
Journal of Information Science and Engineering XX, XXXX-XXXX (2016)

Escher-like Tiling Design from Video Images
Using Convolutional Variational Autoencoder ∗

Asuka Hisatomi1, Tomofumi Matsuyama1, Takahiro Kinoshita1,
Kazunori Mizuno2, Satoshi Ono1

1Department of Information Science and Biomedical Engineering,
Graduate School of Science and Engineering, Kagoshima University

1-21-40, Korimoto, Kagoshima, 890-0065 Japan
E-mail: {mc116029;sc114063;sc115015;ono;}@ibe.kagoshima-u.ac.jp

2Department of Computer Science, Faculty of Engineering, Takushoku University
815-1 Tatemachi, Hachioji-shi, Tokyo 193-0985 Japan

E-mail: mizuno@cs.takushoku-u.ac.jp

This paper proposes a method that deforms a prominent movie or animation

character into a tileable shape. Tiling is the act of covering the plane with one

or a very few types of figures without overlaps and/or gaps. Although some

previous methods can transform a given shape into a tileable shape, they

cannot easily move the character into a suitably tileable pose. The proposed

method learns the latent feature space that abstracts the target character’s

silhouettes using a convolutional variational autoencoder, and looks for the

poses suitable for tiling by optimization in the latent space. Experimental

results showed that the proposed method successfully generated tileable figures

of the tested character in various poses, some of which were not included in

the training dataset.
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1. INTRODUCTION

Tiling, or tessellation, smoothly covers a plane with one or a very few types of
geometric figures [1], as shown in Fig. 1. A figure is called a tileable figure (or tile)
if its copies — duplicated only by translation, rotation, and reflection — can cover
the entire plane with no gaps and/or overlaps. In many artworks, archetypically
represented by M. C. Escher’s works, titles are formed from complicated concavo-
convex and irregular shapes.

Various artificial objects, such as textured walls, ceilings, and the floor surfaces
of buildings, are tiled to improve their decorativeness. Moreover, tiles can cover
areas of various sizes with a repeating pattern. Besides graphics and texture
design, tiling is applied in modern designs of physical objects such as cushions and
coasters. Fig. 2(a) shows some cushioning materials composed of sponges. An
object with a meaningful shape is more likely to be retained and reused than an
object of simple shape like a cube. Fewer discarded items in landfills reduce the
environmental impact of modern living. As another example, the wooden coasters
shown in Fig. 2(b) can be connected into a larger object, which can be used as
a pot stand. Fig. 2(c) shows an application of tiling to confectioneries such as
chocolates, cookies, snacks, and jellies.
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(a) Input figure

(b) Tileable figure (c) Tiled figures

Fig. 1. Tileable shape design.

(a) Cushioning materials1. (b) Coaster and pot stand.

(c) Cookies [2]

Fig. 2. Tiling application examples.

1) Input figure 2) Tileable figure 1) Input figure 2) Tileable figure

(a) Example 1 (good). (b) Example 2 (bad).

Fig. 3. Example of the influence from input figure.

A major application of tiling is the conversion of prominent characters in
movies and animations into tiles. These tiles are available for interior decorations
such as wallpapers and floorings of amusement parks and their associated official
hotels. In addition, cookies shaped as major characters are popularly sold at
amusement parks. Tileable shapes bring added value to confectioneries, as they
can be constructed like puzzles and can be packaged without breaking their shape.
As mentioned above, technologies that create tileable shapes of given characters
can increase the value and attractiveness of consumer products.

However, transforming a character with complex contours into a tileable shape
is a difficult task. Kaplan formulated the problem of designing a tileable shape [3]
as an Escherization problem. The Escherization problem has been solved by
various methods, which are broadly categorized into analytical optimization ap-
proaches [4,5] and meta-heuristics-based approaches [6,7]. These methods aim to
obtain a tile similar to the given shape, but shapes with imbalanced convex and
concave parts are not easily transformed into a tileable shape. This difficulty stems
not from the methods but from the problem itself; for example, the tileable trans-
formation of a circle is a hexagon, which does not resemble the original shape.
Therefore, when translating a character into a tileable shape, some poses defy
transformation into a tileable figure by any method, as shown in Fig. 3. Finding
the poses of a target character suitable for tiling then becomes vitally important.

This paper attempts to generate tile-transformable character images from
video recordings. The proposed method combines a Convolutional Variational

1http://www.sanodesign.jp/cushion/Cushion_san.html
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Auto-encoder (Conv-VAE) [8] with optimization in the latent space obtained by
the Conv-VAE. After learning low-dimensional feature space of the target char-
acter’s pose from the target character image set by Conv-VAE, the method can
generate character images that are not included in the given image set. The pro-
posed method first trains Conv-VAE on images extracted from videos, and then
optimizes the latent variables to generate pose images suitable for tiling. Experi-
mental results showed that the proposed method generated posed images that were
absent from the training set, identified images suitable for tiling, and generated
tileable figures of the target character.

2. RELATED WORK

2.1 Escher-like tiling problem

This study focuses on isohedral tilings, in which all tiles are congruent, i.e., a
figure covers the entire two-dimensional (2D) space (or plane). The tileable-shape
design problem is formulated as the following Escherization problem [3]:

Problems (“ESCHERIZATION”): Given a closed plane figure W (the ‘goal
shape’), find a new closed figure U such that:

1. U is as close as possible to W , and

2. the copies of U fit together to tile the plane.

Only three types of regular polygons can fill a plane: regular triangles, squares,
and regular hexagons. Moreover, there are a finite number of patterns for copying
the tile to cover the plane, if the operation for copying the tile is limited to three
types of transformations: translation, rotation and reflection. Such patterns are
called tiling patterns (TPs), and isohedral tiling admits 93 TPs [9]. Each TP
encodes information on the constraint of a tile shape by its adjacencies.

Fig. 4 shows examples of TPs. Pattern IH01, shown in Fig. 4(a), is composed
of hexagons with the three pairs of parallel sides that have the same shape. Note
that each hexagon side is not necessarily a straight line and can be deformed under
the constraints, i.e., IH01 contains three deformable sides and the remaining are
copies of them. Pattern IH16, shown in Fig. 4(b), is composed of hexagons with
four equal-shape adjacent sides, two equal-shape adjacent sides, and three of the
six angles equal to 120 degree.

2.2 Escher-like tiling methods

Various methods have been proposed to deform a given image into a tileable
shape, which can be categorized into analytical optimization approaches and meta-
heuristic-based approaches.

The analytical optimization approach was originated by Koizumi and Sugi-
hara [4,5]. They formulated the Escherization problem as an eigenvalue problem to
be solved by analytical optimization. This method calculates the vertex positions,
and constructs a tileable shape by minimizing the sum of square distances between
the corresponding vertices of an input polygon and a generated tile. The solution is
guaranteed to satisfy the edge-matching constraint, which stipulates that all corre-
sponding edges shared between two adjacent tiles have the same shape. However,
this method is sensitive to the given vertices of the input figure. Minute differences
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(a) IH01 (b) IH16

Fig. 4. Example tiling pattern:
IH01 and IH16.
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Fig. 5. Structure of the proposed method and rela-
tionship with the previous studies.

in the vertices can drastically alter the shape of the output figure [10]. Addition-
ally, the segments of the output figure sometimes intersect (self-intersection). To
alleviate these problems, Imahori et al. introduced weights that prioritize part of
the given figure [11]. Nagata et al. improved Koizumi’s algorithm (which assigns
the same number of vertices to all tiling edges) by arbitrarily assigning vertices
to the tiling edges [12]. These methods have resolved some of the problems in
Koizumi’s method, enabling the generation of complex tiles.

The second approach, meta-heuristics, was pioneered by Kaplan who directly
deformed a tile shape using Simulated Annealing [3] Ono et al. proposed a Ge-
netic Algorithm (GA)-based method that also manipulates tile shapes [6,7]. Both
formulations guarantee that the produced figure satisfies the edge-matching con-
straint; however, due to the enormous search space of the Escherization problem,
the tiles produced by these methods are less concavo-convex than those generated
by analytical optimization.

Hisatomi et al. proposed a hierarchical optimization method named
ELTHON, which combines the two approaches to alleviate their drawbacks, i.e.,
the need for repetition adjustment of the input figure and the self-intersection
avoidance in the analytical optimization approach, and the insufficient search per-
formance of the meta-heuristics approach [10, 13, 14]. By employing Koizumi’s
method in its lower-layer optimizer, ELTHON efficiently produces tiles satisfying
the edge-matching constraint that are similar to the given goal shape. Mean-
while, the GA in the upper-layer optimizer finds the optimal set of vertices and
inputs a suitable TP to the lower-layer optimizer. In addition, ELTHON adopts a
bidirectional-mapping-based shape-similarity distance function, allowing the gen-
eration of tiles with complex shapes.

2.3 Convolutional Variational Autoencoder

Autoencoders (AEs) are types of Neural Networks (NNs) for data coding in
unsupervised learning scenarios. A canonical AE learns feature representations
of a given dataset [15], whereas a Variational Autoencoder (VAE), which is a
deep generative model proposed by Kingma [16], learns the complex distributions
underlying the given data. Similarly to AEs, VAEs involve encoder and decoder
part AEs, but VAEs assume that the samples in the training set are generated
from the distribution.
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The encoder network of VAE aims to find the distribution of the dataset in
the latent space. The distribution is typically modeled by a diagonal Gaussian,
whose mean and variance are output from the encoder. The decoder network
reconstructs the data points from the input points of the latent representation,
which define the conditional data distribution.

A Conv-VAE is a VAE whose encoder and decoder include convolution and
deconvolution layers, respectively [8]. Similarly to VAE, Conv-VAE forms a latent
variable space in which the decoder can reconstruct continuously changing data
points.

3. THE PROPOSED METHOD

3.1 Key ideas

This paper proposes a method that finds a tile-designable character pose from
video images. Besides selecting character images suitable for tiling from video
frames, the method generates character images with poses that are absent in the
given image set. To solve these problems, the proposed method develops two key
concepts:

Idea 1: Learning the latent representation of character images: Using Conv-
VAE, the proposed method learns the latent representation of the target
character images. Conv-VAE represents the features of the target character
images by their lower-dimensional latent features, and continuously deforms
the character by changing the values of latent variables.

Idea 2: Optimization in the latent variable space: To find the character poses
suitable for tiling, the proposed method optimizes the variables in the latent
space. Various poses are generated by a self-adaptive Differential Evolution
(jDE) [17] algorithm that gradually converges while keeping the population
diversity comparable to that of the state-of-the-art meta-heuristics. The
decoded character-pose images are passed to ELTHON tiling design method,
which manipulates their contour shapes into tileable shapes. The generated
tiles are then evaluated if they maintain their original characteristic shapes
and poses.

Fig. 5 shows the structure of the proposed method and the relationship be-
tween the proposed method and ELTHON [14]. The proposed method inputs the
video images involving a target character to be transformed into a tile, whereas
ELTHON inputs an image of the target character contour (or its silhouette).
Therefore, the proposed method can be regarded as a hierarchical optimization
architecture with three layers: an upper-layer for character-pose generation, a
middle layer for character-contour modification, and a lower-layer for transforma-
tion into tiles.

Note that the proposed method only produces the silhouettes (or contours)
of the target character. Internal character images are ignored because the most
difficult problem of Escher-like tiling is designing the tile contour; once the contour
is generated, its interior is easily filled in by human illustrators.



6 A. Hisatomi et al.

Comment #1

Semantic segmentation

Character extraction 

using k-NN

Training Conv-VAE

Generate initial population

Image reconstruction 

using Conv-VAE

Tile generation 

using ELTHON [14]

Evaluation

Check stop condition

Population reproduction

Learning phase Tile generation phase

Input video images

Tiles

Conv-VAE

Solution candidate 

reproduction

Initialization

Solution candidate evaluation

Select constraint matrix ��

according to tiling pattern

Calculate orthogonal 

matrix � from ��� � �

Calculate tileable shape 

� � ��
�
�

The upper layer The middle layer (ELTHON [14]) The lower layer [4, 5]

Fig. 6. Process flow of the proposed method.

3.2 Process flow of the proposed method

The proposed method consists of two phases: learning and tile generation, as
shown in Fig. 6. In the learning phase, the proposed method trains Conv-VAE
on silhouette images of the target character extracted from the given videos. To
obtain tileable shapes of the target character, the proposed method ignores the
interior of the target character region as mentioned above. After training Conv-
VAE, the proposed method tries to generate character images with poses appro-
priate for tiling. Comment #1 The middle and lower layers, which correspond

to ELTHON [14], generate the tileable shapes in the third step of the generation
phase.

At the beginning of the learning phase, the proposed method applies a se-
mantic soft segmentation method [18] to video frames. The segments of the target
character in Tf frames are then manually labeled, and the segments of that char-
acter in the remaining video frames are automatically extracted by a simple k-NN
classifier that uses the HSV color histogram as features. The frames involving the
extracted character segments are then translated into black and white silhouette
images, and the character segments are trimmed and resized into Pt × Pt pixels,
forming the training dataset for Conv-VAE. Some training images obtained by
the above processes are shown in Fig. 7. Next, the proposed method trains the
Conv-VAE on the character silhouette images. Because Conv-VAE can be trained
without supervised information, the only manual work in the training process is
labeling the character segments in the Tf video frames.

In the generation phase, the proposed method seeks the appropriate values of
the latent variables that produce the target character-poses suitable for tiling. As
shown in Fig. 6, the generation phase is based on a meta-heuristics algorithm, i.e.,
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Fig. 7. Training image examples for Conv-VAE generated in the learning phase.
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Fig. 8. Network structure of Conv-VAE the proposed method uses.

repetition of solution candidate generation and evaluation. Because the optimiza-
tion variables are latent variables learned by Conv-VAE, the character images are
decoded by the decoder network. In the proposed method, the generated character
images are converted into tiles by ELTHON, but any previous method that solves
the Escherization problem is applicable. We employed ELTHON because it de-
forms the character contour, enabling the transformation into a tile with similarity
to the given shape. After evaluating the obtained tiles, new solution candidates are
generated. The above processes are repeated until the stop condition is satisfied.

3.3 Network structure and training of Conv-VAE

Fig. 8 shows the network structure of the Conv-VAE employed by proposed
method. The encoder network contains two convolutional layers followed by a
fully connected layer. All layers use a rectified linear activation function. The
fully connected layer outputs the mean µ and variance σ, which are constructed
into a latent vector z for input datapoint x as follows:

z = µ+ σ ⊙ ϵ, where ϵ ∼ N (0, I) (1)

where ⊙ denotes an element-wise product, and Comment #2 N is a Gaussian
distribution. The structure of the decoder network opposes the encoder structure,
i.e., a fully connected layer followed by three deconvolution layers. The above
encoder-decoder network reduces the number of feature dimensions. The number
of dimensions of the latent space is denoted as Dl.

Conv-VAE in the proposed method is trained by the standard VAE training
approach [16]. The parameters ϕ and θ of the encoder and the decoder, respec-
tively, are optimized by maximizing the marginal log-likelihood pθ(x). That is,
the training minimizes Comment #2 the loss function L(θ,ϕ;x) :

L(θ,ϕ;x) = −DKL (qϕ(z|x)||pθ(z)) + Eqϕ(z|x)[log pθ(x|z)] (2)

Comment #2 where DKL and Eqϕ
denote the Kullback-Leibler (KL) divergence

and expectation, respectively. The probabilistic encoder qϕ(z|x) is assumed as
a multivariate Gaussian with the following diagonal covariance structure:

log qϕ(z|x) = logN
(
z;µ,σ2I

)
(3)
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In the second version of the estimator proposed in [16], the KL divergence can be
computed and differentiated without estimation as follows:

L(θ,ϕ;x) ≃ 1

2

Dl∑
d=1

(
1 + log((σd)

2)− µ2
d − σ2

d

)
+

1

L

L∑
l=1

log pθ(x|z(l)) (4)

where µd and σd are the d-th elements of µ and σ, respectively, and θ and ϕ are
simultaneously optimized using the gradient of eq. (4).

3.4 Optimization in the latent space

The proposed method creates character images with poses that are suitable
for tiling by optimization in the latent space. The obtained images are not nec-
essarily included in the given video images. The variables to be optimized are
Dl-dimensional latent variables z, and the objective function Flo to be minimized
is the weighted sum of the shape-similarity distances between the character shape
W (z) generated by the Conv-VAE decoder and the transformed tile shape U(z)
and the shape complexity of U(z):

Flo(z) = γFBM (U(z),W (z)) + (1− γ)FC (U(z)) + ρ (w(z)) . (5)

where U(z) denotes a tile obtained from the latent variables z, FBM is
the bidirectional-mapping-based shape-similarity distance function applied in
ELTHON [14], and Comment #2 γ is a weight parameter (0 < γ < 1). The

function FC(U(z))assesses the shape complexity as follows:

FC(U(z)) =
l(U(z))

2
√
S(U(z))π

(6)

where l(U(z)) and S(U(z)) are the outline length and area of U(z), respectively.
FC(U(z)) computes the length ratio of the circumference of U(z) to the circumfer-
ence of a circle having the same area as U(z). This function avoids the generation
of tiles with excessively simple shapes. ρ(W (z)) is a penalty function that returns
penalty values when W (z) violates the following tow constraints: “W includes
no large blurred areas,” and “the number of contiguous regions in W is unity.”
Accordingly, ρ(W (z)) is calculated as

ρ(W (z)) = ρblur(W (z)) + ρcont(W (z)) (7)

ρblur(W (z)) =

{
Vblur if var(L(W (z))) < Rblur

0 otherwise
(8)

ρcont(W (z)) =

{
Vcont if Narea(W (z)) > 1
0 otherwise

(9)

where var(L(W (z))) denotes the variance of the Laplacian of W (z) [19,20], and
Narea(W (z)) denotes the number of contiguous regions in W (z). Comment #2

Vblur and Vcont are penalty values corresponding to the first and second constraints,
respectively, and Rblur is a threshold.

The proposed method employs jDE [17] that includes a simple self-adaptation
mechanism, whereby each solution candidate has its own control parameters (scale
factor SFi and crossover rate CRi) rather than unified parameters that are shared
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by the whole population. With the probability of RSF and RCR in each genera-
tion, jDE randomly changes the values of the control parameters within specified
ranges. Although the convergence speed of jDE is slower than other self-adaptive
meta-heuristics such as JADE [22], SHADE [23, 24], and the covariance matrix
adaptation evolutionary strategy [25], wide upper and lower limits of parameters
SFi and CRi allows good convergence properties of jDE by maintaining population
diversity (facilitating escape from local optima) [21].

Fig. 9 shows the pseudo-code of the proposed optimization method in

the latent space using jDE. In the first step, all solution candidates z
(0)
i =(

z
(0)
i,1 , z

(0)
i,2 , . . . z

(0)
i,Dl

)
(i ∈ {1, . . . , Np}) are initialized to uniform random values.

The scale factors SF
(0)
i and crossover rates CR

(0)
i for each candidate i are initial-

ized to random numbers within the rages [SFL, SFU ] and [0, 1], respectively. A

set of all solution candidates in generation g comprises the population P (g) of that
generation. After generating initial population P (0), all candidates are evaluated

by calculating Flo(z
(0)
i ) for i ∈ {1, . . . , Np}. In this calculation, z

(0)
i is input to

the decoder network of Conv-VAE to obtain W (z
(0)
i ), then ELTHON is applied

to W (z
(0)
i ), eq. (5) is calculated using the obtained tile U(z

(0)
i ).

The main loop of jDE (lines 4 through 10 in Fig. 9) iterates the parameter
update, population reproduction, and evaluation. The parameters SFi and CRi

of solution candidate i are updated as follows:

SF
(g+1)
i =

{
SFL + SFU · r1 if r2 < RSF

SF
(g)
i otherwise

(10)

CR
(g+1)
i =

{
r3 if r4 < RCR

CR
(g)
i otherwise

(11)

where rj are uniform random values in the range [0, 1], and RSF and RCR are
probabilities of changing SFi and CRi, respectively. SFL and SFU determine the
ranges of the scale factor.

After updating SF
(g)
i and CR

(g)
i , jDE reproduces the solution candidates

using the mutation and crossover operators, which are applied to all solution can-

didates. The mutation produces a mutant vector v
(g)
i depending on the DE strate-

gies, such as “DE/rand/1” and “DE/best/2”. The proposed method employs the

most popular “DE/rand/1” mutation strategy, which produces ν
(g)
i by the follow-

ing equation:

ν
(g)
i = z(g)

r5 SFi(z
(g)
r6 − z(g)

r7 ) (12)

where r5 ̸= r6 ̸= r7. Subsequently, the trial vectors τ
(g)
i are generated through the

crossover operator. In general DE, two popular crossover methods are mainly used:
binomial and exponential crossover, and this study employs binomial crossover as
follows:

τ
(g)
i,d =

{
ν
(g)
i,d if r8,d ≤ CRi or d = drand

z
(g)
i,d otherwise

(13)

where τi,d, νi,d, zi,d are Dl-th elements of target vector τ i, mutant vector νi, and
i-th solution candidate zi, respectively (i.e., zi = {zi,1, zi,2, . . . , zi,Dl

}), and r8,d
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Algorithm 1 Optimization in the latent space using jDE
1: g ← 0
2: Generate an initial population P (g) consisting of individuals z

(g)
1 , . . . , z

(g)
NP

.

3: Evaluate all solution candidates z
(g)
i (i ∈ {1, . . . , NP }) in population P (g).

4: while g reaches the limit glimit do
5: for i = 1 to NP do
6: Update z

(g)
i ’s control parameters: SFi and CRi.

7: Apply mutation and crossover operators for z
(g)
i .

8: Evaluate all trial vectors τ
(g)
i (i ∈ {1, . . . , NP }).

9: Add the better one from either z
(g)
i or τ

(g)
i to P (g+1).

10: end for
11: g ← g + 1
12: end while

Fig. 9. Algorithm of the Self-Adaptive DE.

is a random number ranging from 0 to 1. The combined strategy used in the
proposed method is denoted as “DE/rand/1/bin”.

Finally, the trial vectors τ 1, . . . , τNP
are evaluated Comment #5 by the fit-

ness function eq.(5), and their fitness values are compared with those of solution

candidates z1, . . . , zNP
. The solution candidate z

(g)
i is replaced with the trial vec-

tor τ
(g)
i (z

(g)
i ← τ

(g)
i ) if Flo(τ

(g)
i ) < Flo(z

(g)
i ). The main loop is iterated until the

stop condition is satisfied.

3.5 Tile generation using ELTHON

In the generation phase, the proposed method transforms the character image
W (z) decoded by the decoder network into a tile U(z) using ELTHON [14], which
has a hierarchical optimization architecture. As shown in Fig. 5, the upper and
lower layers of ELTHON correspond to the middle and lower layers of the proposed
method, respectively.

The upper-layer of ELTHON receives W and downsamples it to W̃ . After
downsampling, the tile generated by the lower-layer optimizer always satisfies the
edge-matching constraints and is similar to the given W . Exploiting the GA
in its upper-layer optimizer, ELTHON computes the bidirectional-mapping-based
shape-similarity distance function, which is not differentiable but provides a good
image-similarity metric for the Escherization problem. Besides transforming W ,
the upper-layer optimizer of ELTHON selects a suitable TP for W among its 29
TPs [14]. By representing the deformation of W and TP selection as chromosomes
in the GA, the simultaneous solution of both problems becomes tractable. Unlike
Koizumi’s method [4, 5] and the previous meta-heuristics approaches [6, 7], the
output tile of ELTHON rarely includes self-intersections.
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4. EVALUATION

4.1 Experimental setup

The effectiveness of the proposed method was experimentally verified in tile
generation from videos. For this experiment, we created a dataset including 69
videos of kittens (2,673 frames per video on average). To create this dataset, we
manually labeled 150 frames for segmentation (i.e., Tf = 2 or 3, depending on the
video length).

The Conv-VAE-related parameters in the proposed method were configured
as follows. The input image size Pt was set to 28 pixels, and the reduced number
of dimensions of the latent space Dl was set from 6 to 10. The batch size and
number of epochs were set to 128 and 100, respectively. For optimization in the
latent space, the jDE control parameters FL, FU , RSF , and RCR were set to 0.1,
0.9, 0.1, and 0.1, respectively. Comment #3 The population size and iteration

limit glimit in the jDE were set to 10 and 50, respectively. Comment #2 The

remaining parameters Vblur, Vcont, Rblur, and γ were set to 103, 103, 3.0 × 103,
and 0.01, respectively.

As the ELTHON model [14], we applied a generation alternation model with
uniform crossovers, bit flip mutations, and a Minimal Generation Gap [26]. The
maximum function evaluation count (stop condition), population size, crossover
rate, mutation rate, and number of trials for each solution candidate were set to
25,000, 50, 0.4, 0.03, and 1 respectively.

4.2 Experimental results

Fig. 10 shows examples of the visualized latent space of the trained Conv-
VAE. A case of Dl = 7 shown in Fig. 10(a), z1 and z6 were changed within the
ranges of [−4.0, 0.0] and [−4.0, 4.0], respectively, while z2, z3, z4, z5 and z7 were
fixed at 2.0, 0.0, 0.0, 0.0, and 0.0, respectively. As the vertical axis gradually
increased, the kitten was deformed into a sitting pose. Similarly, a case of Dl = 10
shown in Fig. 10(b), z3 and z5 were changed within the ranges of [−4.0, 4.0] and
[−4.0, 0.0], respectively, while z1, z2, z4, z6, z7, z8, z9 and z10 were fixed at 0.0,
1.0, 2.0, 1.0, 2.0, 1.0, 1.0 and 2.0, respectively. As the horizontal axis increased,
the kitten looking left gradually turned to the right.

Figs. 11 through 15 show the target character images with poses suitable for
tiling, which were generated by optimizing the latent space using jDE, and the
tiles generated by ELTHON, along with the values of Flo. The figures show the
results for the number of dimensions of the latent space was changed from six to
ten, respectively. Benefiting from the multi-point search, the proposed method
explored a variety of character poses suitable for tiling. The most similar training
image for each output is also shown in each figure. Some outputs, such as the
third and the fourth outputs in Fig. 11, the first output in Fig. 13, and the third
and the fifth outputs in Fig. 15, were dissimilar to the training images, e.g., the
positions of its tail or feet look different. indicating that Conv-VAE successfully
created intermediate poses among the training images, and that jDE optimization
in the latent space successfully found the interpolated poses that were suitable for
tiling.

Fig. 16 shows the tiling results of the experimentally obtained tiles. The
internal images were drawn by a human illustrator. Clearly, the proposed method
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(a) Example 1 when Dl = 7 (the hor-
izontal and vertical axes correspond to
−4.0 ≤ z1 ≤ 0.0 and −4.0 ≤ z6 ≤ 4.0,
respectively. z2, z3, z4, z5 and z7 were
fixed to 2.0, 0.0, 0.0, 0.0 and 0.0, re-
spectively).

(b) Example 2 when Dl = 10 (the hor-
izontal and vertical axes correspond to
−4.0 ≤ z3 ≤ 4.0 and −4.0 ≤ z5 ≤ 0.0,
respectively. z1, z2, z4, z6, z7, z8, z9
and z10 were fixed to 0.0, 1.0, 2.0, 1.0,
2.0, 1.0, 1.0 and 2.0, respectively).

Fig. 10. Examples of the visualization results of the trained latent space.

Output of

Conv-VAE
W (z)

Obtained
tile U(z)
Flo(z) 0.8228 0.8497 1.1733 0.8179 0.8349

The most
similar
training

image

Fig. 11. Generated character images and obtained tiles when Dl = 6.

generated tileable figures of kittens in various poses.

5. CONCLUSION

This paper proposes a method that generates tileable shapes of characters
shown in videos. After learning the feature space using Conv-VAE, the method
finds character-poses suitable for tiling, and generates new poses that are not
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Output of

Conv-VAE
W (z)

Obtained
tile U(z)
Flo(z) 0.8849 0.8153 0.7446 0.7927 0.8324

The most
similar
training

image

Fig. 12. Generated character images and obtained tiles when Dl = 7.

Output of

Conv-VAE
W (z)

Obtained
tile U(z)
Flo(z) 0.9454 0.8046 0.7680 0.7336 0.7487

The most
similar
training

image

Fig. 13. Generated character images and obtained tiles when Dl = 8.

included in the videos. Experimental results showed that the proposed method
extracted character images with various poses suitable for tiling, some of which
were not included in the training dataset.

In future, we plan to employ VQ-VAE-2 [27] to produce higher-resolution
output images because utilizing other meta-heuristics allows optimization in its
discrete latent space.
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