COVID-19. (b) Retrocardiac group: Physicians labeled specific patterns which 
behind the cardiac area. (c) COVID-19 group: This group data was an open-source at 
GitHub*, which collected 237 COVID-19 infection confirmed images. 

 
Fig. 3. This figure shows different label groups: (1) Consolidation (2) Ground-glass opacity. (3) 

Retrocardiac. 

4.2 Metrics 

Sensitivity, specificity, and accuracy were employed to evaluate the performance of 
the pneumonia classification model in phase 1. Besides, due to a lack of negative samples, 
we adopted precision, recall, and F1-score as metrics for assessing the ability to distinguish 
COVID-19 from pneumonia in phase 2. The formula of metrics is listed below: 
(TP: True Positive; TN: True Negative; FP: False Positive; FN: False Negative) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 	'".		"2	*!34$5	6"77$68%9	6%355*2*$#
:"83%	;"."2	*!34$5

               (3)  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	𝑅𝑒𝑐𝑎𝑙𝑙	 = :<
:<=>'

                   (4)  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	 :'
:'=><

	                      (5)  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 = :<
:<=><

                       (6)  

𝐹1 − 𝑠𝑐𝑜𝑟𝑒	 = 	 ?	∗	<7$6*5*";	∗	A$63%%
<7$6*5*";	=	A$63%%

                   (7)  

* https://github.com/ieee8023/covid-chestxray-dataset 
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4.3 Results 

At phase 1 training, we got 94.1% sensitivity, 95.1% specificity, and 94.6% accuracy 
on training set; 83.6% sensitivity, 82.2% specificity, and 82.5% accuracy on the test set 
for classifying pneumonia and non-pneumonia lung as shown in Table 1a and 1b. We find 
that our model can classify pneumonia and normal lung accurately. During phase 2, we 
transferred our model to finetune on the COVID-19 dataset. We achieved 0.868 precision, 
0.920 recall, and 0.893 F1-score as shown in Table 2. Due to a lack of negative samples, 
we did not calculate specificity and choose other metrics for evaluation. 
 
Table 1a. This table shows the phase1 training results. 

Phase 1 Training Data   Acc=0.946 

 Present Num. Absent Num. Total 

Positive True Positive 685 False Positive 34 719 

Negative False Negative 43 True Negative 658 701 

Total  728  692 1,420 

Sensitivity 0.941 Specificity 0.951 

 
Table 1b. This table shows the phase 1 test results. 

Phase 1 Test Data   Acc=0.825 

 Present Num. Absent Num. Total 

Positive True Positive 46 False Positive 182 228 

Negative False Negative 9 True Negative 840 849 

Total  55  1,022 1,077 

Sensitivity 0.836 Specificity 0.822 

 
Table 2. This table shows the phase 2 evaluation results after fine-tuning. 

Phase 2 Evaluation Results   F1-score=0.893 

 Present Num. Absent Num. Total 

Positive True Positive 46 False Positive 7 53 

Negative False Negative 4 True Negative 0 4 

Total  50  7 57 

Precision 0.868 Recall 0.920 

 
In figure 4, we show the predictions by phase 1 pneumonia classifier. From left to 

right are (a) original image, (b) pneumonia lesion including GGO and consolidation, and 
(c) retrocardiac lesion. We use different colors to display predictive probability. 
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Fig. 4. This figure shows pneumonia classifier predictions in phase 1. 
 
    In Figure 5, we show two set of predictions by phase 2 COVID-19 detector. From left 
to right are (a) original image, (b) pneumonia lesion including GGO and consolidation, (c) 
retrocardiac lesion, and (d) COVID-19. We use different colors to display predictive prob-
ability the same as Figure 4.  

Fig. 5. This figure show COVID-19 detector predictions in phase 2. 
 

As shown in Figure 4 and 5, our model can predict pneumonia and COVID-19 re-
spectively and accurately, even though COVID-19 patterns were to some degree the same 
similar to pneumonia caused by other pathogens. 

4.4 Comparison 

For proving the robustness of our model, we also conducted some experiments to 
compare our proposed model to other baseline models on the same phase 2 evaluation 
COVID-19 images. We trained another two models, which utilize respectively original U-
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Net++ and U-Net++ with SE block as the backbone. The results are shown below in Table 
3: 
Table 3. This table shows the comparison results with other models. 

Models TP FP FN Precision Recall F1-score 
Original U-Net++ 39 11 7 0.78 0.848 0.813 
U-Net++ / SE block 44 8 5 0.846 0.898 0.871 
Ours (U-Net++/ SE 
/Dense block) 

46 7 4 0.868 0.920 0.893 

As shown in Table 3, our model achieved the best results in all metrics evaluations. 
Although there was little performance gain from the Dense block, we still glad to see the 
increase in recall as we focus that during screenings. 

5. DISCUSSION 

    There were still some limitations in our model. First, the small sample size warrants 
further investigation. More enrollment will likely improve the robustness of our model. 
Second, artifacts such as blurred lesions or ground-glass opacities would influence model 
performance. Moreover, from the professional aspect of physicians, although not much 
differences between pneumonia and COVID-19, we could moderate how deep learning 
model works by applying CAM heatmaps. There is still limited evidence for clinical usage. 

6. CONCLUSIONS 

Early-stage diagnosis and treatment of COVID-19 are essential during this pandemic. 
In this paper, we proposed an efficient COVID-19 detection model based on U-Net++, 
which distinguishes COVID-19 patterns from pneumonia caused by other pathogens ac-
curately. Due to the limitations mentioned in section 5, we will collect more data for further 
training. Also, we have plans on modifying our model to a two-stage classifier and seg-
mentation mask generator to make it more robust. 
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